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A Two-Stage Evolutionary Process for
Designing TSK Fuzzy Rule-Based Systems

Oscar Cordn and Francisco Herrera

Abstract—Nowadays, fuzzy rule-based systems are successfullyhave been obtained by the fuzzy logic controllers [3], the
applied to many different real-world problems. Unfortunately, ~FRBS'’s for control problems.

relatively few well-structured methodologies exist for designing Several tasks have to be performed in order to design an
them and, in many cases, human experts are not able to express.

the knowledge needed to solve the problem in the form of fuzzy intelligent system _Of this kind fqr a concrete appl'cat'on' They
rules. Takagi-Sugeno —Kang (TSK) fuzzy rule-based systemscan be grouped into two main tasks: to design the FRBS
were enunciated in order to solve this design problem because Inference System, i.e., to select the fuzzy operators considered
they are usually identified using numerical data. In this paper o make inference, and to obtain an accurate knowledge base
we present a two-stage evolutionary process for designing TSK (KB) comprising the known knowledge about the problem
fuzzy rule-based systems from examples combining a generation | " .
stage based on aj, A)-evolution strategy, in which the fuzzy being solved. The latter used to be the most important and
rules with different consequents compete among themselves todifficult, due to the fact that human experts are not sometimes
form part of a preliminary knowledge base, and a refinement able to express their knowledge in the form of fuzzy if-

stage, in which both the antecedent and consequent parts of the then rules. This has forced researchers to develop automatic
fuzzy rules in this previous knowledge base are adapted by a techniques for performing this task

hybrid evolutionary processomposed of a genetic algorithm and .
an evolution strategy to obtain the final Knowledge Base whose ~OVer the last few years, many different approaches have

rules cooperate in the best possible way. been presented taking genetic algorithms (GA’s) [4] as
Some aspects make this process different from others proposedtheir base, obtaining the so called genetic fuzzy systems
until now: the design problem is addressed in two different (GFS's) [5], [6] or, more genericallyevolutionary fuzzy
stages, the use of aangular codingof the consequent parameters t EF’S, h, Evoluti Algorith EA) [7
that allows us to search across the whole space of possiblefSys ems( s) when an Evolu anary go.rl. m (EA) [7]
solutions, and the use of the available knowledge about the IS Used instead of a GA. For a wider description of some of
system under identification to generate the initial populations these approaches refer to [5], [6], [8], and for an extensive
of the Evolutionary Algorithms that causes the search process pibliography see [9].
to obtain good solutions more quickly. The performance of the In this paper, we present a two-stage evolutionary process

method proposed is shown by solving two different problems: . . ,
the fuzzy modeling of some three-dimensional surfaces and the ©© automatically learn Takagi-Sugeno —Kang (TSK) KB's

computing of the maintenance costs of electrical medium line in from examples. The learning process is divided into two
Spanish towns. Results obtained are compared with other kind stages: thegenerationand refinementstages. The first one,

of techniques, evolutionary learning processes to design TSK and hased on the combination of an inductive algorithm and a
Mamdani-type fuzzy rule-based systems in the first case, and (11, \)-evolution strategy {(, \)-ES) [7], will allow us to
classical regression and neural modeling in the second. ’ . P ’
' . . . automatically generate a preliminary TSK-type KB for a
Index Terms—Evolution strategies, evolutionary algorithms, ~concrete problem when a training data set representing its
genetic algorithms, learning, Takagi-Sugeno —Kang (TSK) fuzzy pepavior s available. It is able to decide the number of
rule-based systems, TSK knowledge base. ) ' . .
rules composing the KB and to determine their consequent
parameters generating a locally optimal KB. The second stage
[. INTRODUCTION is addressed by means ofhgbrid GA-ES procesg& genetic

UZZY rule-based systems (FRBS's) are now considerd@cal search process) that works with a population of KB’s,
as one of the most important applications of fuzzy séaking the preliminary definition obtained in the previous stage
theory suggested by Zadeh in 1965 [1]. These kinds of systefifs@ base, to obtain another one presenting an optimal global
constitute an extension of the classical rule-based systeRghavior. _ .
because they deal with fuzzy rules instead of classical logic The performance of the EFS proposed is analyzed in the
rules. Thanks to this, they have been successfully applied t§@ving of two different problems: the fuzzy modeling of
wide range of problems presenting uncertainty and vaguen&g§e three-dimensional surfaces and the computing of the
in different ways [2] In particu|ar, the most promising result§raintenance costs of electrical medium line in Spanlsh towns.
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other kind of techniques such as classical regression and neural
modeling as well.

In order to put this into effect, this paper is set up as follows.
The next section presents some guidelines about the TSK
FRBS and its design. In Section lll, a new coding to represent
TSK fuzzy model rule consequents is introduced, allowing
us to explore the whole possible solution space when using
EA’s. Section IV introduces the structure of the EFS proposed.
Both stages composing it are described in Sections V and
VI, respectively, while Section VII shows the experiments
developed and the different results obtained. In Section 8, sofig 1. Examples of angular coding.
concluding remarks are pointed out. Finally, two Appendices
briefly describing ES’s and coIIecting different tables of. the . A NEW CODING SCHEME TO
results pbtamed in the fuzzy modeling of the three functions, REPRESENTTSK RULE CONSEQUENTS
respectively, are presented.

There is a problem when designing TSK FRBS’s using
EA’s. Usually, an EA needs to know the intervals in which
II. TSK Fuzzy RULE-BASED SYSTEMS each problem variable is defined to solve a specific problem.

The TSK fuzzy model was first presented in [14]. It is basefhis info_rmation i; necessary to define the .genetic coding. of
on rules in which the consequent is not a linguistic variablEe Possible solutions and to perform evolution on them using
as in the Mamdani-type fuzzy model, but a function of thihe genetic operators. Unfortunately, this information is not

input variables. This kind of rule usually presents the followingvailable in the problem of learning the TSK rule consequent

form: parameters.
This problem has usually been solved by the authors [12],
If X, is A, and --- andX,, is A, [13], [18]-[20] by fixing sufficiently large values for the low

and high interval extremes. This is not a bad idea because the
powerful search of the EA allows us to obtain good solutions
. . working in this way but presents the drawback that not all the
where X; are the system input variables, are fuzzy sets solution space is considered, so it may not be possible to find

Sp?_ﬁléyl(l;ll?t tB;al(r)fmae?:r;régs, ?gl;] 'S;hEE? L:fgrl:]t \(/)i,r:clit:aef'TSK the global problem solution since the value of some of the
P 9 P qrameters may lie outside the intervals considered.

rules is computed as the weighted average of the indivilea ; . :
In this section, we propose a new coding scheme, called

rule outputs,Y;, i = 1 ---m, in the following way: angular coding,which was first presented in [21]. It is based
m on encoding the values of the angles instead of the tangent
Z h; - Y; values for each TSK rule consequent parameter, thus allowing
i=1 us to have all the variables lying in the same fixed interval
m and to represent the whole space of possible solutions.
ZYi As can be seen, the partial linear relation defined by the
=1 consequent of a TSK rule determines a geometrical figure in
whereh; = T(A;(z1), - - -, Ap(wn)) is the matching betweenth.e correspondlng hype_rspac_e. For e>_<ample, when working
. with a system with a single input variable, each TSK rule
the antecedent part of the rulend the current system inputs, . o
output,Y = p; - X + po, represents a straight line in a part of

x = (z1, -, ), With T being a t-norm. : )
The design process of these kinds of FRBS's is easier thtgr? plane determined by the rule fuzzy input subspace. When a

others due to two main reasons. On the one hand, the oﬂ[}?rigrgﬁg;bz ' gfr:npgtrgjlésnzogfsgrenree}g,sif)?i%h;)utgrl:t(:f Ititelon
design decision that has to be made to set up the Infere P YPETp P

pe Ai . 241
System is to choose the t-norffi considered to compute?w * 1). d'me.”$'°”"?" spac& B .
the matching for the rule antecedents. On the other han Bearing this in mind, and focusing on the case of one single

TSK FRBS’s were originally designed to be identified frorr\{e1rlable for S'mp“C'tY’ we .kno.w that the real valge in the
lchpsequenY = p1 - X +pg is simply the tangent of the angle

numerical examples, as stated by their creators: “is quite useé(lsting between this line and thHé axis. Thus, if we code the

to give a way to model control actions using numerical da . .
- angle value instead of the tangent one by means of the function
about the system behavior” [14].

Many different techniques have been employed until now to C: R — (_i E); C(x) = arctan(z)
derive the TSK KB from examples since Takagi and Sugeno 22

first presented a process based on the least squares me#liidtie possible values of the parametetie inside the interval
[14]. For example, Neural Networks [15], [16] and gradient—=/2, 7/2). Fig. 1 shows some examples.

descent methods [17] have been considered. The use of EA’'sAs may be observed graphically in the figure, using very
either specific, GA's [12], [18] and EE’s [19]; or hybrid [19],short intervals, a very large part of the possible solution
[20], has increased over the last few years. space may be represented. For example, when considering

thenY =p; - X1+ +p. - X, + 10
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v to improve the search process. The algorithm works on
chromosomes encoding the whole preliminary definition

gl 5X+3 of the KB obtained and globally adjusts this definition.
The fitness function considered in this case is based on a

sl 5% global error measure—the mean square error computed

on the training data set—more adequate for the purpose
followed. The available knowledge is again considered
to generate the initial population of the GA. In this case,

0= ——X the preliminary definition of the TSK KB is taken into
! account for this generation.
Fig. 2. Geometrical interpretation of the paramatgr The following two sections will present each one of the

EFS stages, respectively.

the interval |20, 20], we work with the angular interval

[-87.1%, 87.13]. Thus, approximately only 3.3% of the V. EVOLUTIONARY GENERATION PROCESS

search space (more or less Sy4s not taken into account. | his section, we introduce the evolutionary generation
Th|_s Justn‘le_s th_e faqt that the EA-based de_35|gn Processfidcess that was first presented as a single design process in
which consider fixed intervals allow us to obtain good resultFZl]_ First of all, the TSK rule consequent learning method
Anyvyay, It seems more appropriate t(_) represent the whalejnioguced. Then we propose the use of the knowledge
possible solution space when performing a search towarq,gyained in the training data set to improve the search process.

global solution. o _ Finally we present the algorithm of the generation process,
As regards the parametgg, when working in the plane it \ hi-h makes use of the two previous aspects.
determines the movement of the straight line from the origin

along theY axis, as shown in Fig. 2. Since the values of thg\' TSK Rule Consequent Learning Method
parameterpg may be very different from one TSK rule to

another, the consideration of a fixed interval is not a good In this method, they(, A)-ES (see Appendix I) is considered
solution for their evolutionary learning, and angular codintp define TSK rule consequent parameters. The dimension
becomes a powerful tool to solve the problem. In this casef the object variable vector is determined by the number of
there is no geometric interpretation in the coding (remembi@put variables in the problem under control. When thereiare
that po does not correspond to the tangent of any angle in th#ut variables, there are = iv +1 parameters to learn in the
concrete hyperspace), we only use angular coding to transi&fK rule consequent. Thépart of the individuals forming the
an interval with undefined extenti, to another with defined (1, A)-ES population is built by encoding the possible values
ones,— /2, 7/2). Therefore, with this transformation we carHsing angular coding.

use the EA to adequately search in the solution space to leardhe evolutionary learning is guided by a fitness function
the values of these parameters. composed of a local error measure. This will allow us to obtain

an optimal TSK rule consequent in the fuzzy subspace defined
by the rule antecedents. The expression of the measure used

— . is the following [18]:
The EFS presented in this paper is composed of the follow-

ing two stages: Z hy - (eyl _ 5(6331))2
1) An evolutionary generation procedsr learning a pre- e€E
liminary TSK KB from examples. This first process is

based on an iterative algorithm that studies the existenvc\:/(ra]ere £ is the set of inputoutput data pairs

IV. STRUCTURE OF THEPROPOSEDEFS

= Lo exd ! i
of data in the different fuzzy input subspaces. Each timleré] ut - sub(sxéé:e ’giﬁb‘r;ezy ) blocattﬁg Irr:“etheangazgem
data are located in one of them, the process applie R pl . y : '
w = T(Ai(ex?), .-+, Aju(ex;,)) is the matching between

TSK rule consequent learning methtal determine the the antecedent part of the rule and the input part of the current

existing partial linear input-output relation, taking the T I .
data located in this input subspace, a subset of the gloﬁglta pairez”, and 5(ez") is thle output provided by the TSK
uzzy rule when it receivesz‘ as input.

data set, as a base. The latter method is based on . . L . . .

(1, \)-ES [7] using the angular coding proposed in the he object variables of the individuals in the first population
pﬁrbévious Section gnd a Iocgal measurego? erFrJor and tald€ generated in the way shown in the next subsection, taking
into account the knowledge contained in the sa'id traini m?o account the knowledge contained in the input-output data

. &t As regards the initialization of the remaining vectors, the
data subset to improve the search process. -
. . S components o7 are set to 0.001, and the onesdn when

2) An evolutionary refinement proceder adjusting both considered, are set to arctan (1)
the consequent and the antecedent parts of the fuzzy ' '
rules in the preliminary KB obtained from the first ) ) ) )
stage. The second process is composed of a spe&alus'”g Available Knowledge in the Design Process
real-coded GA (a genetic local search algorithm [22]) To develop the knowledge-based generation of the initial
which includes an1(+ 1)-ES [7] as a genetic operatorpopulation, we compute the following indices and obtain the
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following set from the input-output data sét
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Therefore, we generate the initial population of the propos&§- 3- Fuzzy partition used.

ES in three steps as follows:

1) Generate 1 individual initiating parametets, i
1, ---,4v, to zero, and parametes, to the angular
coding of ¥,eq.

Generatey individuals, with v € {0,---, p — 1}
defined by the EFS designer, initiating parameters
i1 =1, -, v, to zero, andy, to the angular coding of
values computed at random in the interii@lin, ¥max]-
Generate the remaining— (v -+ 1) individual initiating
parametery;, ¢ = 1, ---, iv, to the angular coding of
values computed at random in the interyalr /2, 7 /2),

2)

3)

and p, to the angular coding of a value computed from

a randomly selected elementin E4 (¢ € [0.5, 1] is

provided by the EFS designer as well) in such a way
thate belongs to the hyperplane defined by the TSK rule

consequent generated. Thus, we shall ensure that

hyperplane intersects with the swarm of points contained

in Ey, the most significative ones froih.

terms, each one with an associated fuzzy set defining
its meaning. In this paper, we shall work in the latter
way using symmetrical fuzzy partitions with triangular
membership functions (see Fig. 3).

For each multidimensional fuzzy subspace obtained by
combining the individual input variable subspaces using
the and conjunction do:

a) Build the setE’ composed of the input-output data
pairse € E that are located in this subspace.

If |E'| # 0, i.e,, if there is any data in this
space zone, apply the TSK rule consequent learning
method over the data sét’ to determine the partial
linear input-output relation existing in this subspace.
Therefore, no rules are considered in the fuzzy
subspaces in which no data are located.

¢) Add the generated rule to the preliminary KB.

2)

b)

this

Since with small angular values, large search space zones

are covered, it seems interesting to generate small values for

the parameters; in this third step. To do so, we make use of

VI. EVOLUTIONARY REFINEMENT PROCESS

2 The evolutionary refinement process is a tuning process that

modifier function that ass_igns greater probability of appearangg o< a TSK KB as input and adjusts the preliminary defini-
to smaller angles according to a paramegealso provided by g of the antecedent membership functions and consequent

the EFS designer. We use the following function:

)

£100, 1] x {—1, 1} — (_g g

f(z, z)zz-g-xq.

parameters according to the global behavior of the KB evolved
in the problem being solved, represented as a training data
set. It is composed of a special real-coded GA including an
(1 + 1)-ES as another genetic operator to improve the search
process, guided by a global error measure over the training

Hence, the generation of the individuals is performed in thfita set. We describe the hybrid EA components below.

third step as follows:
Forj=1,---,p—(y+1) do
a) Fori =1,.--.,4v do
1) Generate: at random in [0, 1].
2) Generater at random in{—1, 1}.
3) Setp; to f(z, 2).
b) Generate the value gfy:
1) Selecte at random fromkEy.
2) Setpo to ey — >, C M p) -
C~Y(B) = tan(p) is the inverse ofC.

exy, Where

C. Algorithm of the Evolutionary Generation Process

A. Representation

A chromosomeC' encoding a TSK KB definition is com-
posed of two different parts;* and C?, the first one corre-
sponding to the definition of the fuzzy membership functions
considered in the antecedent part of the different fuzzy rules
in the KB, and the other to the consequent parameters.

A computational way to characterize a triangular member-
ship function is by using a parametric representation achieved
by means of the 3-tuplés, b, ¢). Therefore, a primary fuzzy
partition as the one shown in Fig. 3 can be represented by an
array composed by 3-tuples § - NV real values)ay, b, ¢),

[ =1,---, N, with N being the number of terms forming

The generation process proposed is developed by meangtef inguistic variable term set. The complete definition of all

the following steps:

the input variable fuzzy partitions for a problem in whig¢h

1) Consider a fuzzy partition of the input variable spacdsput variables are involved is encoded into the first g&riof
obtained from the expert information (if it is available)each chromosomé); in the populationC? is built by joining
or equally partitioning them in a number of linguisticthe partial representations of each one of #héput variable
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Since all of these parameters are encoded by using the
proposed angular coding, the interval of performance of all
the genes inC? is the same(—m/2, 7 /2).

Now, the fundamental underlying mechanisms of a GA,
formation of an initial gene pool, fithess function, and genetic
operators are developed.

B. Initial Gene Pool

D min p The second stage uses the available knowledge to initialize
' . the first population as well. In this case, we make use of
¢, Cio the preliminary definition of the KB being optimized in order

to perform this task. Withd/ being the GA population size,

Fig. 4. Example of triangular membership function and intervals of perfofha jnitiagl population generation process is performed in three
mance for the refinement process.
steps as follows:

1) The preliminary definition of the KB taken as process

fuzzy partitions as is shown below: input is encoded directly into a chromosome, denoted
.
01: b 1y v . Da v N as 1 . e
. (al”"Q b C”;ﬁ > @i bin, Cin), 2) The following M/2 — 1 chromosomes are initiated by
¢ =001 O generating, at random, the first parf®, with each

gene being in its respective interval of performance,

Each one of the triangular fuzzy selt; = (a;;, b;;, i), . . o
¢ y selth; = (aij, bij, ciy) and by encoding the preliminary definition of the rule

t =140, 5 = 1,---, N;, defining these preliminary o
fuzzy partitions are allowed to vary freely in any meaning- (_:r(;]nsequer_lt_pa]r\z/alm;ters : b NP
ful way in an interval of performancéD}™, D**]. The ) The remainingM//2 are set up by generafing” in

the same way followed in the previous step, and by
generating the values fa@@? by adding a random value
distributed following a normal distributio®v (0, d) to
the values in the>? part of the previous chromosomes.

extremes of these intervals are computed before running the
refinement process according to the preliminary fuzzy partition
definitions provided by the FRBS designer, in the following
way:

bij — Q4y Cij — bij

5 i + 5 C. Evaluation of Individual Fitness

(D3, DI = |4y, -
The fitness function is based on a training input-output
Therefore, the interval of performance of each gen€in data set,E, and a global error measure, the mean square
will depend on the fuzzy membership function to which it i€rror (SE). In this way, the adaptation value associated to
associated. Each one of these intervals of performance wiil individualC; is obtained by computing the error between
be the interval of adjustment for the corresponding gerihie outputs given by the TSK FRBS using the KB encoded
et € [d, ¢]. If (¢mod3) = 1 thene; is the left value of in the chromosome and those contained in the training data
the support of a fuzzy set, which is defined by the threset. The fithess function is thus represented by the following
parametergc;, c;+1, ci+2) and the intervals of performanceexpression:
are the following:

i N 1 NS
o € [d ] = [D™™, ¢y F(C)) = 57 2 (e = S(eah)
! r _ e €K
cr1 € [cy1s Gya] = o o]
42 € [Chios €0l = a1, D™ with the same equivalences presented in Section V.

with D™ and D™* being the extremes of the interval of

performance in the fuzzy set defined by the 3-tuele ¢;11,

ci+2). These values are the only ones defining the intervals of The selection procedureconsidered is Baker’'s stochastic

adjustment of the,’s that remain constant during the GA rununiversal sampling [23], in which the number of any structure

Fig. 4 shows an example of these intervals. offspring is limited by the floor and ceiling of the expected
As regards the second part of the chromoso@g, it number of offspring, together with the elitist selection. As re-

encodes the consequent parameters of each fuzzy rule in gagds the genetic operators, the ones described in the following

preliminary definition of the TSK KB. Thus, it is composedsubsections are going to be considered.

of m - (4v + 1) genes, wheren stands for the number of rules 1) Mutation: We shall use Michalewicz’s nonuniform mu-

in the KB andiv + 1 for the number of consequent parameter@tion operator [4], which has demonstrated an accurate be-

D. Genetic Operators

for TSK fuzzy rule: havior when working with real coding schemes. It works as
) . follows.
C; =(pio, pirs -+ Piin),  i=1,- m, If C! = (c1, -, cx, -+, cg) is @ chromosome and the

C?=C2C3 .- C2. genec, was selected for this mutatiom( € [cii, crr]), the
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new mutated valueg,, is determines the standard deviation of the normally dis-
tributed random variable;; (see Appendix ). In our

J o= {ck + At cpr —c), fa=0 case, the step size cannot be a single value because

Tl ew — Aty o —cpr), ifa=1 the membership functions encoded in the first part of the

. chromosome are defined over different universes and so
wherea is a random number that may have a value of zero require different order mutations. Therefore, a step size
or one, and the functiol\(¢, ) returns a value in the range o; = o - s; for each component ii"! is going to be used
[0, y] such that the probability oA(¢, 3) being close to zero in the (1+ 1)-ES. Anyway the relations of all; were

increases as increases: fixed by the values;; and only the common factar is
. adapted following the assumptions presented in [7].
Alt, y) = y(1 — 1717 « Incremental Optimization of the Individual Parameters:
Usually, the different parent components are not related
where and the ES adapts all of them at the same time. Unfortu-
r random number in the intervd, 1]; nately, in our problem each three correlative parameters
7 maximum number of generations; (w0, =1, x2) in C* define a triangular-shaped membership
b parameter chosen by the user, which determines the function, and the property, < x; < x> must be verified
degree of dependency with the number of iterations. in order to obtain meaningful fuzzy sets. Therefore,

This property causes this operator to make a uniform search there is a need to develop an incremental optimization

in the initial space whet is small, and a very local one in of the individual parameters because the intervals of

later stages. performance for each one of them will depend on the
2) Crossover: We shall work with another genetic operator ~ Value of any of the others.

which has shown good behavior for real-coded GA's, the =~ As we have commented in the description of the

max-min-arithmetical crossover. This crossover operator was coding scheme, a global interval of performance (in which

proposed in [24] and has been W|de|y used in the field of the three parameters dEfining the memberShip function

EFS’s [11], [25]-[27]. It works as follows. may vary freely) is defined for each fuzzy set involved
f ¢t = (¢, cr---.cy) and O = in the optimization process. Witl’;; = (xq, 1, 2)
(¢, -, ¢, -, ¢) are to be crossed, the following being_the membership function currently adapted, the
four offspring are generated: associated interval of performance [I§7}™, Ci3*] =
[zo — (x1 — %0)/2, T2 + (x2 — x1)/2]. The incremental
Ot = a0 + (1 —a)C" adaptation is based on generating the mutated fuzzy set

Ci; = (zg, z1, 5) by first adapting the modal point,

C3tt = aCl + (1 - a)Ct " > ;
2 aC, + {1 -a)C, obtaining the mutated valug| defined in the interval

t+1 H t+1 : / . . .
C57 with " = min{c, ¢} [0, z2], and then adapting the left and right pointsand
Oyt with ¢ift = max{ex, ¢} x7 obtaining the values{, and defined, respectively, in
the intervaldC™, #{] and[z], CI}**]. It may be clearly
This operator can use a parameterwhich is either a observed that the progressive application of this process

constant, or a variable whose value depends on the age of allows us to obtain fuzzy sets freely defined in the said
the population. The resulting descendants are the two best of interval of performance.

the four aforementioned offspring. The value of the parametaf;) determining the particular
3) Evolution Strategy:The last genetic operator to be apstep sizesy; = o-s(x;), is computed each time the component
plied consists of an (¥ 1)-ES. This optimization technique 4, is going to be mutated. When= 1, the modal point is being

has been selected and integrated into the genetic recombinaigBpted, and thes(z1 ) is equal to Mirfz, — zo, 22 — 1) /2.
process in order to locally refine the best individuals in eagh the other two cases,= 0 andi = 2, s(z) = Min(zo —
generation, following the assumptions of the so-catiedetic C;}li“, z) — x0)/2 ands(zz) = Min(zy — o}, C — 2,) /2.
local search[22]. The ES will be applied over a percentageience, whens takes value 1 at the first ES generation, the
6 of the best different population individuals existing in th%btaining of a |arge quantity of;, normal values performing
current genetic population. This idea has already been appligduccessfut; mutation (i.e., the corresponding = x; + 2
in the field of EFS’s [25]. with z; ~ N;(0, 0’?) lying in the expected interval far;) is
The basis of the (+ 1)-ES employed are to be brieflyensured. If the mutated value lies outside, it is assigned the
presented in Appendix |. The coding scheme and the fitnaggue of the interval extent closest 19 + z;.
function considered are the same as those used in the GA-owever, when working with the second part of the chro-
Thus, the only changes to be performed have to be doneniiysome 2, the latter problem does not appear. In this case,
the generic ES mutation scheme, and the great majority i different components are not related and the mutation can
them only when working with the first part of the individualpe performed in its usual way. The only change that has to be
C*. In this case, the following two changes have to be pgiade is to adapt the step size to the components2nAs
into effect. all of them are defined over the same interval of performance,
« Definition of Multiple Step SizeShe mutation strength (—= /2, 7/2), they all will use the same step size = o - s;
depends directly on the value of the parametewhich with s; = 0.00001.
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VII. EXPERIMENTS AND RESULTS OBTAINED

A. Fuzzy Modeling of Some 3-D Surfaces

The first application selected to analyze the accuracy o
the method proposed is the fuzzy modeling of three three
dimensional surfaces presenting different characteristics. T
associated functions and the variable universes of discour
considered are as follows, while their graphical representation
are collected in Fig. 5:

Fi(z1, 22) =23 + 23,

x1, 22 € [=5, 5], F1(x1, x2) € [0, 50]
Tl — X1L2

L =10 —

2(3717 $2) 1 — 2x172 + 3727

x1, 22 € [0, 1], Fa(xy, z2) € [0, 10]

sz, 22) =™ -sin? zo 4+ 2 - sin? 1,

x1, T2 € [-8, 8], F3(x1, z2) € [0, 5836].

We consider four EFS’s to model the described surfaces:

1) M1: two-stage Mamdani EFS based on obtaining a
complete KB by first deriving the RB by means of
Wang and Mendel (WM) method [10], and then defining
the DB using the descriptive genetic tuning process
presented in [11];

2) M2: three-stage Mamdani EFS presented in [11];

3) T1: single-stage TSK EFS presented in [12], [13] (im-
proved by considering a real coding scheme);

4) T2: two-stage TSK EFS proposed in this paper.

For each function, a training data set uniformly distributed
in the three-dimensional definition space has been obtained
experimentally (the three data sets are composed of 1681, 674,
and 1089 pieces of data, respectively). Three other data sets (of

LI L N B B O B I |

6000

5000
4000+

3000
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size 168, 67, and 108, i.e., 10% of the corresponding training 12888
set one) have been randomly generated for their use as test sets ¢«
to evaluate the generalization capability of the TSK FRBS's
generated.

The initial DB used in processédl, M2, andT2 is con-
stituted by three primary, equally partitioned fuzzy partitions
(two corresponding to the input variables and one associated
to the output one, the latter in the case of both Mamdani-typg. 5. Graphical representations of &), (b) F:, and (c)F.
EFS’s) formed byseven linguistic termwith triangular-shaped
fuzzy sets giving meaning to them (as shown in Fig. 3), aréd
the adequate scaling factors to translate the generic universe’

discourse into the one associated with each problem variakﬂﬂ.ﬁ'vIduals tp Wh'Ch the ES is applied in the refinement stage.
To design the inference system in the Mamdani-type The remaining parameter values for EFS are as follows.
FRBS'’s generated by means of the first two processes, wel) Evolutionary Generation Proces$i00 iterations,.
have selected theninimum t-normplaying the role of the 15, A = 100, v = 02-p =3, 0 =07, ¢ =
implication and conjunctive operators, and teater of gravity 7= (rg rg, ra) = (3,2, 0), and( = (¢, G, (&)
weighted by the matchingirategy acting as the defuzzification (1 s 1).
operator [28]. In the TSK-type ones obtained from processes?) Evolutionary Refinement Process000 GA iterations,
T1 and T2, the role of conjunctive operator is played by the &V =61, P. = 0.6, P, = 0.1 (per individual),a = 0.35,
minimum t-norm as well. b= 5, 25 (1 =+ 1)'ES iterationSﬁ = 0.9, d = 0.001.
We have performed different runs of the proposed process,The results obtained in the different experiments developed
T2, using two of the four usual combinations of dimensions afith design proces$2 are shown in Tables 11I-V, collected in
vectorss and& (see Appendix 1), 6, ,n.) = {(n, 0), (n, (n- Appendix Il, whereSE., andSEY., stand for values obtained

5

(n — 1)/2))}, and three different values for the parametdsy the specific TSK FRBS designed in the SE measure

(? = {0, 0.1, 0.2}, defining the percentage of population

el
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TABLE |
Fuzzy MODELING OF THE THREE FUNCTIONS USING THE FOUR EFS’s
1o Fy F3

EFS | #RF: TRAD TSTH #RF: TRAF: TST!: # R TRA™ TSTFs
M1 49 0.358522 0.377134 49 0.060296 0.028621 49 52705.00 40999.98

2.836611 2.465526 4.820671 0.665405 1817.60 1591.62
M2 62 0.335871 0.262573 98 0.027351 0.016716 100 44523.62 34242.32

3.171968 2.263699 2.260658 0.671948 1778.55 1088.94
T1 56 0.579574 0.233781 56 0.067474 0.025405 56 68971.09 56671.50

5.268021 3.169657 10.000000 2.070384 5113.01 2549.98
T2 49 0.006592 0.006568 49 0.015290 0.001763 19 28691.20 19838.80

0.351849 0.332455 2.559241 0.189650 1455.16 1103.95

computed over the training and test data sets, respectivaly enterprise called “Red &ttrica Espfola” (R.E.E.) which
(z can be equal tgy and » standing for the generation andgets all payments and then distributes them according to
refinement stages). All the KB’s learned are composed of 48me complex criteria (amount of power generation of every
fuzzy rules. The final values included in the last two columrnompany, number of customers, etc.).
of each table, noted aSE;? and SE/?, respectively, are  Recently, some of these companies asked to revise the rules.
computed as an average of three EFS runs with different valu@se of the proposed modifications involved a redistribution of
for the random seed in order to give us more information abatie maintenance costs of the network. Since maintenance costs
the process accuracy. depend on the total length of electrical line each company
The results collected in these tables may help us to decigi@ns, and on their kind (high, medium, urban low and rural
good values for the different EFS parameters. In view of themaw voltage) it was necessary to know the exact length of
the best results are obtained when not considering the angl@ry kind of line each company was maintaining.
vector in the evolutionary generation procgas A)-ES ((, To compute the maintenance costs of town medium voltage
ne) = (n, 0)), and the best value fof parameter in the |ines, there is a need to know which would be the total line
second stage depends on the specific application. The usyth if the installation made would have been the optimal
of the (1+ 1)-ES in the refinement stage leads sometimgge. Clearly, it is impossible to obtain this value by directly
to better TSK KB definitions, while causing an undesirablﬁ]easurmg it, since the medium voltage lines existing in a
overlearning (better approximation but worse generalizatioghwn have been installed incrementally, according to its own
in other cases. electrical needs in each moment.
To analyze the performance of the proposed process, Werherefore, we need to solve the problem using other kinds
compare it with the other three mentioned earlier. The best techniques, which are able to relate some characteristics
results obtained in the three applications are collected i 5 certain town with its maintenance cost [29]. In this

Table I, where##i stands for the number of rules in theyaper, we consider evolutionary fuzzy modeling techniques
corresponding KB and’RA andT'ST" for the results obtained 5y compare its behavior with classical regression and neural
over the training and test data sets, respectively. In each CF‘éEhniques.

the number at the top corresponds to the SE and the one at thg, g, ye the problem, we were provided with data related
bott(_)m 'Fo the maximum linear error. The best result for ea(EQ four different characteristics of the towns:
application and measure appears in boldface.

From an analysis of these results, the good behavior pre-“71
sented by the proposed EFS may be observed. The FRBS'42 . . -
designed using it are more accurate to a high degree than th&3 area that is occupied by buildings;
ones based on the other three EFS's in the fuzzy modeling®* €N€rdy supply to the town;
of the three functions. Moreover, they have demonstrat@ld to the maintenance costs of ling (n each one of them
the robustness of our evolutionary learning process. THea sample of 1059 simulated towns. Our objective was to
optimization of the local and global error measures in twilate the last variable (maintenance costs) with the other four
stages leads us to obtain fuzzy models with the best res@iies by the different said techniques.
in the SE and the maximum linear error measures over theAs regards classical methods, we have considered linear
training and test data sets. and polynomial regression, and neural network models. The

To illustrate the behavior of the proposed EFS with respefg@rameters of the polynomial models were fitted by Leven-
to the remaining ones, the graphical representation of therg—Marquardt method and the neural model (a three-layer
best fuzzy modeling obtained for each function using theperceptron) was trained with the QuickPropagation Algorithm
is shown, respectively, in Figs. 6-8. [30]. The number of neurons in the hidden layer was chosen
to minimize the test error; note that the training error could
be made much lower than the shown, but not without making

In Spain, electrical industries do not charge the energy hilie test error higher. We used four input, five hidden, and one
directly to the final user, but they share the ownership olutput nodes.

sum of the lengths of all streets in the town;
total area of the town;

B. Real-World Electrical Application
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Fig. 7. Fuzzy modeling obtained fdr, using EFS’s (aM1, (b) M2, (c)

T1, and (d) T2.

)

d

(

Fig. 6. Fuzzy modeling obtained fdr; using EFS’s (aM1 (top left), (b)

M2, (c) T1, and (d)T2.
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TABLE I
RESULTS OBTAINED IN THE ELECTRICAL PROBLEM SOLVING
METHOD SEira SEige COMPLEXITY
Classical
Regression:
Linear 164662 36819 17 nodes, 5 par.
hoorder 55030 45339 77 nodes, 15 par.
polynomial
Neural
Modeling:
3 layer
percept. 4-5-1 86469 33105 35 par.
Fuzzy
Modeling:
M1 20318 27615 66 rules
M2 19679 22590 63 rules
T1 149144 128942 6 rules
T2 11073 11836 268 rules

shown in Table Il, where colum@OMPLEXITYcontains the
number of parameters and the number of nodes in the parse
tree of the expression, as well as the number of rules in the KB
of the generated fuzzy model. The best fuzzy model generated
by the EFS proposed has been obtained using the parameter
values(n,,n.) = (n, 0), andé = 0.2.

In view of them, we can conclude that the best result
is obtained by the EFS proposed in this paper, although
it is important to note that the TSK fuzzy model obtained
from it is the most complex one. Moreover, three of the
four fuzzy models clearly outperform classical non linear
regression methods, being superior to the neural model. This
result has great significance, because it means that neural
networks performance can be achieved with a model with
a high descriptive power. Even the TSK fuzzy models, the
less interpretable ones, have associated a higher level of
description than neural models, because of the possibility of
locally analyzing the model and of interpreting the antecedent
part of the fuzzy rules.

VIIl. CONCLUDING REMARKS

A two-stage EFS to design TSK FRBS's has been presented.
The evolutionary process is based on a first stage which
generates a preliminary definition of a KB rule by rule
according to a local error measure and a second stage—guided
by a global error measure—which globally refines the latter
) by tuning the antecedent membership function and consequent
parameter definitions.

In order to put this into effect, the design process makes use
of three well-known EA’s—GA's, andu, A) and (1 + 1)-
ES’'s—in the two stages composing it, and considers two

For the fuzzy models, we have considered an initial DBew concepts, thengular coding of the rule consequent
constituted by five primary equally partitioned fuzzy partitionparameters, and the use of the available knowledge about the
formed by five linguistic termswith triangular-shaped fuzzy problem being solved to improve the search process.
sets associated. The performance of the proposed EFS has been analyzed in

To compare the mentioned techniques, we have dividedo different problems—one of them an electrical real-world
the sample into two sets comprising 847 and 212 examplapplication—and it has been compared with other EFS’s for
SE values over these two sets are labeldd,., and SE,,,. designing Mamdani and TSK-type FRBS’s and with classical
Results obtained in the different experiments developed deehniques. It has shown very good results.

Fig. 8. Fuzzy modeling obtained fdrs using EFS’s (aM1, (b) M2, (c)
T1, and (d) T2.
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TABLE Il
Fuzzy MODELING OF Fy UsINGg EFS T2
PARAMETERS GENERATION REFINEMENT AVERAGE

ne noe 6 Run| SEY, SEY, SE}, SEL, SE;S SELS

30 0 I 0.006592 0.006568

30 0 2 | 0.050862 0.051457 | 0.008108 0.009008 | 0.006980 0.007504

3 0 0 3 0.006240  0.006938

30 01 1 0.007828 0.007737

30 01 2 |0.05082 0.051457 | 0.006627 0.007717 | 0.006921 0.007498

3 0 01 3 0.006310  0.007042

30 02 1 0.007268 0.008018

3 0 02 2 |0.050862 0.051457 | 0.006566 0.007711 | 0.007150 0.007805

3 0 02 3 0.007618  0.007687

33 0 1 0.010610 0.011168

33 0 21 0.073856  0.056382 | 0.012539 0.013282 | 0.011431 0.011646

303 0 3 0.011145  0.010490

3301 1 0010338 0.010349

3 3 01 2 |0.073856 0.056382 | 0.011458 0.013186 | 0.011173 0.011928

3 3 01 3 0.011725 0.012251

3 3 02 1 0.012412 0.015150

3 3 02 2 |0073856 0.056382 ;1 0.010139 0.010494 | 0.010868 0.012276

3 3 02 3 0.010055 0.011185

APPENDIX | The second onanu,, mutates each component in the real

EVOLUTIONARY STRATEGIES coded string by adding normally distributed variations with

ES’s [7] were initially developed by Rechenberg and Schwétandard deviation” (z; ~ N;(0, %)) to it:
fel in 1964 with a strong focus on building systems capable of
solving difficult real-valued parameter optimization problems.
The natural representation was a vector of real-valued param- o' =muy(x) = (x1 + 21, -, Tn + 20).
eters primarily manipulated by mutation operators designed to
perturb them in useful ways. _

There are different kinds of ES’s. Next, we shall introducg- (4 A)-Evolution Strategy
the two of them considered in this paper. This second kind of ES is based on performing evolution on
a population of possiblen-dimensional solutions, obtaining
A. The (1+ 1)-Evolution Strategy A offspr_ing and selectirjg the basstfr(_)m them _to form the new

. . population. The offspring are obtained by first recombining a

The first ES algorithm, the so-called @& 1)-ES, was single or some parents in a singtedimensional vector of
based on only two individuals per generation, one parent agffiect variables, and then creating a new one from this by ap-
one descendent. The parent string is evolved by applyingsging mutations with identical or different standard deviations
mutation operator to each one of its components. The mutatigneach object variable. The main quality of the algorithm is
strength is determined by a valug a standard deviation jis apility to incorporate the most important parameters from
of a normally distributed random variable. This parameter {ge strategy (standard deviations and correlation coefficients of
associated to the parent and it is evolved in each process steﬁ(ﬂ%a”y distributed mutations) into the search process, such
well. If the evolution has been performed successfully, thgnat adaptation also takes place in the strategy parameters
the descendent substitutes the parent in the next generatggbordmg to the current local topology of the search space.
The process is iterated until a certain finishing condition igy;g property is calledself-adaptation[7].

satisfied. Therefore, each population individual consists of three vec-
The mutation operatomut has two componen_ts._ Thg ﬁrSttors, @ = (&, 7 &), representing, respectively, the object
one,mu,, evolves the value of the standard deviaionsing yariaple, the standard deviation and the rotation angle values.
Rechenberg’s 1/5-success rule The vectorz hasn dimensions, equal to the number of problem
variables. Then, dimensions of a vectof can be up to
n (in this case, each object variahlg, ¢ = 1, ---, n, has
associated a different step sizg), andn, can be up ta2 -
n—n,)-(ns—1)/2. The set of strategy parameters consisting
of standard deviations and rotation angles provides a complete
description of the generalized-dimensional distribution with
an expectation value vectdl. Anyway, n, may be set to
zero, indicating that the rotation angles are not considered.
whereyp is the relative frequency of successful mutations anthe more usual values for, andn, are the following [7]:
¢ is a constant determining the updating amountof (N, na) = {(1,0), (n, 0), (n,n-(n—1)/2), (2,n—1)}.

a
% ’

o =mu,(o) = o- e ifp<

if p>

o, if p=

L = Ut = Ut =
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TABLE IV
Fuzzy MODELING OF F» UsINGg EFS T2
PARAMETERS GENERATION REFINEMENT AVERAGE
ne, n, o0 Run SE}., SEL, SE;., SE], SES SERS

3 0 0 1 0.016275 0.004175
3 0 0 2 0.029530 0.004223 | 0.015290 0.001763 | 0.015954 0.003002
3 0 0 3 0.016298 0.003069
3 0 0.1 1 0.009134 0.011710
3 0 0.1 2 0.029530 0.004223 | 0.007656 0.024311 | 0.007453 0.018500
3 0 0.1 3 0.005569 0.019480
3 0 02 1 0.007190 0.027646
3 0 0.2 2 0.029530 0.004223 | 0.004297 0.023401 | 0.005142 0.025348
3 0 02 3 0.003940 0.024999
3 3 0 1 0.014823 0.006048
3 3 0 2 0.044170 0.058803 | 0.014322 0.004197 | 0.012686 0.004308
3 3 0 3 0.008913 0.002680
3 3 0.1 1 0.015229 0.009054
3 3 0.1 2 0.044170 0.058803 | 0.009706 0.003222 | 0.011458 0.005823
3 3 0.1 3 0.009441 0.005193
3 3 0.2 1 0.013696 0.006228
3 3 0.2 2 0.044170 0.058803 | 0.008015 0.008940 | 0.009331 0.006155
3 3 0.2 3 0.006284 0.003299
TABLE V
Fuzzy MODELING OF F3 UsINg EFS T2
PARAMETERS GENERATION REFINEMENT AVERAGE
n, ne 0 Run SE? . SEY, SE]., SEl,, SENS SEN?

27875.615 28289.871
46104.042 34909.113 | 28239.669 24423.539 | 28666.989 26569.314
29885.685 26994.533
29403.921 30013.451
46104.042 34909.113 | 30676.896 25773.236 | 29590.672 25.208.497
28691.201 19838.804
27798.847 22102.109
46104.042 34909.113 | 30608.802 23747.402 | 28246.468 23299.519
26331.756 24049.048

42419.597  35670.113
82619.757 56026.214 | 46582.660 24168.587 | 41613.676  27155.026
35838.773  21626.378
43105.207  44799.027
82619.757 56026.214 | 43585.875 32632.888 | 40557.106  35086.336
34980.242  27827.101
35922.062 28787.998
82619.757 56026.214 | 39166.980 21030.007 | 37788.360 24416.094
38276.042 23430.279
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The following algorithm generically describes the behavior 3) Mutate P/(¢) by adapting the\ individuals to obtain\
of the (u, A)-ES. The parametérstands for the number of the offspring forming P”(¢) in the way.

current generation an#(¢) for the population in it. a) Mutate the values of’ to obtain the array”’
1) Initialize and evaluate”(0). Initialize ¢ — 0. o , .
2) Recombing( of the 4 individuals of P(¢) A times, by & = (o1 -exp(z1 + 20), -+, oy, - €xP(2n, + 20))
using one of the following gene recombination mecha- 5
nisms:r € {0, 1, 2,3}, i=1,---,n+n, +ny wherez; ~ N(0,1/y/2-y/n"),i=1,---, ny and
(as,i; S~U({L, -, ¢}) equalVs 20 ~ N(0,1/v2-n"). _
r = 0, no recombination b) Mutate the values off’ to obtain the vectof”
¢ &//:(a1+217"'7a; +Znn)
> i ’
I — .
a; = =t r = 1, global intermediary wherez; ~ N(0, 0.08732), 4 :.1, c ) Mgy
¢ c) Mutate the values of” to obtain the vecto”
urasi+(1—w) ars S T~U{L -, (}) 1 ! 11 =i ' =11 o
r = 2, local intermediary = (2} +cor (57, d"), -+, @y, +corn (37, &)
Las,i; S~U{L, ---,¢}) r=23discrete

wherecor (5", &) is a normally distributed random
This operation generatesindividuals formingP’(t). vector of correlated values.
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4) EvaluateP”(t) and select the begtindividuals to form [16] J. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”

P(t+1). IEEE Trans. Syst., Man, Cyberrvol. 23, pp. 665-684, May 1993.

. [17] H. Nomura, L. Hayashi, and N. Wakami, “A self-tuning method of fuzzy

5) Set the counter of generations— ¢ + 1 control by descent method,” Rroc. 4th Int. Fuzzy Systems Assoc. World
6) If not (termination condition), then go to 2, else Stop. Congr., Brussels, Belgium, July 1991, pp. 155-158.

] J. Yen and W. Gillespie, “Integrating global and local evaluations for
fuzzy model identification using genetic algorithms,” Rmoc. 6th Int.
Fuzzy Systems Assoc. World Con§ao Paulo, Brazil, July 1995, pp.

For more information aboutu{ A\)-ES refer to [7].

121-124.
APPENDIX |l [19] M. A. Lee and R. Saloman, “Hybrid evolutionary algorithms for fuzzy
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