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Abstract

Although linguistic models are highly descriptive, they su4er from inaccuracy in some complex problems.
This fact is due to problems related to the in7exibility of the linguistic rule structure that has been considered.
Moreover, methods often employed to design these models from data are also biased by the former structure
and by their nature, which is close to prototype identi8cation algorithms.

In order to deal with these problems of linguistic modeling, an extension of the knowledge base of linguistic
fuzzy rule-based systems was previously introduced, i.e., the hierarchical knowledge base (HKB) (IEEE Trans.
Fuzzy Systems 10 (1) (2002) 2). Hierarchical linguistic fuzzy models, derived from this structure, are viewed
as a class of local modeling approaches. They attempt to solve a complex modeling problem by decomposing
it into a number of simpler linguistically interpretable subproblems. From this perspective, linguistic modeling
using an HKB can be regarded as a search for a decomposition of a non-linear system that gives a desired
balance between the interpretability and the accuracy of the model. Using this approach, we are able to
e4ectively explore the fact that the complexity of the systems is usually not uniform.

We propose a well-de8ned hierarchical environment adopting a more general treatment than the typical
prototype-oriented learning methods. This iterative hierarchical methodology takes the HKB as a base and
performs a wide variety of linguistic modeling. More speci8cally, from fully interpretable to fully accurate,
as well as intermediate trade-o4s, hierarchical linguistic models.

With the aim of analyzing the behavior of the proposed methodology, two real-world electrical engineering
distribution problems from Spain have been selected. Successful results were obtained in comparison with
other system modeling techniques.
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1. Introduction

One of the most important applications of fuzzy rule-based systems (FRBSs) is system modeling
[2,24,36]. It is possible to distinguish between two types of modeling when working with FRBSs:
linguistic modeling [31]—often represented by Mamdani FRBSs—and fuzzy modeling [2,31]—
frequently represented by Takagi–Sugeno–Kang (TSK) FRBSs—according to the fact that the main
requirement is the interpretability or the accuracy of the models, respectively. In fact, we usually
8nd that these are two contradictory needs.

In this paper we focus on improving linguistic modeling [31]. Particularly, we make use of
Mamdani-type FRBSs, which become the typical example of linguistic models that present the max-
imum description level, i.e., fuzzy rules that are globally interpretable. For the sake of simplicity,
we will refer to the components of this kind of FRBSs—fuzzy linguistic rules and partitions—just
as linguistic. A more detailed description of linguistic models and their di4erences with other fuzzy
models can be found in [7,19,38].

Linguistic models, although descriptive, also su4er from inaccuracy in some complex problems.
This fact is due to some problems related to the linguistic rule structure considered, which is a
consequence of the in7exibility of the concept of linguistic variable [37]. Moreover, methods that
usually learn these models from data are also biased by the former structure and by their nature,
which is close to prototype identi8cation algorithms [6,28,39].

In order to deal with these problems of linguistic modeling, we propose a hierarchical environ-
ment—model representation and learning methodology—as a strategy to improve simple linguistic
models. This approach preserves the original model descriptive power and increases its accuracy by
reinforcing those problem subspaces that are specially diNcult.

We consider an extension of the knowledge base structure of linguistic or Mamdani FRBSs by
which the concept of “layers” was introduced [11]. In this extension, which is also a generalization,
the knowledge base is composed of a set of layers. Each layer contains linguistic partitions with
di4erent granularity levels and fuzzy rules, whose linguistic variables take values in these parti-
tions. This knowledge base was called the hierarchical knowledge base (HKB), and it is formed
by:

• A hierarchical data base (HDB), containing linguistic partitions of the said type.
• A hierarchical rule base (HRB), with the corresponding linguistic rules.

A previous approach to develop hierarchical models from a limited HKB [11], hierarchical systems
of linguistic rules (HSLRs) of two levels, was focused on interpretability. In this paper, we extend
the former model structure, i.e., the HKB, and propose an HSLR learning methodology (HSLR-LM)
to learn it from examples. This methodology iteratively selects bad performance linguistic rules,
which need more speci8city, and expands them locally through di4erent granularity levels. This
fact produces a wide spectrum of solutions—from high interpretable to high accurate, and trade-
o4 solutions—and avoids typical drawbacks of prototype-based linguistic rule generation methods
(LRG-methods).

As a meta-methodology, the HSLR-LM works on simple models that have been previously ob-
tained from di4erent LRG-methods. Thus, for the sake of compatibility, its interpolation method ac-
tivates independently each rule as a typical inference in fuzzy logic. Fuzzy set theory o4ers excellent
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tools for representing the uncertainty associated with the decomposition task, providing smooth tran-
sitions between individual local submodels. It also facilitates the interpolation of various types of
knowledge within a common framework, giving a desired balance between the complexity and the
accuracy of the model. Using this approach, we are able to e4ectively explore the fact that the
complexity of the systems is usually not uniform.

In this contribution, accuracy and interpretability cannot be considered independently but as a
trade-o4 interaction. Moreover, we empirically prove that it is not always true that a set of rules
with a higher granularity level performs a more accurate modeling of a problem than another
with a lower one. Interpretability condition emphasizes the generation of a low number of rules,
thus, reducing the complexity of the model. However, this reduction also prevents possible model
over8tting [21], i.e., like a pre-pruning strategy [23] which also improves the generalization and the
accuracy of the results.

The relationship between accuracy and interpretability does not only depend on granularity and
speci8city, but also on other factors, for example, rule weights, 7exible rule consequents, and more-
over, compasity of and cooperation policies between the rules [7,11]. Therefore, di4erent policies
are considered for the methodology to 8nd out the best way to perform the local hierarchical fuzzy
decomposition and, afterwards, the corresponding integration in a compact HKB:

• Generation policies, considering weighted and double-consequent reinforced linguistic rules.
• Expansion policies, viewing the hierarchical process as a replacement or a reinforcement of bad

performance linguistic rules.
• Selection policies, allowing di4erent criteria—accuracy or trade-o4 accuracy-complexity oriented—

to summarize the most compact set of linguistic rules by genetic algorithms.

The setup of this paper is as follows. In Section 2, the HKB philosophy is introduced and the
lacks of LRG-methods are also highlighted. In Section 3, the local-oriented and iterative HSLR-
LM is described in detail. Di4erent policies concerning the algorithm performance are also studied.
In Section 4, HSLR models obtained from the HSLR-LM are applied to solve previous problems
on real-world applications. Analysis of results is performed by three di4erent points of view: from
the methodology performance, from the in7uence of the methodology parameters, and from the
methodology policies. Results are also compared with other system modeling techniques. Finally, in
Section 5, some concluding remarks are pointed out. Appendix A contains a brief description of the
LRG-methods and acronyms used in the paper.

2. Framework

Our approach is oriented to produce a more general and well-de8ned structure, the HKB. This
structure should be 7exible enough to allow a wide variety of linguistic models, as said from
very accurate to well interpretable ones. Our purpose is to preserve the descriptive capabilities of
previous models, increasing their accuracy at di4erent hierarchical levels. We simplify the inference
mechanism adopted by previous hierarchical approaches [12,16,25,34], activating independently each
rule as it is done in the conventional inference mechanism. Besides, we use summarization processes
to obtain a compact set of rules that have good cooperation between them.
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There are many reasons that encourage the use of hierarchical representations. From the theoretical
point of view, the theory of fuzzy sets o4ers an excellent tool for representing the uncertainty
associated with the hierarchical decomposition task and for providing smooth transitions between
the individual local submodels [1]. Moreover, hierarchical rules are supported by the lack of truth
functionality in many “logics of uncertainty”. Results of the research on human plausible reasoning
conducted by Michalski [20] show that people derive a combined certainty of a conclusion from
uncertain premises by taking into consideration structural (or semantic) relations among the premises,
based on a hierarchical knowledge representation.

From the practical point of view, it has been observed that the knowledge base structure, usu-
ally employed in the 8eld of linguistic modeling, su4ers from inaccuracy when working with very
complex systems [3]. One way to solve many of the previous problems is to make the knowledge
base more 7exible, i.e., build a HKB. The basic philosophy of this structure will be described in
Section 2.1.

Otherwise, there exists another problem related with linguistic modeling that concern by those
learning methods usually employed to identify the knowledge base of an FRBS. Some of their
lacks as prototype-identi8cation algorithms (see Section 2.2) motivated the development of
HSLR-LM.

2.1. HKB philosophy

The inaccuracy of linguistic models is due to some problems related to the linguistic rule structure
considered in their knowledge base. This problem arises as a consequence of the in7exibility of the
concept of linguistic variable [37], mostly caused by the rigid partitioning of the input and output
spaces. A summary of these problems can be found in [3].

Therefore, we present a more 7exible knowledge base structure that allows us to improve the
accuracy of linguistic models without losing their interpretability to a high degree, the HKB [11]. It
is composed of a set of layers, and each layer is de8ned by its components in the following way:

layer(t; n(t)) = DB(t; n(t)) + RB(t; n(t));

where

• n(t) is the number of linguistic terms that compose the partitions of layer t, and
• DB(t; n(t)) is the database which contains the linguistic partitions with granularity level n(t) of

layer t.
Generically, we could say that a database from a layer t +1 is obtained from its predecessor as

DB(t; n(t))→ DB(t + 1; 2n(t)− 1);

which means that a linguistic partition in DB(t; n(t)) with n(t) linguistic terms becomes a linguistic
partition in DB(t+1; 2n(t)−1) [11] (see Fig. 1 and Table 1). In order to satisfy this requirement,
each linguistic term Sn(t)

k —term of order k from the linguistic partition in DB(t; n(t))—is mapped
into S2n(t)−1

2k−1 . The former modal points are preserved and a set of n(t)−1 new terms is created, each
one between Sn(t)

k and Sn(t)
k+1 (k = 1; : : : ; n(t)−1) (see Table 2). In this view, we can generalize this
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Fig. 1. Three layers of linguistic partitions which compose the HDB.

two-level successive layer de8nition for all layers t in the following way:

n(t) = (N − 1)2t−1 + 1;

where n(1) =N , i.e., the number of linguistic terms in the initial layer partitions.

Remark 1. In this work, we are using linguistic partitions with the same number of linguistic terms
for all input–output variables, composed of triangular-shaped, symmetrical and uniformly distributed



312 O. Cord�on et al. / Fuzzy Sets and Systems 138 (2003) 307–341

Table 1
Hierarchy of DBs starting from two or four initial terms

DB(t; n(t)) DB(t; n(t))

DB(1; 2) DB(1; 4)
DB(2; 3) DB(2; 7)
DB(3; 5) DB(3; 13)
DB(4; 9) DB(4; 25)
...

...
DB(6; 33) DB(6; 97)
...

...

Table 2
Mapping between terms from successive DBs

DB(t; n(t)) DB(t + 1; 2n(t) − 1)

Sn(t)
k−1 → S2n(t)−1

2k−3

S2n(t)−1
2k−2

Sn(t)
k → S2n(t)−1

2k−1

S2n(t)−1
2k

Sn(t)
k+1 → S2n(t)−1

2k+1

membership functions at each level of the hierarchy. However, linguistic partitions for variables with
global semantics can also be de8ned by expert knowledge.

• RB(t; n(t)) is the rule base formed by those linguistic rules whose linguistic variables take values
in the former partitions. The main purpose of developing an HRB is to model the problem space
in a more accurate way. To do so, those linguistic rules from RB(t; n(t)) that model a subspace
with bad performance are expanded into a set of more speci8c linguistic rules, which become their
image in RB(t + 1; 2n(t)− 1). This set of rules models the same subspace as the former ones and
replaces them.

From now on and for the sake of simplicity, we are going to refer to the components of DB(t; n(t))
and RB(t; n(t)) as t-linguistic partitions and t-linguistic rules, respectively.

Remark 2. The t-linguistic rule structure is formed by a collection of well-known Mamdani-type
linguistic rules:

Rn(t)
i : IF x1 is Sn(t)

i1 and : : : and xm is Sn(t)
im

THEN y is Bn(t)
i ;
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Fig. 2. LRG-methods as prototype identi8cation algorithms.

where x1; : : : ; xm and y are input and output linguistic variables, respectively; and Sn(t)
i1 ; : : : ; Sn(t)

im , Bn(t)
i

are linguistic terms from di4erent t-linguistic partitions contained in DB(t; n(t)), with fuzzy sets
associated de8ning their meaning. In this contribution, we use the minimum t-norm in the role of
conjunctive and implication operator. The fuzzy interpolation is performed by the defuzzi8cation-
strategy center of gravity weighted by the matching degree [8]. Each rule is independently activated
as it is done in the conventional inference mechanism. Any other defuzzi8cation method considering
the matching degree of the 8red rules may be used.

The described set of layers is organized as a hierarchy, where the order is given by the granularity
level of the linguistic partition de8ned in each layer. That is, given two successive layers t and t+1,
the granularity level of the linguistic partitions of layer t + 1 is greater than the ones of layer t.
This causes a re8nement of the previous layer linguistic partitions. As a consequence of the previous
de8nitions, we can now de8ne the HKB as the union of all layers t:

HKB =
⋃
t

layer(t; n(t)):

2.2. Hierarchical methodology for learning an HKB

In order to characterize LRG-methods, and regarding [27,39], we can say that basically an LRG-
method does its job as a prototype-identi8cation algorithm. These algorithms perform the optimization
of a functional Q(F ;Model(�)) that measures the extent to which the parameterized model Model(�)
8ts the subset F of the described object (see Fig. 2).

From this perspective, the linguistic rule identi8cation problem is formulated as a clustering
problem. More speci8cally, extracted subsets meet, to some extent, the requirements imposed
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by the model collection in the same way that elements of a clustering partition satisfy the constraint
that their members be as similar as possible [27,39]. This point of view follows original ideas of
Ruspini [26], later expanded by Bezdek introducing various methods centered upon the notion of
prototype [4]. The basic idea of summarizing a data set by a number of representative prototypes—
objects lying in the same space as the sample points—was later extended in many signi8cant di-
rections by relaxing this concept in a variety of ways, e.g., line segments, ellipsoids, etc. [5,18].
In this paper, we particularize these extensions by considering such prototypes as being linguistic
rules [1].

Having the above concepts in mind, LRG-methods can be seen as identi8cation algorithms with
linguistic rule prototypes. That is, linguistic model builders whose main purpose is to extract the
most suitable set of linguistic rules from an object (input–output data). This process is performed
according to an optimization measure which evaluates the quality of the approximation. In addition,
they organize and summarize results by interestingness criteria to provide a more compact and useful
representation of the salient structures.

In order to illustrate this situation, consider for example the Wang and Mendel’s Algorithm [33]
described in Appendix A. It identi8es linguistic rules from a set of input–output data (object F),
building an approximate linguistic model (Model(�)). The quality of the candidate substructures
(rule premises) is measured based on a covering criterion (Q(F ;Model(�))).

All of these models generated by LRG-methods have the same drawbacks that prototype-identi8ca-
tion methods have:

• Simple formulation of the prototype-identi8cation problem as an optimization of a functional would
simply result in a large collection of very speci8c rules. They used to have small extent and high
accuracy, but poor generalization. Smaller, rather than larger, signi8cative prototypes with high
generalization power should be preferred.
• The determination of a complete clustering or a partition of the data set into a 8xed number of

prototypes has been a major issue for a long time.

All of these problems from LRG-methods and the use of a more complex structure like the HKB
motivate a di4erent treatment of the linguistic rule learning process. To do so, we will consider a
hierarchical meta-methodology which modi8es the framework shown in Fig. 2 by considering the
following requirements:

• Implementation of a sort of trade-o8 between the extensionality and the accuracy of the models.
Consider that rules which provide good explanations tend to be limited in extent. Conversely,
those that are capable of describing large subsets of the data set are poorly accurate.
• Adopt a more general treatment than that of a typical clustering problem. Emphasize on the

sequential isolation of individual clusters [18,27] rather than the determination of a full clustering.
Furthermore, we do not want to assume a priori knowledge of the total number of clusters—
rule prototypes—requiring that the set of all clusters be an exhaustive partition of the complete
object.

Considering the former requirements, in the following section we will introduce an extended local-
oriented HSLR-LM. This learning methodology will modify initial models identi8ed by LRG-methods
in an iterative way, performing gradual re8nements on them.
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Fig. 3. Trade-o4s between interpretability and accuracy.

3. An iterative localized HSLR-LM

We present the HSLR-LM as a methodology which performs a local hierarchical treatment of
those problem subspaces which are badly modeled by conventional LRG-methods. This learning
methodology performs a trade-o4 between the model extensionality and accuracy by implementing a
local and iterative strategy. From this approach, a priori speci8cations of 8xed number of linguistic
rules can be avoided. Hopefully, this methodology will allow us to obtain a variety of linguistic
models, from highly accurate to highly interpretable ones.

An HSLR-LM was developed as a parametrized methodology. The factor of expansion controls
the level of bad performance that a rule should have to be expanded into more speci8c ones. Thus,
a low factor implies a small expansion—smaller number of rules—and a more interpretable model.
In this sense, our previous approach [11] is a special case which makes use of this parameter to
obtain interpretable hierarchical models. Another parameter to be considered is the iteration of the
algorithm. It is used to control the granularity level that more speci8c hierarchical rules, which
replace those ones with bad performance, should have (see Fig. 3).

In the following we will 8rst present the HSLR-LM algorithm. Afterwards, we will propose di4er-
ent design policies which could be combined with the basic local iterative strategy: HRB generation
policies, HRB expansion policies, and HRB selection policies. All of these components compose a
7exible hierarchical framework to deal with complex problems based on di4erent requirements of
accuracy and/or interpretability.

3.1. Algorithm

In this Subsection we present our iterative methodology to generate an HKB. We use an LRG-
method, which as an inductive method, is based on the existence of a set of input–output data
ETDS and a previously de8ned DB(1; n(1)). The data set ETDS = {e1; : : : ; el; : : : ; eq} is composed
of q input–output data pairs el = (exl1; : : : ; ex

l
m; eyl) which represent the behavior of the system

modeled.
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It basically consists of the following steps which can be also graphically seen in Fig. 6.

Initialization process
Step 0: RB(1; n(1)) generation process. Generate RB(1; n(1)), where the rules of the initial layer

are generated from the terms de8ned in the present partitions—located in DB(1; n(1))—by an LRG-
method:

HRB1 = RB(1; n(1)) = LRG-method(DB(1; n(1)); ETDS);

where n(1) =N and the initial DB(1; n(1)) is given by an expert or by a normalization process con-
sidering a small number of terms. The iteration and the last layer generated counters are initialized:
k = 1 and p= 1, respectively.

Iteration process (iteration k)
Step 1: HRB generation process. Generate HRBk+1, where the linguistic rules from layer

(t + 1) are generated taking into account RB(t; n(t)), DB(t; n(t)) and DB(t + 1; 2n(t + 1) − 1),
and 16t6p6k + 1 (see Fig. 4).

(a) Bad performance t-linguistic rule selection process: This process performs the selection of those
t-linguistic rules from HRBk which will be expanded into RB(t+1; 2n(t)−1), based on an error
measure.
(i) Calculate the error of HRBk as a whole as MSE (ETDS; HRBk): The mean square error

(MSE) calculated over the training data set ETDS is the error measure used in this work.
Therefore, the MSE of the entire set of t-linguistic rules is represented by the following
expression:

MSE(ETDS; HRBk) =

∑
el∈ETDS

(eyl − s(exl))2

2|ETDS| ;

where s(exl) is the output value obtained from the HRBk; when the input variable values
are exl = (exl1; : : : ; ex

l
m); and eyl is the known desired value.

(ii) Calculate the error of each individual t-linguistic rule as MSE(Ei; R
n(t)
i ): We need to de8ne

a subset Ei of ETDS to calculate the error of the rule Rn(t)
i . Ei is a subset of the examples

matching the antecedents of the rule i to a speci8c degree  :

Ei = {el ∈ ETDS=Min("Sn(t)
i1

(exl1); : : : ; "Sn(t)
im

(exlm)) ¿  };

where  ∈(0; 1]. Then, we calculate the MSE of a t-linguistic rule Rn(t)
i as

MSE
(
Ei; R

n(t)
i

)
=

∑
el∈Ei

(eyl − si(exl))2

2 |Ei| ;

where si(exl) is the output value obtained when inferring with Rn(t)
i . We should note that

any other local error measure can be considered with no change in our methodology, such
as the one shown in [35].
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Fig. 4. Example of the HRB generation process. If #= 0:5, the problem subspace resulting from the bad t-linguistic rule
expansion is the one represented by the small white square. If #= 0:1, it would be composed of the union of the former
small white square and the gray one.

(iii) Select the t-linguistic rules with bad performance which are going to be expanded, mak-
ing the di8erence from the good ones:

HRBk
bad = {Rn(t)

i =MSE(Ei; R
n(t)
i ) ¿ $MSE(ETDS; HRBk)};

HRBk
good = {Rn(t)

i =MSE(Ei; R
n(t)
i ) ¡ $MSE(ETDS; HRBk)};

where the threshold $ represents a percentage of the error of the whole rule base which
determines the expansion of a rule. For example, $= 1:1 means that a t-linguistic rule with
an MSE 10% higher than the MSE of the entire HRBk should be expanded. The expansion
of factor $ may be adapted in order to have more or less expanded rules. It is noteworthy
that this adaptation is not linear and, as a consequence, the expansion of more rules does
not ensure the decrease of the global error of the system modeled.
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Before describing the next step and for the sake of clarity, we are going to refer to DB(t; n(t))
as DBxj(t; n(t)) ( j = 1; : : : ; m), meaning that it contains the t-linguistic partition where the input
linguistic variable xj takes values, and as DBy(t; n(t)) for the output variable y. Notice that, even if
all t-linguistic partitions contained in a DB(t; n(t)) have the same number of linguistic terms, they
are de8ned over di4erent domains. Each one, corresponding to one linguistic variable or normalized
by scaling factors.

Now, for each Rn(t)
i ∈HRBk

bad perform the following processes:

(b) DB(t + 1; 2n(t) − 1) selection process: If (t =p), then: p←p + 1; create DBxj(p; n(p)), for
all input linguistic variables xj ( j = 1; : : : ; m), and DBy(p; n(p)), for the output linguistic
variable y; HDBp←HDBp−1 ∪DB(p; n(p)). More speci8cally, if the t-linguistic partitions—
corresponding to a bad rule—have reached the maximum granularity level available in the HDB,
then generate the next layer database.

(c) Bad performance t-linguistic rule expansion process:
(i) Select those (t+1)-linguistic partition terms from DB(t+1; 2n(t)−1) that will be contained

in the (t + 1)-linguistic rules. These rules are considered the image of the previous layer
bad rules.

For all linguistic terms considered in Rn(t)
i –Sn(t)

ij de8ned in DBxj(t; n(t)) and associated

to the linguistic variables xj–, select those terms S2n(t)−1
h in DBxj(t + 1; 2n(t) − 1) which

signi8cantly intersect them. Consequently, for Bn(t)
i de8ned in DBy(t; n(t)) and associated

to the linguistic variable y: In other words, select those terms from the (t + 1)-linguistic
partition that describe approximately the same subspace as the terms included in Rn(t)

i , but
with a higher granularity level. In this work we are going to consider that two linguistic
terms have a “signi�cant intersection” between each other if the maximum cross level
between their fuzzy sets in a linguistic partition overcomes a prede8ned threshold #. Thus,
the set of terms taken from (t + 1)-linguistic partitions for the expansion of a t-linguistic
rule Rn(t)

i are selected in the following way:

I(Sn(t)
ij ) =

{
S2n(t)−1
h ∈ DBxj(t+1; 2n(t)−1)

/
Max
u∈Uj

Min{"Sn(t)
ij

(u); "S2n(t)−1
h

(u)}¿ #
}

;

I(Bn(t)
i ) =

{
B2n(t)−1

h ∈ DBy(t+1; 2n(t)−1)
/

Max
v∈V

Min{"Bn(t)
i

(v); "B2n(t)−1
h

(v)}¿ #
}

;

where #∈[0; 1].
(ii) Combine the previously selected m sets I(Sn(t)

ij ) and I(Bn(t)
i ) by the following expression:

I(Rn(t)
i ) = I(Sn(t)

i1 )× · · · × I(Sn(t)
im )× I(Bn(t)

i );

where I(Rn(t)
i ) ⊂ DB(t + 1; 2n(t)− 1): More speci8cally, create a fuzzy grid in the input

fuzzy subspace of a bad performance rule that is being expanded.
(iii) Extract (t + 1)-linguistic rules from the selected (t + 1)-linguistic partition terms, pro-

ducing a set of L (t + 1)-linguistic rules. This set represents the expansion of the bad
t-linguistic rule Rn(t)

i .
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This task is performed by an LRG-method, which takes I(Rn(t)
i ) and the set of input–

output data Ei as its parameters:

CLR(Rn(t)
i ) = LRG-method(I(Rn(t)

i ); Ei) = {R2n(t)−1
i1 ; : : : ; R2n(t)−1

iL };

where CLR(Rn(t)
i ) is the image of the expanded linguistic rule Rn(t)

i ; i.e., the candidates to
be in the HRBk+1 from rule i.

Step 2: Summarization process. Obtain a joined set of candidate linguistic rules (JCLR). Join
the new candidate (t + 1)-linguistic rules and the former good performance t-linguistic rules:

JCLR = HRBk
good ∪

(⋃
i

CLR(Rn(t)
i )

)
;

where Rn(t)
i ∈ HRBk

bad.
Step 3: HRB selection process. Simplify the set JCLR by removing the unnecessary rules from

it and generating an HRBk+1 with good cooperation. In this paper we consider an genetic process
[11,15,17] to put this task into e4ect, but any other technique could be considered:

HRBk+1 = Selection Process(JCLR)

In the JCLR—where there are coexisting rules of di4erent hierarchical layers—it may happen
that a complete set of (t + 1)-linguistic rules—which replaces an expanded t-linguistic rule—does
not produce good results. However, a subset of this set of (t+1)-linguistic rules may work properly
with less rules that cooperate better between them, and with those good rules preserved from the
previous layer. Thus, the JCLR set of rules may present redundant or unnecessary rules making the
model using this HKB less accurate.

The genetic rule selection process [11,15] is based on a binary-coded genetic algorithm. The se-
lection of the individuals is performed using the stochastic universal sampling procedure together
with an elitist selection scheme. The generation of the o4spring population is put into e4ect by
using the classical binary multipoint crossover (performed at two points) and uniform mutation
operators.

The coding scheme generates 8xed-length chromosomes. Considering the rules contained in JCLR
counted from 1 to z, an z-bit string C = (c1; : : : ; cz) represents a subset of rules for the HRBk+1

such that

IF ci = 1 THEN (Ri ∈ HRBk+1) ELSE (Ri =∈ HRBk+1):

The initial population is generated by introducing a chromosome representing the complete pre-
viously obtained rule set, i.e., with all ci = 1. The remaining chromosomes are selected at
random.

As regards the 8tness function F(Cj), it is based on a global error measure that determines the
accuracy of the FRBS encoded in the chromosome. This measure depends on the cooperation level
of the rules existing in the JCLR. We usually work with the MSE over a training data set, as it
was previously de8ned, although other measures may be used. The importance of this process is
illustrated in Fig. 5.
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Fig. 5. HRB selection process.

Step 4: Model validation process. The 8nal model is either accepted as a proper one for the given
purpose, or it is rejected generating another iteration of the hierarchical process. Among the di4erent
indices that can be used to measure the quality of linear or non-linear systems after an identi8cation
loop [1], we consider a monotonic MSE measure on the training set computed as

IF (MSE(HRBk+1(ETDS)) 6 MSE(HRBk(ETDS)) and (k ¡ Kmax))

THEN k ← k + 1; Goto Step 1;

where Kmax is a previously de8ned maximum number of iterations. This value is based on a trade-o4
between the complexity and the accuracy of the desired model.

Finally, as a consequence of applying this algorithm, the HKB is rede8ned as

HKB = HDBp + HRBk+1:

As we referred, Fig. 6 graphically illustrates the HSLR-LM algorithm.

3.2. Generation policy

The DB(t + 1; 2n(t)− 1) generation policy (see Step 1(c)(i)) was based on selecting those terms
from DB(t + 1; 2n(t)− 1) that signi8cantly intersect the ones of the expanded bad rule. As a conse-
quence of this policy, at least two di4erent kinds of linguistic rules can be obtained from the HRB
generation process. First, repeated (t + 1)-linguistic rules can be generated as a consequence of the
expansion of adjacent bad t-linguistic rules. Second, double-consequent (t + 1)-linguistic rules can
be derived in the same reason.
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Fig. 6. Algorithm of the HSLR-LM design process.

What are the implications of these repeated and double-consequent rules in the hierarchical pro-
cess? Are they usefully related with this process? Is the selection process powerful enough to take
them away or to disambiguate them?

We will try to answer these questions after analyzing the mentioned consequences of applying the
former policy and its in7uence in the obtained results.

3.2.1. Repeated (t + 1)-linguistic rules
Consider the following situation where more than one copy of a rule can be produced by the

generation process of the HSLR-LM in the same layer. This fact is illustrated in Fig. 7, where two
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2-linguistic rules (see dark gray squares)

IF x1 is M 5 and x2 is VL5 THEN y is M 5

are both derived from the expansion of R3
2 and R3

4.
This happens because of the overlapping of the expanded rule images, which is produced by low

values of the parameter # (see Step 1(c)(i) in the algorithm). Once these repeated rules are generated,
they are given to the selection process, which has the chance to eliminate all these redundant rules.

To answer the former questions and to decrease the computational complexity, we will experimen-
tally compare the e4ect of excluding those repeated rules from the input of the selection process.
We modify Step 3 of the HSLR-LM algorithm to extract repeated rules before the selection process
takes place:

HRBk+1 = Selection(Extract Repeated(JCLR)):

In Section 4, we will evaluate and compare results obtained with and without considering repeated
rules. From now on, models without repeated rules will be referred to as NR-HSLRs.

3.2.2. Double-consequent (t + 1)-linguistic rules
As we have detected repeated linguistic rules in the last subsection, we can also observe that

some of the learned rules have multiple consequents (see the two light gray squares in Fig. 7). As
was introduced in [7,11,22], this phenomenon is an extension of the usual linguistic model structure
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where each combination of antecedents may have two or more consequents associated with it. We
should note that this operation mode does not constitute an inconsistency from the interpolative
reasoning point of view. However, it only corresponds to a shift of the consequent labels of the
rules, producing 8nal results lying in the intermediate zones between these fuzzy sets.

Consider the speci8c combination of antecedents of Fig. 7, “x1 is S5 and x2 is M 5”, which has two
di4erent consequents associated, S5 and M 5. From a linguistic modeling point of view, the resulting
double-consequent rule may be interpreted as follows:

IF x1 is S5 and x2 is M 5 THEN y is between S5 and M 5:

Double-consequent linguistic rules enrich the representational power of linguistic rules allowing
di4erent kinds of rules to belong to the HRB. Moreover, they postpone the selection of good rules
until the summarization process is performed, considering the best cooperation between them.

3.3. Expansion policies: hierarchical replacement and hierarchical reinforcement

We have previously discussed in Fig. 3, more granularity implies more accuracy. As regards as
the hierarchical process, the same question arises locally. The expansion policy followed by the
algorithm in Step 1 locally replaces a bad modeling t-linguistic rule by a set of more speci8c
(t + 1)-linguistic rules. In this section we evaluate the performance of that policy and propose an
alternative one.

In addition to the replacement criterion followed by the HSLR-LM, partial or incomplete solutions
are also achieved as a consequence of the searching process implemented. The methodology imple-
ments a greedy strategy which makes the best available decision at every iteration. Therefore, the
selection of t-linguistic rules at the current iteration is restricted by a maximum of p-hierarchical
layers generated up to the last k iteration (Kmax), instead of having the complete set of rules gen-
erated from all possible HDBs. Moreover, some of the rules are not available because they were
pruned by the former replacement strategy. From the above considerations, we aNrm that HSLR-LM
is not immune to the usual risk of hill-climbing searches without backtracking, i.e., converging to
locally optimal solutions that are not globally optimal.

To deal with the former issues and being inspired by Ishibuchi et al.’s method [17], we propose
a di4erent operation mode for the hierarchical process. It consists on preserving both the expanded
rule and some of the rules composing its image in the next layer rule base. That is, to consider the
expansion process as a hierarchical reinforcement of a bad rule.

Fig. 8 shows both kinds of rule expansion policies and allows us to illustrate how the reinforcement
extension (b) modi8es our previous replacement approach (a). This hierarchical reinforcement is
basically characterized by the following points:

• The HSLR-LM reinforces the original rule with more speci8c rules de8ned over some of its
subspaces. The main purpose of these 8ner rules is to correct the original rule in those places
where it performs a bad modeling by locally reinforcing these zones.
• The reinforcement policy does not eliminate the concept of “replacement” of the expanded rule,

but extends it allowing the selection process to eliminate this rule when it badly cooperates with
the rest of the rules. Thus, it gives the selection process the chance to perform a more accurate
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Fig. 8. Expansion policies: (a) replacement policy and (b) reinforcement policy.

search through the solution space in order to obtain the most accurate HRB. This fact may be
seen as having a wider spectrum of possibilities to perform a selection decision.
• Reinforcement allows the methodology to backtrack to reconsider earlier choices which is im-

possible for the replacement approach. That is, if the global cooperation with the rules is not
improved, a decision which generates an expansion of a t-linguistic rule could be later corrected.
This happens by eliminating some or all of the (t + 1)-linguistic rules generated. Then, a bad
rule is eliminated only if it is considered as bad by both processes: expanded by the generation
process and discarded by the selection process.

• The reinforcement approach allows the HSLR-LM to perform a sort of local bidirectional search
which solves some of the problems of hierarchical clustering [14]. More speci8cally, a combined
derivative and agglomerative clustering that can iteratively regulate how deep to search in the
hierarchy.

In order to empirically prove the e4ect of this kind of re8nement, we designed experiments by
modifying Step 3 of the HSLR-LM algorithm (see Section 3.1) in the following way:

HRBk+1 = Selection(HRBk
bad ∪ JCLR):

Initially, this approach preserves the repeated rules considered in the previous subsection. Hence, we
also designed experiments to appreciate the e4ect of excluding such rules by changing Step 3 of the
algorithm:

HRBk+1 = Selection(Extract repeated(HRBk
bad ∪ JCLR)):

In Section 4, we will evaluate and compare results obtained for both types of expansion policies.
From now on, models with hierarchical reinforcement will be referred as HR-HSLRs.
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3.4. Selection policies: accuracy oriented and trade-o8 accuracy-complexity oriented

Unfortunately, although genetic algorithms constitute a robust technique, sometimes they cannot
avoid to fall in local minima when strongly multimodal searching surfaces are considered. One of
such complex environments is represented by the HKB which is composed of fuzzy rules de8ned
on di4erent granularity levels.

Models derived from non-optimal solutions are not accurate enough or/and contain redundant rules
that make them more complex and thus, less interpretable. To partially avoid local minima solutions
in the HKB, we modify the 8tness function of the genetic algorithm. F(Cj) was previously de8ned
as an accuracy-oriented function that penalizes those rule bases which produce high errors. Now, it
is updated by also penalizing rule sets with high number of rules. This new de8nition constitutes
a trade-o4 solution between the complexity and the accuracy of the hierarchical model [17]. The
8tness function can be re-written in the following way:

F(Cj) = w1 MSE + w2 Nrules;

where MSE is the mean squared error produced by the current rule base encoded in the chromosome,
Nrules is the number of rules of that rule base, and w1 and w2 are weights de8ning the relative impor-
tance of each objective. In our present experiments, these constants are initialized in the following
way [10]:

w1 = 1:0; w2 = 0:1
MSEinitial

Ninitial rules
;

where MSEinitial and Ninitial rules are the error and the amount of rules of the original rule base to be
summarized, respectively.

It should be noted that the above de8nition of the 8tness function does not only reduce the
complexity of the model but, sometimes, increases its accuracy by working as a pruning strategy
[21]. In addition to the present modi8cation, other interestingness relations can also be implemented
in HSLR-LM to enrich the summarization process (see Fig. 2).

In the following section, we will evaluate and compare results obtained from both types of selection
policies. From now on, models using the accuracy-complexity-oriented strategy will be referred as
AC-HSLRs.

4. Examples of application: experiments and analysis of results

With the aim of analyzing the behavior of the proposed iterative methodology, two real-world
electrical engineering distribution problems from Spain [9,29,30] have been selected. The 8rst one
relates some characteristics of a certain village with the actual length of low-voltage line contained
in it. The other relates the maintenance cost of the network installed in certain towns with some
of their characteristics. In both cases, it would be better if the solutions obtained were not only
numerically accurate, but also able to explain how these values are computed for certain villages or
towns. In other words, it is important that solutions would be interpreted by human beings to some
degree.
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In order to do this, we have organized this section into four parts: a 8rst part of notation and
parameters; a second and third of experiments; and a 8nal one with an analysis of the results. The
analysis will be done from di4erent perspectives: the methodology performance, the in7uence of its
parameters, and the policies considered in its design.

4.1. Notation and parameters

As we have said, the learning methodology has been thought of as a re8nement of simple linguistic
models, which uses an HKB of some layers. For the sake of simplicity and interpretability, we will
only consider the generation of HSLRs with up to three hierarchical levels.

In the following applications we are going to refer to these experiments produced by the HSLR-LM
using the following notation:

HSLR(LRG-method; n(1); n(p); Kmax);

where n(1) and n(p) are the initial and 8nal granularity levels of the HKB, respectively; Kmax is the
number of iterations performed by this methodology; e.g., HSLR (WM -method; 3; 9; 2). We should
note that HSLR(LRG-method; n(1); n(2); 1) represents a simple re8nement of hierarchical models
which is an interpretability-oriented approach of two levels.

The LRG-method considered for the previous experimentation is the one proposed by Wang
and Mendel [33], noted by WM-method in the following. This method is brie7y described in the
Appendix A1. A reference to an application of WM-method is represented by WM -method(r), where
r is the granularity level of the linguistic partitions used in the method.

The initial databases used for the HSLR-LM have two primary linguistic partitions formed by three
and �ve linguistic terms with triangular-shaped fuzzy sets, i.e. DB(1; 3) and DB(1; 5), respectively.
The initial linguistic term sets for the mentioned databases are shown in the following:

DB(1; 3) = {S3; M 3; L3}; where S = small;
DB(1; 5) = {VS5; S5; M 5; L5; VL5}; M = medium;

L = large;
VS = very small;
VL = very large:

The parameters used in all of these experiments are listed in Table 3.
The results obtained in the experiments developed are collected in tables where MSEtra and MSEtst

stand for the MSE values computed over the training and test data sets, respectively. #R stands for
the number of simple rules in the corresponding HRB. #Dif: represents a subset of #R with non-
repeated or di4erent rules, which becomes the real number of processed rules. Notice that these rules
do not increase the computational cost of the process. They are processed only once in the inference
process and the result is multiplied by their number of occurrences.

Di4erent types of HSLR models will be evaluated by considering those parameter values which
allow us to clarify some aspects of the methodology:

• HSLR models generated from di4erent factors of expansion ($) to evaluate the proper levels of
bad performance to be considered for a rule expansion (10%, 50% and 90% more than the entire
MSE of the HRBk).
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Table 3
Parameter values

Parameter Decision

Generation
#, n(t + 1)-linguistic partition terms selector 0:1
 , used to calculate Ei 0:5
$, used to decide the expansion of rule 1:1; 1:5; 1:9

Genetic algorithms selection
Number of generations 600–2000
Population size 61
Mutation probability 0.1–0.2
Crossover probability 0.6

Table 4
HSLR-LM methods used in the experiments

Method Policies

Generation Expansion Selection

HSLR Repeated Replacement Accuracy
NW-HSLR Non-repeated Replacement Accuracy
HR-HSLR Repeated Reinforcement Accuracy
HR-NW-HSLR Non-repeated Reinforcement Accuracy
AC-HSLR Repeated Replacement Accuracy-complexity
AC-NW-HSLR Non-repeated Replacement Accuracy-complexity
AC-HR-HSLR Repeated Reinforcement Accuracy-complexity
AC-HR-NW-HSLR Non-repeated Reinforcement Accuracy-complexity

• HSLR models designed from di4erent number of iterations (Kmax) to evaluate the e4ect of having
hierarchical rules with di4erent granularity levels (Kmax = 1; 2).

In Table 4, we add some notation which suggests representative suNxes for the models generated
in the experiments.

Finally, we will try to solve the former applications by generating di4erent kinds of models:
classical regression, neural models and a global linguistic approach based on adapting Ishibuchi et
al.’s method for classi8cation tasks [17] to learn an HKB:

• To apply classical regression, the parameters of the polynomial models were 8t by Levenberg–
Marquardt. Exponential and linear models were 8t by linear least squares.
• The multilayer perceptron was trained with the QuickPropagation algorithm. The number of neu-

rons in the hidden layer was chosen to minimize the test error [9,30].
• For the sake of simplicity, in this Subsection we will refer to the models obtained by a global lin-

guistic approach as global HSLR (G-HSLR), in order to distinguish them from our local approach
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Table 5
Notation considered for the problem variables

Symbol Meaning

x1 Number of clients in population
x2 Radius of i population in the sample
y Line length, population i

(HSLR-LM). The global approach obtains an HSLR by creating several hierarchical linguistic par-
titions with di4erent granularity levels. It generates the complete set of linguistic rules in each of
these partitions, takes the union of all of these sets, and 8nally, performs a genetic rule selection
process on the whole rule set.

4.2. Computing the length of low-voltage lines

With the aim of measuring the amount of electricity lines that an electric company owns, a
relationship was searched in [9,29,30] between the variables of Table 5. To compare di4erent models
we have randomly divided the original sample of 495 rural nuclei into two sets comprising 396 and
99 samples, labeled training and test, respectively. The results obtained with our HSLR-LM with
di4erent values for the expansion factor $ are shown in Tables 6 and 7. Finally, comparisons with
other techniques are shown in Table 8.

4.3. Computing the maintenance costs of medium-voltage line

We were provided with data concerning four di4erent characteristics of the towns (see Table 9)
related to their minimum maintenance cost in a sample of 1059 simulated towns [9,30]. The samples
have been randomly divided into two sets comprising 847 and 212 samples, 80% and 20% of the
whole data set, labeled training and test, respectively.

The results obtained with our HSLR-LM with di4erent values for the expansion factor $ are shown
in Tables 10 and 11. Comparisons with other techniques are shown in Table 12.

4.4. Analysis of results

In view of the results obtained in the experiments, we should remark some important conclusions
from di4erent perspectives. First, the general results of the methodology performance are discussed.
Second, an analysis of the in7uence of the parameters is performed. Finally, a more detailed de-
scription and interpretation of the results obtained from di4erent policies are done.

4.4.1. Analysis of the methodology performance
Let us analyze the obtained results from di4erent points of view:

• From the accuracy point of view: The di4erent models generated from HSLR-LM in both electrical
problems clearly outperform in MSEtra and MSEtst those ones obtained by the WM-method, in all
iteration and factor of expansion levels (see Tables 6, 7, 10 and 11). They also outperform classical
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Table 6
Results obtained in the low-voltage electrical application considering $ = 1:1

Method #R #Dif: MSEtra MSEtst

WM-method(3) 7 7 594 276 626 566
WM-method(5) 13 13 298 446 282 058
WM-method(9) 29 29 197 613 283 645

HSLR(WM-method,3,5,1) 12 12 178 950 167 318
NR-HSLR(WM-method,3,5,1) 13 13 178 950 167 318
HR-HSLR(WM-method,3,5,1) 12 12 175 619 162 873
HR-NR-HSLR(WM-method,3,5,1) 12 12 175 619 162 873

AC-HSLR(WM-method,3,5,1) 11 11 180 111 166 210
AC-NR-HSLR(WM-method,3,5,1) 11 11 180 111 166 210
AC-HR-HSLR(WM-method,3,5,1) 10 10 176 781 161 764
AC-HR-NR-HSLR(WM-method,3,5,1) 10 10 176 781 161 764

HSLR(WM-method,3,9,2) 44 35 153 976 165 458
NR-HSLR(WM-method,3,9,2) 31 31 155 423 171 241
HR-HSLR(WM-method,3,9,2) 41 35 153 237 171 606
HR-NR-HSLR(WM-method,3,9,2) 25 25 154 411 156 197

AC-HSLR(WM-method,3,5,2) 30 25 157 761 165 411
AC-NR-HSLR(WM-method,3,5,2) 23 23 158 478 171 546
AC-HR-HSLR(WM-method,3,5,2) 27 25 158 775 163 774
AC-HR–NR-HSLR(WM-method,3,5,2) 22 22 158 935 163 723

regression, neural networks and global linguistic models in the approximation of both data sets,
training and test (see Tables 8 and 12).

• From the complexity point of view: HSLR-LM has obtained relatively simple models for the
problems with respect to the accuracy improvements achieved (%tra;%tst) over the initial models
generated by the WM-method. In most of the cases, the models obtained from HSLR-LM are
even simpler than the WM-method ones while having an important improvement in both errors
(see Tables 6 and 7 with Kmax = 1; 2).

The high-order electrical problem, with much more accurate and complex results, can be an
exception when more than a single iteration is performed (see Tables 10 and 12 with Kmax = 2).
However, alternative solutions that also outperform the models generated from the remaining
techniques with a simpler structure were proposed (see options AC in Tables 10 and 11).

Moreover, even having a higher number of rules, the HKB gives a hierarchical order which can
be used in the sense of interpretability. In other words, human beings cannot understand hundreds
of di4erent rules, but can associate a group of them with a speci8c task and deal with more
general and subsumed rule sets. This basically suggests a hierarchical clustering point of view of
the FRBSs, which gives a more interpretable view of HSLRs.
• From the scalability point of view: Although we have shown experiments with a simple

LRG-method like the WM-method, more complex fuzzy rule learning methods can be used.
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Table 7
Results obtained in the low-voltage electrical application considering $= 1:5

Method #R #Dif: MSEtra MSEtst

WM-method(3) 7 7 594 276 626 566
WM-method(5) 13 13 298 446 282 058
WM-method(9) 29 29 197 613 283 645

HSLR(WM-method,3,5,1) 12 12 178 950 167 318
NR-HSLR(WM-method,3,5,1) 13 13 178 950 167 318
HR-NR-HSLR(WM-method,3,5,1) 12 12 175 619 162 873
HR-HSLR(WM-method,3,5,1) 12 12 175 619 162 873

AC-HSLR(WM-method,3,5,1) 11 11 180 111 166 210
AC-NR-HSLR(WM-method,3,5,1) 11 11 180 111 166 210
AC-HR-HSLR(WM-method,3,5,1) 10 10 176 781 161 764
AC-HR-NR-HSLR(WM-method,3,5,1) 10 10 176 781 161 764

HSLR(WM-method,3,9,2) 34 28 153 962 164 377
NR-HSLR(WM-method,3,9,2) 28 28 156 935 173 396
HR-HSLR(WM-method,3,9,2) 42 34 154 820 167 110
HR-NR-HSLR(WM-method,3,9,2) 24 24 156 378 158 065

AC-HSLR(WM-method,3,5,2) 25 22 157 722 161 510
AC-NR-HSLR(WM-method,3,5,2) 22 22 158 839 165 190
AC-HR-HSLR(WM-method,3,5,2) 26 25 158 929 168 667
AC-HR–NR-HSLR(WM-method,3,5,2) 23 23 161 071 165 091

Table 8
Results obtained in the low-voltage electrical application compared with other techniques

Method MSEtra MSEtst Complexity

Linear 287 775 209 656 7 nodes, 2 par.
Exponential 232 743 197 004 7 nodes, 2 par
Second order polynomial 235 948 203 232 25 nodes, 2 par.
Third order polynomial 235 934 202 991 49 nodes, 2 par.
Three layer perceptron 2–25–1 169 399 167 092 102 par.
G-HSLR(WM-method,3,9,2) 159 851 189 119 31 rules
AC-HR-HSLR(WM-method,3,5,1) 176 781 161 764 10 rules
HR-NR-HSLR(WM-method,3,9,2) 154 411 156 197 25 rules

In the Appendix A2, we show results using another inductive LRG-method proposed by Thrift
[32]. These results con8rm the quality of the HSLR-LM which, as a meta-methodology, obtains
accurate re8nements from simple models generated by di4erent LRG-methods.
• From the locality point of view: The linguistic models generated from HSLR-LM overcome the

ones performed by G-HSLR-LM in the approximation of the training and test sets. We should



O. Cord�on et al. / Fuzzy Sets and Systems 138 (2003) 307–341 331

Table 9
Notation considered for the problem variables

Symbol Meaning

x1 Sum of the lengths of all streets in the town
x2 Total area of the town
x3 Area that is occupied by buildings
x4 Energy supply to the town
y Maintenance costs of medium-voltage line

Table 10
Results obtained in the medium-voltage electrical application considering $= 1:1

Method #R #Dif: MSEtra MSEtst

WM-method(3) 27 27 150 545 125 807
WM-method(5) 64 64 70 908 77 058
WM-method(9) 130 130 32 191 33 200

HSLR(WM-method,3,5,1) 193 84 22 358 23 755
NR-HSLR(WM-method,3,5,1) 79 79 28 087 27 495
HR-HSLR(WM-method,3,5,1) 205 86 20 588 22 583
HR-NR-HSLR(WM-method,3,5,1) 79 79 28 087 27 495

AC-HSLR(WM-method,3,5,1) 159 69 22 557 24 679
AC-NR-HSLR(WM-method,3,5,1) 44 44 29 182 28 236
AC-HR-HSLR(WM-method,3,5,1) 185 67 20 752 21 005
AC-HR-NR-HSLR(WM-method,3,5,1) 54 54 30 445 32 897

HSLR(WM-method,3,9,2) 1628 556 11 229 12 650
NR-HSLR(WM-method,3,9,2) 369 369 12 677 13 767
HR-HSLR(WM-method,3,9,2) 1900 573 9 843 10 998
HR-NR-HSLR(WM-method,3,9,2) 393 390 11 769 10 703

AC-HSLR(WM-method,3,5,2) 1367 555 10 450 10 710
AC-NR-HSLR(WM-method,3,5,2) 167 167 12 807 13 390
AC-HR-HSLR(WM-method,3,5,2) 1430 486 10 334 10 954
AC-HR-NR-HSLR(WM-method,3,5,2) 143 143 15 881 18 168

note that the global approach, which was inspired in [17], has been described as a limited strategy
(see high errors in Tables 8 and 12) derived from directly putting rules with di4erent granularity
in the same bag and making a selection on it. Hierarchical and hybrid fuzzy systems and genetic
algorithms require more than simple combinations derived from putting everything together, but a
more sophisticated analysis and design of the system components and their features [13]. HSLR
becomes a generalization of G-HSLR and an open methodology that can still be improved in many
ways by adding and properly combining di4erent interestingness relations (see Fig. 2).
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Table 11
Results obtained in the medium-voltage electrical application considering $= 1:9

Method #R #Dif: MSEtra MSEtst

WM-method(3) 27 27 150 545 125 807
WM-method(5) 64 64 70 908 77 058
WM-method(9) 130 130 32 191 33 200

HSLR(WM-method,3,5,1) 107 59 29 336 29 657
NR-HSLR(WM-method,3,5,1) 53 53 34 870 39 367
HR-HSLR(WM-method,3,5,1) 115 66 29 119 31 949
HR-NR-HSLR(WM-method,3,5,1) 53 53 34 870 39 367

AC-HSLR(WM-method,3,5,1) 83 53 32 623 33 924
AC-NR-HSLR(WM-method,3,5,1) 40 40 42 826 42 100
AC-HR-HSLR(WM-method,3,5,1) 78 51 35 139 38 497
AC-HR-NR-HSLR(WM-method,3,5,1) 45 45 37 750 42 152

HSLR(WM-method,3,9,2) 688 347 14 825 15 016
NR-HSLR(WM-method,3,9,2) 294 294 16 717 16 941
HR-HSLR(WM-method,3,9,2) 969 462 12 051 12 922
HR-NR-HSLR(WM-method,3,9,2) 281 279 14 999 14 497

AC-HSLR(WM-method,3,5,2) 258 155 16 221 17 630
AC-NR-HSLR(WM-method,3,5,2) 121 121 17 658 18 378
AC-HR-HSLR(WM-method,3,5,2) 292 189 13 428 13 457
AC-HR-NR-HSLR(WM-method,3,5,2) 167 167 16 983 20 064

Table 12
Results obtained in the medium-voltage electrical application compared with other tech-
niques

Method MSEtra MSEtst Complexity

Linear 164 662 36 819 17 nodes, 5 par.
2th order polynomial 103 032 45 332 77 nodes, 15 par.
3 layer perceptron 4-5-1 86 469 33 105 35 par.
G-HSLR(WM-method,3,9,2) 24 335 21 714 135 rules
AC-HR-HSLR(WM-method,3,5,1) 20 752 21 005 67 rules
HR-HSLR(WM-method,3,9,2) 9 843 10 998 573 rules

4.4.2. Analysis of the in@uence of the methodology parameters
Now let us go deeply into the analysis of results by considering the e4ects of applying those

di4erent parameter values described in Section 3 (see Fig. 3). Let us 8rst analyze how di4erent
values for the factor of expansion ($) and the number of iterations (Kmax) make their in7uence on
the 8nal hierarchical models:

• Iteration level (Kmax). We should note that all those models obtained by the use of more than
one iteration perform the best approximation in MSEtra. However, we should make a di4erence
between both examples when generalization is considered:
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◦ In simple problems with a quite similar distribution between training and test sets, like the
medium-voltage electrical application, the MSEtst is also overcome by the more iterative models
(see Tables 10 and 12).

◦ In other more complex problems, such as low-voltage electrical application, a more iterative
con8guration can over8t the system modeled (see Tables 6 and 7 with Kmax = 2). We should
note that initial partitions with a higher granularity do not ensure more accuracy (see also
WM-method(9) and WM-method(5) in Table 6).

To deal with this problem, at least two di4erent pruning techniques are implemented in the
methodology [21]:

◦ Pre-pruning strategy, where the regulation of factor $ is performed [23].
◦ Post-pruning strategy, where non-repeated rules as a generation policy and the accuracy-

complexity orientation as a selection policy are used in an iterative way.

• Factor of expansion ($). As can be seen in the above results, the algorithm seems to be robust
for any value of $, in the sense that good results are obtained considering di4erent values for
this parameter. However, some special features could be remarked regarding the $ setting. As a
general rule, when $ grows up, the system complexity decreases, i.e., less rules are expanded and
thus a simpler HRB is 8nally obtained. However, when accuracy is considered, an increase in
the number of rules does not always ensure a decrease in the model MSE. A good cooperation
among such rules is also needed.

The parameter $ can be considered to design models with a di4erent balance between accu-
racy and description (as said, the higher its value, the lower the number of rules, and hence
the more descriptive the system). In this sense, di4erent situations are illustrated in Figs. 9–11
for Kmax = 1.

For example, we 8nd a good trade-o4 solution between accuracy and interpretability in Fig. 9.
In this graph we can observe that the most accurate model for the low-voltage problem is ob-
tained by means of the HSLR(WM-method,3,5,1), which is composed of only 12 rules. This
idea can also be observed in the results of the medium-voltage electrical application as shown in
Fig. 10. Here, the user can also decide between models with a di4erent treatment of the description-
accuracy trade-o4:

◦ When accuracy is preferred to description, the best choice would be the model obtained when
considering $= 1:1, i.e., the most accurate one.

◦ When a compromise solution between accuracy and description is preferred, the models ob-
tained from HSLR(WM-method,3,5,1) with $= 1:9 and 3.5 would be two very good solu-
tions; both are the simpler models (59 and 58 rules, respectively) with lesser rules than
WM-method(5).
◦ Finally, when accuracy is de8nitively the only modeling requirement, there would be another

choice for some kinds of problems. Fig. 11 shows a di4erent way to deal with the accuracy-
description trade-o4. Signi8cantly, more accurate models are obtained for the latter problem
using initial partitions with a higher granularity level like 8ve. Of course, the models generated
by HSLR(WM-method,5,9,1) starting from these partitions are very complex and thus very
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Fig. 9. HSLR(WM-method,3,5,1) MSE tendency using di4erent values for $ and their complexity in the low-voltage
application.

Fig. 10. HSLR(WM-method,3,5,1) MSE tendency using di4erent values for $ and their complexity in the medium-voltage
application.

diNcult to be interpreted. Even in this case, still, a simpler and more accurate model than
WM-method(9) can be found with $= 5:5 (121 against 130 rules).
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Fig. 11. HSLR(WM-method,5,9,1) MSE tendency using di4erent values for $ and their complexity.

From the generalization point of view, the factor of expansion also serves as a pre-pruning
strategy that can be used to prevent over8tting. We could choose higher values of $ in order to
expand a lesser number of rules. This will cause a worse model 8tting on the training examples,
but a better one on the test set (compare the same models in Tables 6 and 7 and in Tables 10
and 11).

4.4.3. Analysis of the methodology policies
Let us analyze the in7uence of the di4erent policies considered in the hierarchical process.

• Generation policy.
◦ Weighted and non-weighted rules: We should note that all of those models obtained by the use

of repeated rules perform the best approximation in MSEtra. Moreover, some of them perform
a signi8cant reduction in the error in comparison with those models that eliminate repeated
rules.

As mentioned in Section 3.2.1, once those repeated rules are generated, they are given to
the selection process. This process has the chance to eliminate all those redundant rules but
it is observed that sometimes it preserves some of them (see the di4erence between #R and
#Dif: in the tables). This fact produces a sort of reinforcement on the whole subspace of the
rule—a global re8nement action—and can be interpreted as a weight on that rule. We should
note some important aspects of weighted rules:
– Weighted rules do not excessively increase the computational cost of the process because they

are processed only once when the inference takes place. More speci8cally, the defuzzi8ed
value of a rule is multiplied by its occurrences, i.e., its weight.
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– The use of weighted rules produces good approximation results, and its in7uence lies on the
defuzzi8cation method. In our case, we use the minimum t-norm in the role of conjunctive
and implication operation and the center of gravity weighted by the matching degree [8] as
a defuzzi8cation strategy. Any other defuzzi8cation method considering the matching degree
of the rules 8red may be used. Thus, we modify the computation of the 8nal output given
by the system y∗. This value is calculated by aggregating the partial actions obtained by
means of the matching degree weighted average:

y∗ =
w1h1y1 + · · ·+ wjhjyj + · · ·+ wThTyT

w1h1 + · · ·+ wjhj + · · ·+ wThT
;

where wj is the number of times that the rule j is repeated, hj is the matching degree of the
rule j; and yj the center of gravity for each individual fuzzy set Bj.

– In spite of their good performance, weighted rules can over8t the system modeled when they
are combined with a hierarchical process and a reinforcement expansion policy (see results
with Kmax = 2 in Tables 6, 7, and 10). We can decide not to use them, and thus, allow the
algorithm to perform an iterative post-pruning strategy which could produce the most proper
generalization in some kinds of problems.

◦ Double-consequent rules: As we have detected weighted reinforced rules in HSLRs, we can
also observe that some of the learned rules have multiple consequents. Again, this kind of
rules can also be interpreted as a reinforcement performed in the whole space of the
rule.

• Expansion policies: replacement and reinforcement. We should note that almost all of those
models obtained by the use of the reinforcement policy with more than two hierarchical levels
and initial partitions with low granularity levels—by using or deleting weighted rules to avoid
over8tting—perform the best approximation in MSEtra and MSEtst. Moreover, more independence
from the parameters of the algorithm could also be achieved:
◦ Independence from the granularity of the initial partitions: As we have previously seen in

Fig. 11, it may happen that proper initial partitions with higher granularity levels could generate
more accurate results for a speci8c problem. As mentioned in [10], 8nding these partitions is
a very hard task. The obtained results show that a reinforcement policy combined with a
hierarchical process is the best competitive strategy to deal with the former situations. More
speci8cally, this approach makes HSLRs more independent from the initial partitions, by
starting with low granular ones and continuously performing gradual and iterative improvements
on them (see Tables 10 and 11).

◦ Independence from the factor of expansion $: Complex real problems, such as the low-
voltage electrical application, present anomalies due to its high non-linearity which requires
a proper factor of expansion (e.g. low values tends to over8t the system modeled). The
use of a reinforcement policy implements a sort of revocable strategy in the HSLR-LM
that would make $ less important, allowing the process to be performed in a more accurate
way.

Finally, the reinforcement expansion policy can also be seen as a sort of default reasoning (see
Fig. 8(b)). That is, a general and less speci8c t-linguistic rule can be always activated. However,
some of those more speci8c (t + 1)-linguistic rules, which reinforce the former rule, sometimes
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participate in the activation. Thus, these more speci8c rules joined with the former default one
perform the 8nal system inference as an exception approach.
• Selection policy: accuracy-oriented and accuracy-complexity oriented. As we expected, the 8tness

function introduced in Section 3.4 allows us to generate simpler models and perform a trade-
o4 between complexity and accuracy (see AC options in Tables 6, 7, 10 and 11). Moreover,
sometimes it also works as a pruning strategy that could prevent the system over8tting (see AC
option with Kmax = 1 in Table 6). That is, a kind of post-pruning [21] rule selection process which,
in the methodology context, does not only consider the quality of the approximation performed
by each rule but also its global cooperation with the whole set.

5. Concluding remarks

In this paper, hierarchical linguistic models are viewed as a class of local modeling approaches
which attempt to solve a complex modeling problem by decomposing it into a number of simpler
subproblems. Fuzzy set theory o4ers excellent tools for representing the uncertainty associated with
the decomposition task, providing smooth transitions between individual local submodels. From this
perspective, HSLRs have been proposed as a parameterized solution that achieves a desired balance
between the complexity and the accuracy of the systems modeled, e4ectively exploring their non-
linearity and non-uniformity.

We designed HSLR-LM as a learning meta-methodology for identifying hierarchical linguistic
models. It performs gradual and local-oriented re8nements on problem subspaces that are badly
modeled by previous models—rather than in the whole problem domain. Moreover, it integrates the
improved local behavior with the whole model by summarization processes which ensure a good
global performance.

Finally, as Goldberg said [13], if the future of Computational Intelligence “lies in the careful
integration of the best constituent technologies”, hierarchical and hybrid fuzzy systems and genetic
algorithms require more than simple combinations derived from putting everything together. However,
they need a more sophisticated analysis and design of the system components and their features. This
paper presents progresses in a research program devoted to 8nd the most proper system integration
and to explore the HSLRs capabilities.

Appendix A

A.1. WM rule generation method

The inductive rule base generation process proposed by Wang and Mendel [33] is widely known
because of its simplicity and good performance. It is based on working with an input–output training
data set ETDS—representing the behavior of the problem being solved—and a previous de8nition of
the database—input–output primary linguistic partitions. The linguistic rule structure considered is
the usual Mamdani-type rule with m input variables and one output variable.
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The generation of the linguistic rules of this kind is performed by putting into e4ect the three
following steps:

1. To generate a preliminary linguistic rule set. This set will be composed of the linguistic rule best
covering each example (input–output data pair) existing in the input–output data set ETDS. The
structure of these rules is obtained by taking a speci8c example, i.e., an (m+ 1)-dimensional real
array (m input and 1 output values) and setting each one of the rule variables to the linguistic
label associated to the fuzzy set, best covering every array component.

2. To give a degree of importance to each rule. Let R= IF x1 is S1 and : : : and xm is Sm THEN y
is B be the linguistic rule generated from the example el = (xl1; : : : ; x

l
m; y

l); l= 1; : : : ; |ETDS|. The
matching degree associated to it will be obtained as follows: G(R) = "S1(x

l
1) : : : "Sm(x

l
m)"B(yl).

3. To obtain a �nal rule base from the preliminary linguistic rule set. If all rules presenting the
same antecedent values have associated the same consequent in the preliminary set, this linguistic
rule is automatically put (only once) into the 8nal rule base. Otherwise, if there are con7icting
rules with the same antecedent and di4erent consequent values, the rule considered for the 8nal
rule base will be the one with the highest matching degree.

A.2. THR rule generation method

This method is based on encoding all the cells of the complete decision table in the chromosomes.
In this way, Thrift [32] establishes a mapping between the label set associated to the system output
variable and an ordered integer set (containing one more element and taking 0 as its 8rst element)
representing the allele set. An example is shown to clarify the concept. Let {NB; NS; ZR; PS; PB} be
the term set associated with the output variable, and let us note the absence of value for the output
variable by the symbol “–”. The complete set formed joining this symbol to the term set is mapped
into the set {0; 1; 2; 3; 4; 5}. Hence the label NB is associated with the value 0, NS with 1; : : : ; PB
with 4 and the blank symbol “–” with 5.

Therefore, the genetic algorithms employ an integer coding. Each one of the chromosomes is
constituted by joining the partial coding associated to each one of the linguistic labels contained in
the decision table cells. A gene presenting the allele “–” will represent the absence of the fuzzy rule
contained in the corresponding cell in the rule base.

The genetic algorithms proposed considers an elitist selection scheme and the genetic operators
used are of di4erent nature. While the crossover operator is the standard two-point crossover, the
mutation operator is speci8cally designed for the process. When it is applied over an allele di4erent
from the blank symbol, it changes its value one level either up or down or to the blank code. When
the previous gene value is the blank symbol, it selects a new value at random.

Finally, the 8tness function is based on an application speci8c measure. The 8tness of an individual
is determined by computing the use of the FRBS considering the rule base coded in its genotype.

As said, HSLR-LM was thought of as a meta-methodology designed to operate on di4erent LRG-
methods. In Table 13 we present results using the LRG-method proposed by Thrift [32] to evaluate
its behavior.

We can observe again that the HSLR-LM has outperformed the basic LRG-method, the THR-
method in this case. The conclusions drawn in the analysis of results performed in the main part of
the paper, remain in view of the results shown in Table 13.
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Table 13
Results obtained in the low-voltage electrical application considering THR-method and
$= 1:1

Method #R #Dif: MSEtra MSEtst

THR-method(3) 7 7 266 369 248 257
THR-method(5) 25 25 218 857 217 847

HSLR(THR-method,3,5,1) 32 27 174 020 174 428
NR-HSLR(THR-method,3,5,1) 24 24 178 434 178 759
HR-HSLR(THR-method,3,5,1) 35 29 173 161 169 272
HR-NR-HSLR(THR-method,3,5,1) 22 22 171 005 170 638

HSLR(THR-method,3,9,2) 62 53 154 524 153 765
NR-HSLR(THR-method,3,9,2) 51 51 163 613 167 700
HR-HSLR(THR-method,3,9,2) 63 53 153 245 157 236
HR-NR-HSLR(THR-method,3,9,2) 36 36 153 773 181 680

Table 14
Description of the acronyms

Acronym Meaning

AC Trade o4 accuracy-complexity-oriented policy
FRBS Fuzzy rule-based system
G-HSLR Global hierarchical systems of linguistic rules
HKB Hierarchical knowledge base
HDB Hierarchical database
HR Hierarchical reinforcement policy
HRB Hierarchical rule base
HSLR-LM Hierarchical systems of linguistic rules learning methodology
LRG-methods Linguistic rule generation methods
NR Non-weighted rules policy
THR Thrift’s linguistic rule generation method
WM Wang and Mendel’s linguistic rule generation method

A.3. Acronyms

In Table 14, we list the acronyms used in this paper and their corresponding meanings.
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