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Abstract

Fuzzy Rule-Based Systems have been succesfully applied to pattern clas-
sification problems. In this type of classification systems, the classical Fuzzy
Reasoning Method classifies a new example with the consequent of the rule
with the greatest degree of association. By using this reasoning method, we
do not consider the information provided by the other rules that are also
compatible (have also been fired) with this example.

In this paper we analyze this problem and propose to use FRMs that
combine the different rules that have been fired by a pattern. We describe
the behaviour of a general reasoning method and analyze two kinds of mod-
els, the first one using all the fired rules and the second one using partial
information due to the fact that the rules with a lower association degree are
not considered.

1 Introduction

Fuzzy Rule-Based Systems (FRBSs) combine the precision of the prediction with
a high level of interpretability, which makes them very suitable for designing Clas-
sification Systems in real problems.

As is well known in Fuzzy Rule Based Classification Systems (FRBCSs), the
classical Fuzzy Reasoning Method (FRM), maximum matching, classifies a new
example with the consequent of the rule with the greatest association degree ([1, 4,
10, 11, 13, 14]). Using this inference method, we lose the information provided by
the other fuzzy rules with different linguistic labels which also represent the value
in the pattern attribute, although probably to a lesser degree.
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On the other hand, it is well known that in other FRBSs as the fuzzy logic
controllers the best performance is obtained when we use defuzzification methods
that operate on the fuzzy subsets obtained from the fuzzy rules fired, taking in
consideration all of them for obtaining the output value via the defuzzification
method ([5]).

The aim of this paper is to study in depth this problem, under the idea of taking
into consideration the information available in FRBCSs for performing inference,
i.e., to consider all the fired rules for making decisions as it happens in fuzzy
logic controllers. We propose to use FRMs that combine the information given
by the different rules fired by a pattern. We describe the behaviour of a general
reasoning method for fuzzy rules with a class and a certainty degree associated to
the classification of that class in the consequent, and analyze two kinds of inference
models:

e the first one using all the information available, thus making all rules fired
by a pattern participate in the classification of such pattern, and

e the second one using partial information consisting on selecting the fired rules
to be considered in the inference process. The rules with a lower association
degree are not used. This selection is modeled through operators from the
OWA family [17, 18] under the fuzzy majority concept.

To achieve this aim, the paper is organized as follows. Section 2 describes the
FRBCS structure and the general model of FRMs for fuzzy rules with a class and
a certainty degree associated to the classification of that class in the consequent;
Section 3 presents the said two Inference models, FRMs integrating all fuzzy rules
and FRMs selecting a subset of fuzzy rules; Section 4 shows the results obtained
using them in the Pima database, considering Rule Bases generated by means
of two different learning methods. Finally, Section 5 introduces some concluding
remarks.

2 Fuzzy Rule-Based Classification Systems

In an FRBCS, two components are distinguished: 1) The Knowledge Base (KB),
composed of a Rule Base (RB) and a Data Base (DB), which is specific for a given
classification problem, and 2) an FRM.

The FRBCS design implies finding both components, and this process is carried
out through a supervised learning process, which starts with a set of correctly
classified examples (training examples) and whose ultimate objective is to design a
Classification System, assigning class labels to new examples with a minimum error.
Finally, the system performance on the test data is computed to gain an estimate
about the FRBCS real error. This process is described in Figure 1 and the structure
of the FRBCS components is briefly described in the following subsections.
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Figure 1: Design of an FRBCS (learning/classification)

2.1 Knowledge base

The KB is composed of the RB and the DB. In the specialized literature, several
rule types have been used. The difference among the three existing types of fuzzy
classification rules lies on the composition of the consequent: a class ([1, 10]), a
class and a certainty degree associated to the classification of that class ([11]),
and the certainty degree associated to the classification of each one of the possible
classes ([14]).

In [7], a genetic learning method was developed for RBs of each type mentioned,
and it was shown that the fuzzy rules having a class and a certainty degree in the
consequent represent better the knowledge over the corresponding space zone. In
this work, we will consider FRBCSs composed of an RB of the following type:

Ry : If 1 is A’f and ... and xp is A?V then Y is C; with rk
where:

® x1,...,xn are the selected features for the classification problem,

o Ak ... A% are linguistic labels used to discretize the continuous variable
domain,

e Y is the class C; € {Cy,...,Car} to which the example belongs, and

e 7F is the classification certainty degree in the class C; for an example belong-
ing to the fuzzy subspace defined by the rule antecedent.

The DB contains the definition of the fuzzy sets associated to the linguistic
terms used in the RB. This mapping is common for all the rules in the RB to
maintain the linguistic nature of the FRBCS.
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2.2 Fuzzy reasoning methods

An FRM is an inference procedure, which derives conclusions from a fuzzy rule set
and an example. The use of a reasoning method that combines the information
of the rules fired with the pattern to be classified can improve the generalization
capability of the Classification System.

In [6], we introduced a general reasoning model, that in this paper is partic-
ularized to an RB composed of rules with a class and its certainty degree in the
consequent. This model is described in the following.

In the classification of an example E* = (e},...,€e%), the RB R = {Ry,...,R1}
is divided into M subsets according to the class indicated by its consequent,

R=Rc, URc,U...URc,
and the next scheme is followed:

1. Compatibility degree. The compatibility degree of the antecedent with the
example is computed for all the rules in the RB, applying a t-norm ([2, 9]) over
the membership degree of the values of the example (e?) to the corresponding
fuzzy subsets.

RF(EY) = T(par(el)s- .- pax (ey)), k=1,...,L
2. Association degree. The association degree of the example E* with the M
classes is computed according to each rule in the RB.

bf = h(RMEY),*), k=1,...,|Rc,
i=1,...,M

3. Weighting function. The values obtained are weighted by means of a
function g. An expression which promotes the highest values and penalizes
the smallest ones seems to be the most adequate choice for this function.

Bf =g(bf), k=1,...,|Rq,|
i=1,...,M

4. Pattern classification soundness degree for all classes. To compute
this value, an aggregation operator is used ([2, 9]) which combines, for each
class, the positive association degrees computed in the previous step

Y; = f(BF, k=1,...,|R¢,| and B* >0),
i=1,...,M

with f being an aggregation operator that returns a value between the min-
imum and the maximum.

It is clear that if we select f as the maximum operator, we have the classical
FRM.
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5. Classification. A decision function F' is applied to the classification degrees
of the example. This function will return the class label corresponding to the
maximum value.

Cr=FY,...,Yy) such that ¥, = max Yj

j=1,..

3 Two Kinds of Inference Models

The classical FRM, called mazimum matching, considers the rule with the highest
association degree. It classifies the pattern with the class of this rule. Graphically,
this method could be seen as shown in Figure 2, where the rule Ry would show the
highest association degree.

Figure 2: Fuzzy reasoning method that uses only the winner rule

The expression of function fy represents the classical FRM,

fola1,...,as) = max a;
i=1,...,s
with aq,...,as being the values to aggregate for an example E* with respect to a

class Cj.

By using this reasoning method, we do not consider the information provided
by the other rules that are also compatible (have also been fired) with this example.
We propose to use FRMs that combine the information given by the different rules
fired by a pattern.

According to the general reasoning model, we propose two kinds of inference
models. The difference is based on the use of the function f(-) in step 4, and we
distinguish between FRMs integrating all fuzzy rules and FRMs selecting a subset
of fuzzy rules (the classical FRM is a particular case of this group in which this
subset is composed of a single rule, the one with the highest association degree).
They are analysed in the two following subsections.

A common proposal for some of the operators implied in the general model of
reasoning is described in Table 1 ([6]).
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1. Compatibility degree 3. Weighting functions
RF(E') = mini=1,.. v iy, () gi(z) =z, VYxel0,1]

2. Association degree (@) = z?, ifr<05
h(RF(EY),r*) = R*(E*) - o* PO = Va, ifz>05

Table 1: Proposals for the general model of reasoning operators

3.1 FRMs integrating all fuzzy rules

The first group of FRMs being an alternative to the classical one is formed by those
that use all fired fuzzy rules for deriving conclusions from a set of fuzzy if-then rules
and a pattern. This idea is represented graphically in Figure 3.

R2

Rk

R

Figure 3: FRM integrating all fuzzy rules

Some proposals for the function f in FRBCSs belonging to this family are
described in Table 2 ([6]).

4. Aggregation functions

Normalized Sums Sowa and-like
fl(al, . ,as) = % f4(a1, ce ,as) = Q- Amin + (1 - Oé)% 25:1 @i
flomas = MaXj=1 . M D i q Qi a€[0,1], amin =min{ai,...,as}

Sowa or-like

Arithmetic Mean s
f5(a1, A ,as) = Q- Amaz + (1 - OC)% Zi:l Qi

s .
f2(a17'~'7a5) = M

s a€10,1], amaz = maz{a,...,as}
Quasiarithmetic Mean Badd
f3(a1 RN as) = H_l %Zs: H(az) S oo tt
oo S IPREL @], gee? o
with a1, .. .,as being the values to aggregate for an example E' with respect to a class C;

Table 2: Different proposals for aggregating the association degrees

The function f; accumulates the association degree between the pattern and
the class for all the rules in the RB. This sum is then divided by the maximun sum
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for all classes, to obtain a normalized value. Bardossy et al. studied this FRM
as a method for combining fuzzy rule responses, called additive combination ([3]).
This operator was also presented by Chi et al. in [4] like a defuzzification method
to produce a classification result for an FRBCSs called mazimum accumulated
matching. Ishibuchi et al. used it in [12] as well, where the inference result is given
by the voting of the fuzzy if-then rules that are compatible with the pattern, it was
called fuzzy reasoning method based on the maximum vote.

The arithmetic (f2) and quasiarithmetic (f3) means are two operators with
a compensation degree between the minimum and the maximum that combine
the information given by each local classifier and obtain an average degree that
considers the quality of the rules in the inference process. The functions f; and
/5 (Sowa and-like and Sowa or-like operators) give us a parameterized aggregation
value lying between the minimum and the maximum as well. The function fg has
not only a behaviour between the same extents, but also considers a weighting of
the values to aggregate by its definition, as function f3.

3.2 FRMs selecting a subset of fuzzy rules

In the general inference model, the functions proposed as aggregation operators
(Table 2) consider the information given by all the rules compatible with the ex-
ample. This behaviour could mean that, in large RBs, many rules presenting a
low association degree between the example and the class could have more influ-
ence than those having a higher degree, leading the system towards a mistaken
classification.

The incorporation of an FRM that considers only the information provided by
the most suitable rule subset for the example in each new prediction may improve
the system performance. This selection can be carried out by means of operators
belonging to the OWA family under the fuzzy majority concept.

The OWA operators (Ordered Weighted Averaging) ([17, 18]) constitute an
aggregation operator class completely covering the interval between the minimum
and the maximum operators.

Their most important characteristic is the use of weights in the values to be
aggregated, which are not associated to their particular values, but rather to their
ordered position. This property allows us to associate, in the inference process,
weights to the association degrees of the example, in an ordered way, with different
rules, and therefore to enhance the most predictive rules for that example.

To define the OWA operator behaviour in the inference process environment, we
consider that (aq,...,as) are the values to be aggregated in the process in which the
classification degree of an example in a class C; is obtained. Let W = (w1, ..., ws)
be a vector of weights verifying that



328 O. Corddn, M. J. del Jesus & F. Herrera

The OWA aggregation operation related to the vector of weights W is the function
fr(ar, ... a) = Zwi - b;
i—1

where (b1,...,bs) is a permutation of the vector (a1, ...,as) in which the elements
are sorted in a decreasing way.

The parameterized behaviour of the OWA operator class is determined by the
vector of weights W, which could be basically obtained in two different ways: the
first one implies the use of a learning mechanism, considering a set of examples,
their arguments and the aggregated values, and trying to fit the weights to this data
collection through any kind of regression model. The second choice, on which this
research is centred, is based on giving a semantic content to the weights. To carry
out this task, they could be computed using linguistic quantifiers, which represent
the fuzzy majority concept.

The fuzzy majority is a relaxed concept of majority, commonly represented by
means of a fuzzy quantifier ([19]), that constitutes an attempt to establish a bridge
between the formal systems and the human discourse, as well as providing a more
flexible knowledge representation tool, and whose semantic can be represented by
a fuzzy subset.

We will work using non-decreasing proportional quantifiers @, defined in such
a way that for any r € [0,1], Q(r) shows the degree to which the proportion r
is compatible with the meaning represented by the quantifier. The membership
function of a non-decreasing proportional quantifier can be defined as

0, ifr<a
Q(r) = = fa<r<b
1, ifr>b

with a,b,r € [0,1],
A possible way to compute the OWA weights using a non-decreasing propor-
tional fuzzy quantifier @ is as follows ([17, 18]):

wi:{ QL) -Q (%), i=2,..08
Q(3), i=1
with s being the number of values to be aggregated.

The OWA operator and this way of computing the array of related weights
allow us to determine the proportion of rules, which are more compatible with
the example, that we want to be involved in the inference process. To do so, we
only have to specify the parameters a and b, which define the fuzzy quantifier, and
compute the array of weights for the aggregation process, in which this quantifier
is underlying. In this way, we are defining an inference method in which not all
the rules are involved, but the “majority”, and this concept of fuzzy majority is
represented by a fuzzy quantifier. The resulting inference model shows similarities
with classification schemes frequently used by human experts who, in many cases,
neither classify according to only one rule (classical FRM), nor according to all of
them, but decide depending on the majority of the rules established.
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This idea is represented graphically in Figure 4.

Figure 4: FRM selecting a subset of fuzzy rules

4 Experiments

To analyze the behaviour of the proposed methods, we have generated RBs for the
Pima example base, with two different supervised learning methods:

e the extension of Wang and Mendel’s algorithm ([15]) to classification ([4]),
and

e the genetic learning method developed by the authors in [7].

Pima is a set of 768 cases involving the diagnosis of diabetes where eight vari-
ables are taken into account, with two possible classes (having or not having the
complaint).

To estimate the real error made by the FRBCS we have used the random
resampling method ([16]) with five random partitions of the example base into
training and test examples (70 % and 30 %, respectively). The results we show are
means of correct classification percentages for the five training and test sets (noted
as Tra and Test, respectively) and the number of rules (described by NR).

In the following tables, the FRBCS obtained from the extension of Wang and
Mendel’s algorithm will be noted as FRBCS-T1, and those generated by the genetic
learning method as FRBCS-T2. In the same way, FRMs will be described with a
numbered function corresponding to the aggregation function which they are based
on, according to the notation shown in Table 2 and in the previous subsection.
When the FRM includes the weighting function go in its definition, we will label it
with a W. When the function used is g1, it will be no labeled.
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In Table 3, the best results obtained for the Pima example base are shown, using
an FRBCS composed of an RB generated with the extension of Wang and Mendel’s
algorithm. From the FRMs analyzed (FRMs presented in Table 2 and FRMs based
in OWA operators), we have selected those that have the best behaviour for the
problem considering this RB ([6, 8]).

Table 4 shows the best results from the same experiments with RBs obtained
by the genetic learning method ([7, 8]).

[ FRM [ Tra Test NR | [FRM [ Tra Test NR
fo 85.81 73.23 4202 fo 81.81 7406 1474
T3 (p=20) 85.78 73.43 4202 i W 8327 7581 197.6
f5 (a=0.9) 85.81 7322 420.2 f3 (p=20) W 78.14 7417 154.8
fs (p=10) 85.85 73.53 420.2 f5 a=0.7 80.87 74.68 160.4
J7 (a=0, b=0.3) | 83.97 73.12 420.2 fr (a=0, b=0.3) 82421 7620 1852
f7 (a=0, b=0.5) | 83.37 7312 420.2 fr (a=0,b=0.3) W | 83.86 75.82 177

Table 3: Pima. FRBCS-T1 Table 4: Pima. FRBCS-T2

The FRMs present different behaviour for every learning method. In both cases,
the best result is obtained by an FRM beloging to one of the proposals. We may
conclude that the new reasoning methods improve the performance of the FRBCSs.

We should point out that the genetic learning process includes a multiselection
process that gives several KB definitions with the minimum subsets of rules that
cooperate with the FRMs. Due to this multiselection process, the number of rules
is lesser than the number of rules obtained by the other learning method. This fact
allows this learning method to present better results than the extension of Wang
and Mendel’s algorithm.

The results of all the experiments developed with the FRMs are shown in [6, 7,
8].

5 Concluding Remarks

In this paper we have presented the use of FRMs that combine the different rules
that have been fired by a pattern in FRBCSs. We have described the behaviour
of a general reasoning model for fuzzy rules with a class and a certainty degree
associated to the classification of that class in the consequent and two kinds of
models have been analyzed, the first one using all the fired rules and the second
one using partial information since the rules with a lower association degree are
not considered.

Finally, we must point out that some additional studies are necessary for analyz-
ing all the possibilities of the new FRMs for increasing the generalisation capability
of the FRBCSs. They are those associated to: the use of different weighting func-
tions, the use of selection criteria for eliminating rules with a low association degree,
the use of alternative methods for getting the weights in the OWA operator, and
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the possible fusion of both approaches integrating an aggregation operator acting
over the selected set of rules.
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