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A Two-Stage Evolutionary Process for
Designing TSK Fuzzy Rule-Based Systems

Oscar Cord́on and Francisco Herrera

Abstract—Nowadays, fuzzy rule-based systems are successfully
applied to many different real-world problems. Unfortunately,
relatively few well-structured methodologies exist for designing
them and, in many cases, human experts are not able to express
the knowledge needed to solve the problem in the form of fuzzy
rules. Takagi–Sugeno –Kang (TSK) fuzzy rule-based systems
were enunciated in order to solve this design problem because
they are usually identified using numerical data. In this paper
we present a two-stage evolutionary process for designing TSK
fuzzy rule-based systems from examples combining a generation
stage based on a (���; ���)-evolution strategy, in which the fuzzy
rules with different consequents compete among themselves to
form part of a preliminary knowledge base, and a refinement
stage, in which both the antecedent and consequent parts of the
fuzzy rules in this previous knowledge base are adapted by a
hybrid evolutionary processcomposed of a genetic algorithm and
an evolution strategy to obtain the final Knowledge Base whose
rules cooperate in the best possible way.

Some aspects make this process different from others proposed
until now: the design problem is addressed in two different
stages, the use of anangular codingof the consequent parameters
that allows us to search across the whole space of possible
solutions, and the use of the available knowledge about the
system under identification to generate the initial populations
of the Evolutionary Algorithms that causes the search process
to obtain good solutions more quickly. The performance of the
method proposed is shown by solving two different problems:
the fuzzy modeling of some three-dimensional surfaces and the
computing of the maintenance costs of electrical medium line in
Spanish towns. Results obtained are compared with other kind
of techniques, evolutionary learning processes to design TSK and
Mamdani-type fuzzy rule-based systems in the first case, and
classical regression and neural modeling in the second.

Index Terms—Evolution strategies, evolutionary algorithms,
genetic algorithms, learning, Takagi–Sugeno –Kang (TSK) fuzzy
rule-based systems, TSK knowledge base.

I. INTRODUCTION

FUZZY rule-based systems (FRBS’s) are now considered
as one of the most important applications of fuzzy set

theory suggested by Zadeh in 1965 [1]. These kinds of systems
constitute an extension of the classical rule-based systems
because they deal with fuzzy rules instead of classical logic
rules. Thanks to this, they have been successfully applied to a
wide range of problems presenting uncertainty and vagueness
in different ways [2]. In particular, the most promising results
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Granada, Spain (e-mail: ocordon@decsai.ugr.es).

Publisher Item Identifier S 1083-4419(99)08063-2.

have been obtained by the fuzzy logic controllers [3], the
FRBS’s for control problems.

Several tasks have to be performed in order to design an
intelligent system of this kind for a concrete application. They
can be grouped into two main tasks: to design the FRBS
Inference System, i.e., to select the fuzzy operators considered
to make inference, and to obtain an accurate knowledge base
(KB) comprising the known knowledge about the problem
being solved. The latter used to be the most important and
difficult, due to the fact that human experts are not sometimes
able to express their knowledge in the form of fuzzy if-
then rules. This has forced researchers to develop automatic
techniques for performing this task.

Over the last few years, many different approaches have
been presented taking genetic algorithms (GA’s) [4] as
their base, obtaining the so called genetic fuzzy systems
(GFS’s) [5], [6] or, more generically,evolutionary fuzzy
systems(EFS’s) when an Evolutionary Algorithm (EA) [7]
is used instead of a GA. For a wider description of some of
these approaches refer to [5], [6], [8], and for an extensive
bibliography see [9].

In this paper, we present a two-stage evolutionary process
to automatically learn Takagi–Sugeno –Kang (TSK) KB’s
from examples. The learning process is divided into two
stages: thegenerationand refinementstages. The first one,
based on the combination of an inductive algorithm and a
( )-evolution strategy (( )-ES) [7], will allow us to
automatically generate a preliminary TSK-type KB for a
concrete problem when a training data set representing its
behavior is available. It is able to decide the number of
rules composing the KB and to determine their consequent
parameters generating a locally optimal KB. The second stage
is addressed by means of ahybrid GA-ES process(a genetic
local search process) that works with a population of KB’s,
taking the preliminary definition obtained in the previous stage
as a base, to obtain another one presenting an optimal global
behavior.

The performance of the EFS proposed is analyzed in the
solving of two different problems: the fuzzy modeling of
some three-dimensional surfaces and the computing of the
maintenance costs of electrical medium line in Spanish towns.
In the first case, results obtained are compared with other
Mamdani and TSK-type FRBS evolutionary design processes
(a Mamdani-type two-stage EFS based on the Wang and
Mendel fuzzy rule generation method [10], a three-stage
Mamdani-type EFS [11], and a TSK-type EFS [12], [13]).
In the second application, the same EFS’s are considered, and
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other kind of techniques such as classical regression and neural
modeling as well.

In order to put this into effect, this paper is set up as follows.
The next section presents some guidelines about the TSK
FRBS and its design. In Section III, a new coding to represent
TSK fuzzy model rule consequents is introduced, allowing
us to explore the whole possible solution space when using
EA’s. Section IV introduces the structure of the EFS proposed.
Both stages composing it are described in Sections V and
VI, respectively, while Section VII shows the experiments
developed and the different results obtained. In Section 8, some
concluding remarks are pointed out. Finally, two Appendices
briefly describing ES’s and collecting different tables of the
results obtained in the fuzzy modeling of the three functions,
respectively, are presented.

II. TSK FUZZY RULE-BASED SYSTEMS

The TSK fuzzy model was first presented in [14]. It is based
on rules in which the consequent is not a linguistic variable,
as in the Mamdani-type fuzzy model, but a function of the
input variables. This kind of rule usually presents the following
form:

If is and and is

then

where are the system input variables, are fuzzy sets
specifying their meaning, and is the output variable.

The output of a FRBS using a KB composed of TSK
rules is computed as the weighted average of the individual
rule outputs, , , in the following way:

where is the matching between
the antecedent part of the ruleand the current system inputs,

, with being a t-norm.
The design process of these kinds of FRBS’s is easier than

others due to two main reasons. On the one hand, the only
design decision that has to be made to set up the Inference
System is to choose the t-norm considered to compute
the matching for the rule antecedents. On the other hand,
TSK FRBS’s were originally designed to be identified from
numerical examples, as stated by their creators: “is quite useful
to give a way to model control actions using numerical data
about the system behavior” [14].

Many different techniques have been employed until now to
derive the TSK KB from examples since Takagi and Sugeno
first presented a process based on the least squares method
[14]. For example, Neural Networks [15], [16] and gradient
descent methods [17] have been considered. The use of EA’s,
either specific, GA’s [12], [18] and EE’s [19]; or hybrid [19],
[20], has increased over the last few years.

Fig. 1. Examples of angular coding.

III. A N EW CODING SCHEME TO

REPRESENTTSK RULE CONSEQUENTS

There is a problem when designing TSK FRBS’s using
EA’s. Usually, an EA needs to know the intervals in which
each problem variable is defined to solve a specific problem.
This information is necessary to define the genetic coding of
the possible solutions and to perform evolution on them using
the genetic operators. Unfortunately, this information is not
available in the problem of learning the TSK rule consequent
parameters.

This problem has usually been solved by the authors [12],
[13], [18]–[20] by fixing sufficiently large values for the low
and high interval extremes. This is not a bad idea because the
powerful search of the EA allows us to obtain good solutions
working in this way but presents the drawback that not all the
solution space is considered, so it may not be possible to find
the global problem solution since the value of some of the
parameters may lie outside the intervals considered.

In this section, we propose a new coding scheme, called
angular coding,which was first presented in [21]. It is based
on encoding the values of the angles instead of the tangent
values for each TSK rule consequent parameter, thus allowing
us to have all the variables lying in the same fixed interval
and to represent the whole space of possible solutions.

As can be seen, the partial linear relation defined by the
consequent of a TSK rule determines a geometrical figure in
the corresponding hyperspace. For example, when working
with a system with a single input variable, each TSK rule
output, , represents a straight line in a part of
the plane determined by the rule fuzzy input subspace. When a
greater number of inputs is considered, each output relation
corresponds to a hyperplane of dimensionin a part of the
( )-dimensional space .

Bearing this in mind, and focusing on the case of one single
variable for simplicity, we know that the real value in the
consequent is simply the tangent of the angle
existing between this line and the axis. Thus, if we code the
angle value instead of the tangent one by means of the function

all the possible values of the parameterlie inside the interval
. Fig. 1 shows some examples.

As may be observed graphically in the figure, using very
short intervals, a very large part of the possible solution
space may be represented. For example, when considering
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Fig. 2. Geometrical interpretation of the parameterp0.

the interval [ 20, 20], we work with the angular interval
[ 87.13 , 87.13 ]. Thus, approximately only 3.3% of the
search space (more or less 5.74) is not taken into account.
This justifies the fact that the EA-based design processes
which consider fixed intervals allow us to obtain good results.
Anyway, it seems more appropriate to represent the whole
possible solution space when performing a search toward a
global solution.

As regards the parameter, when working in the plane it
determines the movement of the straight line from the origin
along the axis, as shown in Fig. 2. Since the values of the
parameter may be very different from one TSK rule to
another, the consideration of a fixed interval is not a good
solution for their evolutionary learning, and angular coding
becomes a powerful tool to solve the problem. In this case,
there is no geometric interpretation in the coding (remember
that does not correspond to the tangent of any angle in the
concrete hyperspace), we only use angular coding to translate
an interval with undefined extents,, to another with defined
ones, . Therefore, with this transformation we can
use the EA to adequately search in the solution space to learn
the values of these parameters.

IV. STRUCTURE OF THEPROPOSEDEFS

The EFS presented in this paper is composed of the follow-
ing two stages:

1) An evolutionary generation processfor learning a pre-
liminary TSK KB from examples. This first process is
based on an iterative algorithm that studies the existence
of data in the different fuzzy input subspaces. Each time
data are located in one of them, the process applies a
TSK rule consequent learning methodto determine the
existing partial linear input-output relation, taking the
data located in this input subspace, a subset of the global
data set, as a base. The latter method is based on a
( )-ES [7] using the angular coding proposed in the
previous Section and a local measure of error, and takes
into account the knowledge contained in the said training
data subset to improve the search process.

2) An evolutionary refinement processfor adjusting both
the consequent and the antecedent parts of the fuzzy
rules in the preliminary KB obtained from the first
stage. The second process is composed of a special
real-coded GA (a genetic local search algorithm [22])
which includes an ( )-ES [7] as a genetic operator

to improve the search process. The algorithm works on
chromosomes encoding the whole preliminary definition
of the KB obtained and globally adjusts this definition.
The fitness function considered in this case is based on a
global error measure—the mean square error computed
on the training data set—more adequate for the purpose
followed. The available knowledge is again considered
to generate the initial population of the GA. In this case,
the preliminary definition of the TSK KB is taken into
account for this generation.

The following two sections will present each one of the
EFS stages, respectively.

V. EVOLUTIONARY GENERATION PROCESS

In this section, we introduce the evolutionary generation
process that was first presented as a single design process in
[21]. First of all, the TSK rule consequent learning method
is introduced. Then we propose the use of the knowledge
contained in the training data set to improve the search process.
Finally we present the algorithm of the generation process,
which makes use of the two previous aspects.

A. TSK Rule Consequent Learning Method

In this method, the ( )-ES (see Appendix I) is considered
to define TSK rule consequent parameters. The dimension
of the object variable vector is determined by the number of
input variables in the problem under control. When there are
input variables, there are parameters to learn in the
TSK rule consequent. Thepart of the individuals forming the
( )-ES population is built by encoding the possible values
using angular coding.

The evolutionary learning is guided by a fitness function
composed of a local error measure. This will allow us to obtain
an optimal TSK rule consequent in the fuzzy subspace defined
by the rule antecedents. The expression of the measure used
is the following [18]:

where is the set of input-output data pairs
located in the fuzzy

input subspace defined by the rule antecedent,
is the matching between

the antecedent part of the rule and the input part of the current
data pair , and is the output provided by the TSK
fuzzy rule when it receives as input.

The object variables of the individuals in the first population
are generated in the way shown in the next subsection, taking
into account the knowledge contained in the input-output data
set. As regards the initialization of the remaining vectors, the
components of are set to 0.001, and the ones in, when
considered, are set to arctan (1).

B. Using Available Knowledge in the Design Process

To develop the knowledge-based generation of the initial
population, we compute the following indices and obtain the
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following set from the input-output data set:

Therefore, we generate the initial population of the proposed
ES in three steps as follows:

1) Generate 1 individual initiating parameters,
, to zero, and parameter to the angular

coding of .
2) Generate individuals, with

defined by the EFS designer, initiating parameters,
, to zero, and to the angular coding of

values computed at random in the interval .
3) Generate the remaining individual initiating

parameters , , to the angular coding of
values computed at random in the interval ,
and to the angular coding of a value computed from
a randomly selected elementin ( is
provided by the EFS designer as well) in such a way
that belongs to the hyperplane defined by the TSK rule
consequent generated. Thus, we shall ensure that this
hyperplane intersects with the swarm of points contained
in , the most significative ones from.

Since with small angular values, large search space zones
are covered, it seems interesting to generate small values for
the parameters in this third step. To do so, we make use of a
modifier function that assigns greater probability of appearance
to smaller angles according to a parameter, also provided by
the EFS designer. We use the following function:

Hence, the generation of the individuals is performed in this
third step as follows:

For do

a) For do

1) Generate at random in [0, 1].
2) Generate at random in .
3) Set to .

b) Generate the value of :

1) Select at random from .
2) Set to , where

is the inverse of .

C. Algorithm of the Evolutionary Generation Process

The generation process proposed is developed by means of
the following steps:

1) Consider a fuzzy partition of the input variable spaces
obtained from the expert information (if it is available)
or equally partitioning them in a number of linguistic

Fig. 3. Fuzzy partition used.

terms, each one with an associated fuzzy set defining
its meaning. In this paper, we shall work in the latter
way using symmetrical fuzzy partitions with triangular
membership functions (see Fig. 3).

2) For each multidimensional fuzzy subspace obtained by
combining the individual input variable subspaces using
the and conjunction do:

a) Build the set composed of the input-output data
pairs that are located in this subspace.

b) If , i.e., if there is any data in this
space zone, apply the TSK rule consequent learning
method over the data set to determine the partial
linear input-output relation existing in this subspace.
Therefore, no rules are considered in the fuzzy
subspaces in which no data are located.

c) Add the generated rule to the preliminary KB.

VI. EVOLUTIONARY REFINEMENT PROCESS

The evolutionary refinement process is a tuning process that
takes a TSK KB as input and adjusts the preliminary defini-
tions of the antecedent membership functions and consequent
parameters according to the global behavior of the KB evolved
in the problem being solved, represented as a training data
set. It is composed of a special real-coded GA including an
(1 1)-ES as another genetic operator to improve the search
process, guided by a global error measure over the training
data set. We describe the hybrid EA components below.

A. Representation

A chromosome encoding a TSK KB definition is com-
posed of two different parts, and , the first one corre-
sponding to the definition of the fuzzy membership functions
considered in the antecedent part of the different fuzzy rules
in the KB, and the other to the consequent parameters.

A computational way to characterize a triangular member-
ship function is by using a parametric representation achieved
by means of the 3-tuple . Therefore, a primary fuzzy
partition as the one shown in Fig. 3 can be represented by an
array composed by 3-tuples ( real values) ,

, with being the number of terms forming
the linguistic variable term set. The complete definition of all
the input variable fuzzy partitions for a problem in which
input variables are involved is encoded into the first partof
each chromosome in the population. is built by joining
the partial representations of each one of theinput variable
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Fig. 4. Example of triangular membership function and intervals of perfor-
mance for the refinement process.

fuzzy partitions as is shown below:

Each one of the triangular fuzzy sets ,
, , defining these preliminary

fuzzy partitions are allowed to vary freely in any meaning-
ful way in an interval of performance . The
extremes of these intervals are computed before running the
refinement process according to the preliminary fuzzy partition
definitions provided by the FRBS designer, in the following
way:

Therefore, the interval of performance of each gene in
will depend on the fuzzy membership function to which it is
associated. Each one of these intervals of performance will
be the interval of adjustment for the corresponding gene,

. If mod then is the left value of
the support of a fuzzy set, which is defined by the three
parameters , , and the intervals of performance
are the following:

with and being the extremes of the interval of
performance in the fuzzy set defined by the 3-tuple, ,

. These values are the only ones defining the intervals of
adjustment of the ’s that remain constant during the GA run.
Fig. 4 shows an example of these intervals.

As regards the second part of the chromosome,, it
encodes the consequent parameters of each fuzzy rule in the
preliminary definition of the TSK KB. Thus, it is composed
of genes, where stands for the number of rules
in the KB and for the number of consequent parameters
for TSK fuzzy rule:

Since all of these parameters are encoded by using the
proposed angular coding, the interval of performance of all
the genes in is the same, .

Now, the fundamental underlying mechanisms of a GA,
formation of an initial gene pool, fitness function, and genetic
operators are developed.

B. Initial Gene Pool

The second stage uses the available knowledge to initialize
the first population as well. In this case, we make use of
the preliminary definition of the KB being optimized in order
to perform this task. With being the GA population size,
the initial population generation process is performed in three
steps as follows:

1) The preliminary definition of the KB taken as process
input is encoded directly into a chromosome, denoted
as .

2) The following chromosomes are initiated by
generating, at random, the first part, , with each
gene being in its respective interval of performance,
and by encoding the preliminary definition of the rule
consequent parameters in .

3) The remaining are set up by generating in
the same way followed in the previous step, and by
generating the values for by adding a random value
distributed following a normal distribution to
the values in the part of the previous chromosomes.

C. Evaluation of Individual Fitness

The fitness function is based on a training input-output
data set, , and a global error measure, the mean square
error (SE). In this way, the adaptation value associated to
an individual is obtained by computing the error between
the outputs given by the TSK FRBS using the KB encoded
in the chromosome and those contained in the training data
set. The fitness function is thus represented by the following
expression:

with the same equivalences presented in Section V.

D. Genetic Operators

The selection procedureconsidered is Baker’s stochastic
universal sampling [23], in which the number of any structure
offspring is limited by the floor and ceiling of the expected
number of offspring, together with the elitist selection. As re-
gards the genetic operators, the ones described in the following
subsections are going to be considered.

1) Mutation: We shall use Michalewicz’s nonuniform mu-
tation operator [4], which has demonstrated an accurate be-
havior when working with real coding schemes. It works as
follows.

If is a chromosome and the
gene was selected for this mutation ( ), the
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new mutated value, , is

if
if

where is a random number that may have a value of zero
or one, and the function returns a value in the range

such that the probability of being close to zero
increases as increases:

where

random number in the interval ;
maximum number of generations;
parameter chosen by the user, which determines the
degree of dependency with the number of iterations.

This property causes this operator to make a uniform search
in the initial space when is small, and a very local one in
later stages.

2) Crossover: We shall work with another genetic operator
which has shown good behavior for real-coded GA’s, the
max-min-arithmetical crossover. This crossover operator was
proposed in [24] and has been widely used in the field of
EFS’s [11], [25]–[27]. It works as follows.

If and
are to be crossed, the following

four offspring are generated:

with

with

This operator can use a parameterwhich is either a
constant, or a variable whose value depends on the age of
the population. The resulting descendants are the two best of
the four aforementioned offspring.

3) Evolution Strategy:The last genetic operator to be ap-
plied consists of an (1 1)-ES. This optimization technique
has been selected and integrated into the genetic recombination
process in order to locally refine the best individuals in each
generation, following the assumptions of the so-calledgenetic
local search[22]. The ES will be applied over a percentage

of the best different population individuals existing in the
current genetic population. This idea has already been applied
in the field of EFS’s [25].

The basis of the (1 1)-ES employed are to be briefly
presented in Appendix I. The coding scheme and the fitness
function considered are the same as those used in the GA.
Thus, the only changes to be performed have to be done in
the generic ES mutation scheme, and the great majority of
them only when working with the first part of the individual,

. In this case, the following two changes have to be put
into effect.

• Definition of Multiple Step Sizes:The mutation strength
depends directly on the value of the parameter, which

determines the standard deviation of the normally dis-
tributed random variable (see Appendix I). In our
case, the step size cannot be a single value because
the membership functions encoded in the first part of the
chromosome are defined over different universes and so
require different order mutations. Therefore, a step size

for each component in is going to be used
in the (1 1)-ES. Anyway the relations of all were
fixed by the values and only the common factor is
adapted following the assumptions presented in [7].

• Incremental Optimization of the Individual Parameters:
Usually, the different parent components are not related
and the ES adapts all of them at the same time. Unfortu-
nately, in our problem each three correlative parameters

in define a triangular-shaped membership
function, and the property must be verified
in order to obtain meaningful fuzzy sets. Therefore,
there is a need to develop an incremental optimization
of the individual parameters because the intervals of
performance for each one of them will depend on the
value of any of the others.

As we have commented in the description of the
coding scheme, a global interval of performance (in which
the three parameters defining the membership function
may vary freely) is defined for each fuzzy set involved
in the optimization process. With
being the membership function currently adapted, the
associated interval of performance is

. The incremental
adaptation is based on generating the mutated fuzzy set

by first adapting the modal point
obtaining the mutated value defined in the interval

, and then adapting the left and right pointsand
obtaining the values and defined, respectively, in

the intervals and . It may be clearly
observed that the progressive application of this process
allows us to obtain fuzzy sets freely defined in the said
interval of performance.

The value of the parameter determining the particular
step sizes, , is computed each time the component

is going to be mutated. When , the modal point is being
adapted, and then is equal to Min .
In the other two cases, and , Min

and Min .
Hence, when takes value 1 at the first ES generation, the
obtaining of a large quantity of normal values performing
a successful mutation (i.e., the corresponding
with lying in the expected interval for ) is
ensured. If the mutated value lies outside, it is assigned the
value of the interval extent closest to .

However, when working with the second part of the chro-
mosome, , the latter problem does not appear. In this case,
the different components are not related and the mutation can
be performed in its usual way. The only change that has to be
made is to adapt the step size to the components in. As
all of them are defined over the same interval of performance,

, they all will use the same step size
with .
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VII. EXPERIMENTS AND RESULTS OBTAINED

A. Fuzzy Modeling of Some 3-D Surfaces

The first application selected to analyze the accuracy of
the method proposed is the fuzzy modeling of three three-
dimensional surfaces presenting different characteristics. The
associated functions and the variable universes of discourse
considered are as follows, while their graphical representations
are collected in Fig. 5:

We consider four EFS’s to model the described surfaces:

1) M1: two-stage Mamdani EFS based on obtaining a
complete KB by first deriving the RB by means of
Wang and Mendel (WM) method [10], and then defining
the DB using the descriptive genetic tuning process
presented in [11];

2) M2: three-stage Mamdani EFS presented in [11];
3) T1: single-stage TSK EFS presented in [12], [13] (im-

proved by considering a real coding scheme);
4) T2: two-stage TSK EFS proposed in this paper.

For each function, a training data set uniformly distributed
in the three-dimensional definition space has been obtained
experimentally (the three data sets are composed of 1681, 674,
and 1089 pieces of data, respectively). Three other data sets (of
size 168, 67, and 108, i.e., 10% of the corresponding training
set one) have been randomly generated for their use as test sets
to evaluate the generalization capability of the TSK FRBS’s
generated.

The initial DB used in processesM1, M2, andT2 is con-
stituted by three primary, equally partitioned fuzzy partitions
(two corresponding to the input variables and one associated
to the output one, the latter in the case of both Mamdani-type
EFS’s) formed byseven linguistic termswith triangular-shaped
fuzzy sets giving meaning to them (as shown in Fig. 3), and
the adequate scaling factors to translate the generic universe of
discourse into the one associated with each problem variable.

To design the inference system in the Mamdani-type
FRBS’s generated by means of the first two processes, we
have selected theminimum t-normplaying the role of the
implication and conjunctive operators, and thecenter of gravity
weighted by the matchingstrategy acting as the defuzzification
operator [28]. In the TSK-type ones obtained from processes
T1 andT2, the role of conjunctive operator is played by the
minimum t-norm as well.

We have performed different runs of the proposed process,
T2, using two of the four usual combinations of dimensions of
vectors and (see Appendix I), ( ,

, and three different values for the parameter

(a)

(b)

(c)

Fig. 5. Graphical representations of (a)F1, (b) F2, and (c)F3.

, , defining the percentage of population
individuals to which the ES is applied in the refinement stage.

The remaining parameter values for EFST2 are as follows.

1) Evolutionary Generation Process:500 iterations,
, , , , ,

, and
.

2) Evolutionary Refinement Process:1000 GA iterations,
, , (per individual), ,

, 25 -ES iterations, , .

The results obtained in the different experiments developed
with design processT2 are shown in Tables III–V, collected in
Appendix II, where and stand for values obtained
by the specific TSK FRBS designed in the SE measure
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TABLE I
FUZZY MODELING OF THE THREE FUNCTIONS USING THE FOUR EFS’S

computed over the training and test data sets, respectively
( can be equal to and standing for the generation and
refinement stages). All the KB’s learned are composed of 49
fuzzy rules. The final values included in the last two columns
of each table, noted as and , respectively, are
computed as an average of three EFS runs with different values
for the random seed in order to give us more information about
the process accuracy.

The results collected in these tables may help us to decide
good values for the different EFS parameters. In view of them,
the best results are obtained when not considering the angle
vector in the evolutionary generation process -ES (( ,

), and the best value for parameter in the
second stage depends on the specific application. The use
of the (1 1)-ES in the refinement stage leads sometimes
to better TSK KB definitions, while causing an undesirable
overlearning (better approximation but worse generalization)
in other cases.

To analyze the performance of the proposed process, we
compare it with the other three mentioned earlier. The best
results obtained in the three applications are collected in
Table I, where stands for the number of rules in the
corresponding KB and and for the results obtained
over the training and test data sets, respectively. In each cell,
the number at the top corresponds to the SE and the one at the
bottom to the maximum linear error. The best result for each
application and measure appears in boldface.

From an analysis of these results, the good behavior pre-
sented by the proposed EFS may be observed. The FRBS’s
designed using it are more accurate to a high degree than the
ones based on the other three EFS’s in the fuzzy modeling
of the three functions. Moreover, they have demonstrated
the robustness of our evolutionary learning process. The
optimization of the local and global error measures in two
stages leads us to obtain fuzzy models with the best results
in the SE and the maximum linear error measures over the
training and test data sets.

To illustrate the behavior of the proposed EFS with respect
to the remaining ones, the graphical representation of the
best fuzzy modeling obtained for each function using them
is shown, respectively, in Figs. 6–8.

B. Real-World Electrical Application

In Spain, electrical industries do not charge the energy bill
directly to the final user, but they share the ownership of

an enterprise called “Red Eléctrica Espãnola” (R.E.E.) which
gets all payments and then distributes them according to
some complex criteria (amount of power generation of every
company, number of customers, etc.).

Recently, some of these companies asked to revise the rules.
One of the proposed modifications involved a redistribution of
the maintenance costs of the network. Since maintenance costs
depend on the total length of electrical line each company
owns, and on their kind (high, medium, urban low and rural
low voltage) it was necessary to know the exact length of
every kind of line each company was maintaining.

To compute the maintenance costs of town medium voltage
lines, there is a need to know which would be the total line
length if the installation made would have been the optimal
one. Clearly, it is impossible to obtain this value by directly
measuring it, since the medium voltage lines existing in a
town have been installed incrementally, according to its own
electrical needs in each moment.

Therefore, we need to solve the problem using other kinds
of techniques, which are able to relate some characteristics
of a certain town with its maintenance cost [29]. In this
paper, we consider evolutionary fuzzy modeling techniques
and compare its behavior with classical regression and neural
techniques.

To solve the problem, we were provided with data related
to four different characteristics of the towns:

sum of the lengths of all streets in the town;
total area of the town;
area that is occupied by buildings;
energy supply to the town;

and to the maintenance costs of line () in each one of them
in a sample of 1059 simulated towns. Our objective was to
relate the last variable (maintenance costs) with the other four
ones by the different said techniques.

As regards classical methods, we have considered linear
and polynomial regression, and neural network models. The
parameters of the polynomial models were fitted by Leven-
berg–Marquardt method and the neural model (a three-layer
perceptron) was trained with the QuickPropagation Algorithm
[30]. The number of neurons in the hidden layer was chosen
to minimize the test error; note that the training error could
be made much lower than the shown, but not without making
the test error higher. We used four input, five hidden, and one
output nodes.
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(a)

(b)

(c)

(d)

Fig. 6. Fuzzy modeling obtained forF1 using EFS’s (a)M1 (top left), (b)
M2, (c) T1, and (d)T2.

(a)

(b)

(c)

(d)

Fig. 7. Fuzzy modeling obtained forF2 using EFS’s (a)M1, (b) M2, (c)
T1, and (d) T2.



712 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 6, DECEMBER 1999

(a)

(b)

(c)

(d)

Fig. 8. Fuzzy modeling obtained forF3 using EFS’s (a)M1, (b) M2, (c)
T1, and (d) T2.

For the fuzzy models, we have considered an initial DB
constituted by five primary equally partitioned fuzzy partitions
formed by five linguistic termswith triangular-shaped fuzzy
sets associated.

To compare the mentioned techniques, we have divided
the sample into two sets comprising 847 and 212 examples.
SE values over these two sets are labeled and .
Results obtained in the different experiments developed are

TABLE II
RESULTS OBTAINED IN THE ELECTRICAL PROBLEM SOLVING

shown in Table II, where columnCOMPLEXITYcontains the
number of parameters and the number of nodes in the parse
tree of the expression, as well as the number of rules in the KB
of the generated fuzzy model. The best fuzzy model generated
by the EFS proposed has been obtained using the parameter
values , , and .

In view of them, we can conclude that the best result
is obtained by the EFS proposed in this paper, although
it is important to note that the TSK fuzzy model obtained
from it is the most complex one. Moreover, three of the
four fuzzy models clearly outperform classical non linear
regression methods, being superior to the neural model. This
result has great significance, because it means that neural
networks performance can be achieved with a model with
a high descriptive power. Even the TSK fuzzy models, the
less interpretable ones, have associated a higher level of
description than neural models, because of the possibility of
locally analyzing the model and of interpreting the antecedent
part of the fuzzy rules.

VIII. C ONCLUDING REMARKS

A two-stage EFS to design TSK FRBS’s has been presented.
The evolutionary process is based on a first stage which
generates a preliminary definition of a KB rule by rule
according to a local error measure and a second stage—guided
by a global error measure—which globally refines the latter
by tuning the antecedent membership function and consequent
parameter definitions.

In order to put this into effect, the design process makes use
of three well-known EA’s—GA’s, and and -
ES’s—in the two stages composing it, and considers two
new concepts, theangular coding of the rule consequent
parameters, and the use of the available knowledge about the
problem being solved to improve the search process.

The performance of the proposed EFS has been analyzed in
two different problems—one of them an electrical real-world
application—and it has been compared with other EFS’s for
designing Mamdani and TSK-type FRBS’s and with classical
techniques. It has shown very good results.
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TABLE III
FUZZY MODELING OF F1 USING EFS T2

APPENDIX I
EVOLUTIONARY STRATEGIES

ES’s [7] were initially developed by Rechenberg and Schwe-
fel in 1964 with a strong focus on building systems capable of
solving difficult real-valued parameter optimization problems.
The natural representation was a vector of real-valued param-
eters primarily manipulated by mutation operators designed to
perturb them in useful ways.

There are different kinds of ES’s. Next, we shall introduce
the two of them considered in this paper.

A. The (1 1)-Evolution Strategy

The first ES algorithm, the so-called (1 1)-ES, was
based on only two individuals per generation, one parent and
one descendent. The parent string is evolved by applying a
mutation operator to each one of its components. The mutation
strength is determined by a value, a standard deviation
of a normally distributed random variable. This parameter is
associated to the parent and it is evolved in each process step as
well. If the evolution has been performed successfully, then
the descendent substitutes the parent in the next generation.
The process is iterated until a certain finishing condition is
satisfied.

The mutation operatormut has two components. The first
one, , evolves the value of the standard deviationusing
Rechenberg’s 1/5-success rule

if

if

if

where is the relative frequency of successful mutations and
is a constant determining the updating amount of.

The second one, , mutates each component in the real
coded string by adding normally distributed variations with
standard deviation ( ) to it:

B. ( )-Evolution Strategy

This second kind of ES is based on performing evolution on
a population of possible -dimensional solutions, obtaining

offspring and selecting the bestfrom them to form the new
population. The offspring are obtained by first recombining a
single or some parents in a single-dimensional vector of
object variables, and then creating a new one from this by ap-
plying mutations with identical or different standard deviations
to each object variable. The main quality of the algorithm is
its ability to incorporate the most important parameters from
the strategy (standard deviations and correlation coefficients of
normally distributed mutations) into the search process, such
that adaptation also takes place in the strategy parameters
according to the current local topology of the search space.
This property is calledself-adaptation[7].

Therefore, each population individual consists of three vec-
tors, , representing, respectively, the object
variable, the standard deviation and the rotation angle values.
The vector has dimensions, equal to the number of problem
variables. The dimensions of a vector can be up to

(in this case, each object variable, , has
associated a different step size), and can be up to

. The set of strategy parameters consisting
of standard deviations and rotation angles provides a complete
description of the generalized-dimensional distribution with
an expectation value vector. Anyway, may be set to
zero, indicating that the rotation angles are not considered.
The more usual values for and are the following [7]:

.
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TABLE IV
FUZZY MODELING OF F2 USING EFS T2

TABLE V
FUZZY MODELING OF F3 USING EFS T2

The following algorithm generically describes the behavior
of the ( )-ES. The parameterstands for the number of the
current generation and for the population in it.

1) Initialize and evaluate . Initialize .
2) Recombine of the individuals of times, by

using one of the following gene recombination mecha-
nisms: ,

equal
no recombination

global intermediary

local intermediary
discrete

This operation generatesindividuals forming .

3) Mutate by adapting the individuals to obtain
offspring forming in the way.

a) Mutate the values of to obtain the array

where , , and

.
b) Mutate the values of to obtain the vector

where , .
c) Mutate the values of to obtain the vector

where is a normally distributed random
vector of correlated values.
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4) Evaluate and select the best individuals to form
.

5) Set the counter of generations
6) If not (termination condition), then go to 2, else Stop.

For more information about ( )-ES refer to [7].

APPENDIX II
RESULTS OBTAINED IN THE FUZZY

MODELING OF THE FUNCTIONS

This Appendix contains the results obtained in the different
experiments developed with the proposed TSK EFS in the
fuzzy modeling of the three-dimensional surfaces, , and

presented in Section VII-A. These results are collected in
Tables III–V, respectively.
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