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Aggregation Operators for
Linguistic Weighted Information

Francisco Herrera and Enrique Herrera-Viedma

Abstract—The aim of this paper is to model the processes of the consensus models in group decision making [14], [16]; fuzzy
aggregation of weighted information in a linguistic framework. pattern matching [9]; and knowledge systems [21].
Three aggregation operators of weighted linguistic information e \way of modeling the first aspect is by assigning a
are presented: linguistic weighted disjunction (LWD) operator, - - - Lo
linguistic weighted conjunction (LWC) operator, and linguistic weight _to _each medical _eXpert' The_‘ weights a_re quantitative
weighted averaging (LWA) operator. A study of their axiomatics Or qualitative values, which may be interpreted in at least two

is presented to demonstrate their rational aggregation. different ways [9], [10].
Index Terms—Aggregation operators, fuzzy linguistic quanti- 1) Each medical expert is viewed as a subgroup and the
fier, linguistic modeling. weight reflects the relative size of this subgroup.

2) The weight may reflect the relevance of the medical
expert in the group. This level of relevance may act as

a constraint on the opinions that a medical expert may
ME situations present precise and rigorous quantitative  express.

spects as well as fuzzy and unrigorous qualitative aspegle yway of dealing with the second aspect, in general, is to use
Therefore, phenomena must be defined using quantitative CQfaqate operators for combining information, usually called
cepts as v_veII as qualltgtlve concepts. Dealing with quantitatiy&ormation aggregation operators, before reaching a final
concepts is easy, and it may be done by means of the numerigalision or action. Issues of weighted aggregation operators
variables. The problem is how to deal with qualitative consae peen studied in a quantitative setting in [2], [8], [9],

cepts. The use of fuz;y set theory, proposed and d(_aveloprgg], [21], [25], [27], and [32], and in a qualitative setting in
by Zadeh [34], has given very good results modeling t ] and [31]-[33].

qualitative aspects [35]. Fuzzy set theory provides a flexible |, short, we can find situations where the information

framework, where it is possible t_olsatisfa_ctorily solve MaYandled is imprecise by nature and is not equally impor-
of the obstacles of lack of precision. It is an approximaignt and where some appropriate aggregation operators of
technique in its nature, which represents the qualitative aspgi§gnhted information are required. According to this idea,
in qualitative terms (linguistic terms) by means lofguistic ;. this paper, we will present three aggregation operators

variables that is, variables whose values are not numbers bt jinguistictweighted information (linguistic variables for
words or sentences in a natural or artificial language. The ressing experts' opinions and linguistic weights on the

of words or sentences rather than numbers is, in general, a I@?ﬁerts)

specific, more flgxple, direct, I’ealIS'[.IC, and gdequate form to1 Linguistic Weighted Disjunction (LWD)
express the qualitative aspects and is very widespread, as m Lo . . ;
. ) Linguistic Weighted Conjunction (LWCand
be seen in [1], [4], [6], [13], [22}-[24], [31], [33]. 3) Linguistic Weighted Averaging (LWA)
On the other hand, we can find situations where the infor- 9 ) 9 . ging
mation handled is not equally important, i.e., the frameworkn€y are defined usinghe LOWA operator{12], [15], the

is heterogeneous. For example, when a group of medi¥4fighted minimum and maximum operatd8j, two fami-
experts expresses its opinions on the possible illness thaf€§ Of connectives [11], and the concept foizzy majority
patient presents, on the one hand, its diagnostics must FeRresented by &uzzy linguistic quantifie{36]. In order to

be considered with equal relevance, given that, there will @gmonstrate the good performance of these operators, we
medical experts with more experience or with more study yeataa!l study some postulated axiomatics and properties of an
than others, and therefore, all the opinions shall not be equdlijUitively acceptable weighted aggregation operator.

reliable; but, on the other hand, a final and global diagnostic'" 0rder to do so, the paper is structured as follows.
must be made using the initial and individual diagnosticS€ction Il shows the considered linguistic framework and the
This heterogeneous framework has been considered by varibGYVA operator. Section Ill presents the linguistic weighted

authors in opinions aggregation operators [2], [10], [20], [32Eggre_gation operators and some (_)f their properties. Section I_V
contains an example of the application of these operators in

decision making for nonhomogeneous groups. Finally, some
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The authors are with the Department of Computer Science and Artificial

Intelligence, University of Granada, 18071 Granada, Spain. 1The word “linguistic” is related to the concept of “linguistic variables” in
Publisher Item Identifier S 1083-4427(97)05003-0. a formal way, and it does not imply some connections to linguistics.

I. INTRODUCTION

1083-4427/97$10.001 1997 IEEE



HERRERA AND HERRERA-VIEDMA: LINGUISTIC WEIGHTED INFORMATION 647

LEVEL 1 _|
HIGH MEDIUM LOW
‘ﬁ _ . _ e
LEVEL2‘
PERFECT VERY-HIGH HIGH MEDIUM LOW VERY-LOW NONE
| i
1 .
|
LEVEL3‘ i
fuzzy sets on [0,0.5] fuzzy setapprox.0.5  fuzzy sets on [0.5.1]
| ‘ |
LEVEH;‘
Real numbers on [0.0.5] 0.5 Real numbers  on [0.5.1]
Fig. 1. Hierarchy of labels.
Il. PRELIMINARIES of a grammay for generating the names of values Hf and

Here, before defining our aggregation operators, we shifl is a sema_ntic_rule for associating its meaning with each
present the work hypothesis. We will specify a concretd: #(X), which is a fuzzy subset df/.

linguistic model to represent the information and the LOwA Usually, depending on the problem domain, an appropriate
operator to aggregate linguistic information. linguistic term set is chosen and used to describe the vague

or imprecise knowledge. The elements in the term set will
determine the granularity of the uncertainty, that is the level

A. Linguistic Approach of distinction among different countings of uncertainty. In [1]
Usually, in a quantitative setting, the information is exthe use of term sets with an odd cardinal was studied; the mid

pressed by means of numerical values. However, when M represents an assess of “approximately 0.5 the rest of
work in a qualitative setting, that is, with vague or imprecis&® terms are placed symmetrically around it, and the limit of
knowledge, the information cannot be estimated with an ex4t@nularity 11 or no more than 13.
numerical value. In that case, a more realistic approach mayor instance, Fig. 1 shows a hierarchical structure of lin-
be to use linguistic assessments instead of numerical val@kstic values or labels. Clearly, level 1 provides a granularity
[35], that is, to suppose that the variables which participag®ntaining three labels, level 2 a granularity with nine labels,
in the problem are assessed by means of linguistic terms [g!nd of course, different granularity levels could be presented.
[6], [12], [13], [22], [31], [35]. This approach is appropriateln fact, in Fig. 1, level 4 presents the finest granularity in a
for a lot of problems, since it allows a representation of tHéecision process—the numerical values.
information in a more direct and adequate form if we are On the other hand, the semantic of the elements in the term
unable to express it with precision. set is given by fuzzy numbers defined in the [0, 1] interval,
A linguistic variable differs from a numerical one in that itsvhich are described by membership functions. Because the
values are not numbers, but words or sentences in a natlirguistic assessments are just approximate ones given by the
or artificial language. Since words, in general, are less preciggividuals, we can consider that linear trapezoidal member-
than numbers, the concept of a linguistic variable serves tBlip functions are good enough to capture the vagueness of
purpose of providing a means of approximated characterizatitv@se linguistic assessments, since it may be impossible or
of phenomena, which are too complex, or too ill-defined, téhnecessary to obtain more accurate values. This represen-
be amenable to their description in conventional quantitatiVation is achieved by the four-tuple:;, b;, ov;, 3;). The first
terms. two parameters indicate the interval in which the membership
Definition [35]: A linguistic variable is characterized by avalue is 1; the third and fourth parameters indicate the left and
quintuple(H,T(H),U,G,M). H is the name of the variable; right width. Formally speaking, it seems difficult to accept that
T(H) (or simply T) denotes the term set d¥, i.e., the set all individuals should agree on the same membership function
of names of linguistic values aoff, with each value being a associated to linguistic terms, and therefore, there are not any
fuzzy variable denoted generically by and ranging across universality distribution concepts.
a universe of discours& which is associated with the base Itis well known and accepted that the tuning of membership
variableu. GG is a syntactic rulewhich usually takes the form functions is a crucial issue in control processes with linguistic
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rules. In our context, we consider an environment whetesed latter in the definition of the three weighted operators

individuals can discriminate perfectly the same term set undsfrcombination of linguistic values by direct computation that

a similar conception, taking into account that the concepte propose here.

of a linguistic variable serves the purpose of providing a The linguistic ordered weighted averagingOWA) opera-

means of approximated characterization of imprecise preféor, defined in [12] and [15], is based on thelered weighted

ence information. Moreover, in our development, we do nawveraging(OWA) operator defined by Yager [28], and on the

use the membership functions for aggregating the labels; wenvex combination of linguistic labetkefined by Delgadet

define aggregation operators for linguistic labels by direat. [5].

computation on labels. Definition 1: Let A = {ay,---,a,} be a set of labels to
be aggregated, then the LOWA operator,is defined as

B. Characterization of the Linguistic Label Set (a )
. . . 1L, Um
Accordingly, to establish what kind of label set to use ought =W BT = O bk =1, m}

to be the first priority. Then, le¥ = {s;},i €« H = {0,---,T}

be a finite and totally ordered term set on [0,1] in the usual ~=w1 @b & (1 —w1) © C" HBy, by, h =2,--+,m}
sense [1], [4]. Any labels;, represents a possible value for %vhereW = [wy, -+, wy], is a weighting vector, such that,

linguistic variable, that is, a vague property or constraint on
[0,1]. We consider a term sef, as in [1] with its semantic 1) wi € [0,1] and,
given by linear trapezoidal membership functions. Moreover, 2) Yiw; = 1.

it must have the following characteristics: B = wn /X5 wi,h = 2,---,m,and B = {by,--- by} is a
1) the set is ordereds; > s; if i > j: vector associated t@l, such that,
2) there is the negation operator: = s; such that
) here s the negation operator: Neg = »; B = o(4) = {as(a), o}
3) maximization operator: Max;, s;) = s; if s; > s;; where,
4) minimization operator: Mifs;, s;) = s; if s; <'s5.
For example, this is the case of the following term set of Go(j) < Gg(iy Vi<,

the level 2 of the Fig. 1. with o being a permutation over the set of labels C™ is

P =Perfect= (1,1, .25,0) the convex combination operator of labels and ifm = 2,
VH =\Very_High = (.75, .75, .15, .25) then it is defined as

H =High = (.6,.6,.1,.15) C*{w;,b;,i = 1,2}

M =Medium= (.5,.5,.1,.1) =w; ©s;®(1—w)Osi = sp,85,5

L =Low = (4,.4,.15,.1) €5,(j>1)
VL =Very_Low = (.25,.25,.25,.15) such that

N =None=(0,0,0,.25).
( ) k = min{T, i+ roundw; - (j — )}

C. The LOWA Operator where “round” is the usual round operation, dnd= s;, by =
Assuming the proposed linguistic approach, two main ap:,

proaches can be found in order to aggregate linguistic valuesit w; = 1andw; = 0 with i # 5 Vi, then the convex
the first acts by direct computation on labels [5], and th&mbination is defined
second uses the associated membership functions [1], [22],
[35]. Cm{wi,bi,iz 1,---,m}:bj.
Most available techniques belong to the latter. However,
the final results of those methods are fuzzy sets which do!n [15], we demonstrated that the LOWA operator presents

not correspond to any label in the original term set. If ongPMe €vidence of rational aggregation, because, on the one
finally wants to have a label, then a “linguistic approximation®@nd. it verifies the following properties:
is needed [1], [22], [23], [35]. The process of linguistic * the LOWA operator isincreasing monotonousiith re-
approximation consists of finding a label whose meaning is spect to the argument values;
the same or the closest (according to some metric) to the® the LOWA operator icommutative and
meaning of an unlabeled membership function generated by the LOWA operator is arforand” operator.
some computational model. And on the other hand, it verifies these axiomarestricted

In this context, to manipulate the linguistic information, welomain unanimity or idempotengepositive association of
shall work with operators for combining the linguistic valuesocial and individual valuesndependence of irrelevant alter-
(nonweighted and weighted) by direct computation on labelsatives citizen sovereigntyand neutrality.
Specifically, in this section we shall present the nonweightedHere, we present an extension of the LOWA operator, an
operator of combination of the linguistic values based on direiciverse LOWA operatotthat will be used in the definition of
computation, the LOWA operator [12], [15], which will besome weighted operators.
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0 0.3 0.8 x 0 0.5 x 0 0.5 1 X
"Most” "At least half” "As many as possible”

Fig. 2. Proportional fuzzy linguistic quantifiers.

Definition 2: An  I-LOWA (Inverse-Linguistic Ordered majority rule by means of dinguistic quantifierto derive
Weighted Averaging) operatorg!, is a type of LOWA various solutions concepts for group decision making problems

operator, in which in a numerical setting. Here, we shall work in a similar
7 way, but in the field of quantifier-guided aggregations. Before
B =o(4) =H{as), a0} showing how do so, we will introduce the concept of fuzzy
where, linguistic quantifier.
2) Fuzzy Linguistic QuantifierHuman discourse is very
Uiy S o) Vi< g rich and diverse in its quantifiers, e.gbout 5, almost all,

a few, many, most, as many as possible, nearly half, at least
half. Zadeh, using Fuzzy logic, introduced the concept of
CQ{w“ bi,i=1,2} linguistic quantifierto represent the large number of possible
quantifiers [36]. Zadeh suggested that the semantic of a
linguistic quantifier can be captured by using fuzzy subsets

If m = 2, then it is defined as

=w Os;®(l—w) s = sk, S5,%

€5,(j <9) for its representation. He distinguished between two types
such that of linguistic quantifiers:absoluteand proportional. Absolute
_ . o guantifiers are used to represent amounts that are absolute in
k = min{T, ¢+ roundw: - (j —¢))}. nature such aabout 2or more than 5 These absolute linguistic

If the definition of the LOWA operator is compared to théquanuﬁers are closely related to. the concep§ of the counting
e o : or number of elements. Proportional quantifiers are used to
definition of the I-LOWA operator, it is possible to observe O

. . .~ Trepresent amounts that are relative in nature such as such as
that in the first one the large values are more estimate

than low values, unlike in the second one. Therefore, fromost, at least halfA proportional quantifier can be represented

this viewpoint, the LOWA operator presents characteristicsyafuzzy subse® in the unit interval, [0,1], such that for any

. : . 7 € [0,1], Q(r) indicates the degree to which the proportion
belonging to the maximum aggregation operator, and tt|]secompatible with the meaning of the quantifier it represents.

I—ITO_WA operator presents characfnenstlcs. b(_alongmg to theA proportional quantifier(: [0, 1] — [0, 1], satisfies
minimum aggregation operator. This peculiarity will be used

later in the definition of one of our weighted aggregation Q(0) =0, and Ir €0, 1] such thaty(r) = 1.
operators. _ - o

Clearly, an I-LOWA operator also verifies the previously A nondecreasing quantifier satisfies
mentioned properties and axioms of the LOWA qurator. Va,bif a>bthenQ(a) > Q(b).

1) The LOWA Operator Guided by Fuzzy Majorititow
to calculate the weighting vector of the LOWA operal®t is The membership function of a nondecreasing proportional
a basic question. Yager proposed in [28] and [30] two waygiantifier can be represented as

to do so. The first approach is to use some kind of learning 0 if r<a

mechanism using sample data; the second approach is to try to Qr) = "0 a<y <b

give some semantics or meaning to the weights. We consider {;_ a i ; 5
T2

the latter approach, because our idea is to show the concept of

fuzzy majorityby means of the weighting vector in the LOWAwith a,b,r € [0,1].

operator aggregations. Some examples of proportional quantifiers are shown in
Traditionally, the majority is defined as a threshold numbéiig. 2, where the parameter§;,b) are (0.3, 0.8), (0, 0.5),

of individuals. Fuzzy majority is a soft majority concept whictand (0.5, 1), respectively.

is manipulated via a fuzzy logic based calculus of linguistically In [28] and [30], Yager suggested an interesting way to

quantified propositions. In [17], Kacprzyk specified fuzzgompute the weights of the OWA aggregation operator using
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1 —— lll. A GGREGATION OPERATORS FOR
LINGUISTIC WEIGHTED INFORMATION

In this section, the following three aggregation operators for
linguistic weighted information based on the direct computa-
tion on labels are presented:

1) Linguistic Weighted DisjunctiofLWD);

2) Linguistic Weighted Conjunctio(LWC); and

3) Linguistic Weighted Averagin.WA).

Following Cholewa'’s studies [2] and Montero’s aggregation
model [20], if we want to aggregate weighted information we
have to define two aggregations as follows:

Fig. 3. Fuzzy linguistic quantifier “All.” « the aggregation of importance degrees (weights) of infor-
mation; and

1 —— « the aggregation of weighted information (information

combined with weights).

The first aspect consists of obtaining a collective importance
degree from individual importance degrees that characterizes
the final result of aggregation operator. In the three operators,
as the importance degrees are linguistic values, this is solved
using the LOWA operator guided by the concept of fuzzy
majority.

The aggregation of weighted information involves the trans-
formation of the weighted information under the importance
0 1/m x degrees. The transformation form depends upon the type of
aggregation of weighted information being performed [32]. In
[26] and [27], Yager discussed the effect of the importance
degrees in the types of aggregation “MAX” and “MIN” and
linguistic quantifiers, which, in the case of a nondecreasiRgggested a class of functions for importance transformation

0 1 X

Fig. 4. Fuzzy linguistic quantifiers “At least..”

proportional quantifiel?, is given by the expression in both types of aggregation. For MIN type aggregation he
s . L suggested a family of-conorms acting on the weighted
wi = Q(i/n) = Qi = 1)/n), t=1,--m information and the negation of the weights, which presents the

When a fuzzy linguistic quantifief) is used to compute the nonincreasing monotonic property in the weights. For MAX

weights of LOWA operatot, it is symbolized byg,. There- YP€ aggregation, he suggested a family taforms acting
fore, when a fuzzy linguistic quantifie® is used to compute " weighted information and the weight, which presents the

the weights of the I-LOWA operatop!, it is symbolized by nondecreasing monotonic property in the weights. In [32],
(%_ Yager proposed a general specification of the requirements that

Clearly, depending on the fuzzy linguistic quantifier that i@ny importance transformation function must satisfy for any
chosen to calculate the weights, it is possible to observe @€ of the aggregation operator. The functigmust have

following properties: the following properties:
1) if the fuzzy linguistic quantifier i4All" , as is shown in 1) if a>b theng(w,a) > g(w,b);
Fig. 3, whose membership function is 2) g(w,a) is monotone inw;
) 3) ¢(0,a) = ID; and
o ={0 1o ) i =

with a,b € [0,1] expressing the satisfaction with regards to

then ¢o(ar, - +,a,) = MIN(as, --,a,) and a criterionw € [0,1] the weight associated to the criterion,

d)é(al, s am) = MAX (a1, am); and “ID” an identity element, which is such that if we add it

2) if the fuzzy linguistic quantifier iSAt least m” (m € to our aggregations it does not change the aggregated value.
N), asis shown in Fig. 4, whose membership function iSondition one means that the functignis monotonically
nondecreasing in the second argument, that is, if the satis-

Qu(r) = { ﬁ if r<(1/m),r€l0,1] facf[ion vyith regards to the criteria is increased thg .overall
it 7> (1/m) satisfaction should not decrease. The second condition may
be viewed as a requirement that the effect of the importance
then ¢gm(ar, - -,am) = MAX(a1,---,a,) and be consistent. It does not specify whetlgeis monotonically
Pomar, -+ am) = MIN(ay, - -+, am). nonincreasing or nondecreasing in the first argument, but must

Where “MAX" stands for maximum operatorand “MIN” be one of these. It should be noted that conditions three and
stands forminimum operatar four actually determine the type of monotonicity obtained from
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two. If a > ID, the g(w, ) is monotonically nondecreasing inand the importance degree of the opinion of the grayp,
w, while if a < ID, then it is monotonically nonincreasing. Thels obtained as

third condition is a manifestation of the imperative that zero

importance items do not affect the aggregation process. The ce = dQlers s tm)-

final condition is essentially a boundary condition which states pefinjtion 2: The aggregation of the set of weighted in-
that the assumption of all importances equal to one effectivedysidual opinions, {(a;,c1), - -, (am, ) according to the

is like not including importances at all [32]. _ Linguistic Weighted Conjunction (LWC) operator is defined
Considering the aforementioned ideas and assuming a Ij¥

guistic framework, that is a label sefy, to express the
information and a label set], to express the weights, we (cg,ap) = LWC[(c1,a1),- -, (Cm; am)]
ropose using the following aggregations of weighted informa- - . .
Eonpfor the tr?ree aggregagt’ior?%pgrators, with tgeir respec:ti\%here the opinion of the group.; is obtained as
aggregation operators and transformation functions. ap = MIN;=1....., MAX (Ned(¢;), a;),
e Linguistic weighted disjunction
a) aggregation operator: MAX linguistic aggregation;
b) transformation functiony = MIN (w, a).

and the importance degree of the opinion of the gratyp,
is obtained as

« Linguistic weighted conjunction ce = ¢glcr, -+ cm)-
a) aggregation operator: MIN linguistic aggregation;  Remark: It is clear that both definitions always require the
b) Transformation functiony = MAX (Neg(w), a). condition § = L.
 Linguistic weighted averaging In the definition of the LWD operator, the transformation
a) aggregation operator: LOWA or | - LOWA; function is the “MIN” function, that is, one of thé-norms
b) Transformation functiony . oway = LC ™ (w, a) or proposed by Yager in [26] and [27] for the "MAX" type
ga-rowa) = LI (w, a). aggregation operator, but defined linguistically, and satisfies

the properties proposed for any [32]. Something similar
gappens in the definition of the LWC operator. In both

: . . oo . tors it should be possible to choose any other function
defined by Dubois and Prade in a possibility theory setting [ pera . .
[8]. The latter is based on the combination of the LOWA and f the families proposed by Yager in [26] and [27], but

LOWA operator with severalinguistic conjunction functions always defined linguistically. In any case, _bOth operators try
(LC™) and severalinguistic implication functions(L™), to r(_aduce t_he effect of elements with I(?W |mp(_)rtance. To do
respectively. Therefore, the LWA operator is a type of fuzzS/O’ in the f|r§t operator, the eIements with low |mport§1nce are
majority guided weighted aggregation operator. ransformed into small values and in the second one into large

In the next subsections, we present each aggregation oﬁ’@l’l-qes' . -
ator of linguistic weighted information in detail. In order to Sincec; EXpresses the deg_rge of importance of the opinion
complete the presentation, in the final subsection we proviageXpertei in the overal! Qplnlon, then ) )
some evidence of the rationality of their aggregation, checking® Whenc: = sz, the opinion ofe; has a direct influence on
some of the axioms that they verify. We shall demonstrate that the acceptance (rejection) of alternativg
all the operators proposed combine appropriately the weighted Whenc; = so, the opinion ofe; has no influence on the
information in such a way that the final aggregation is the acceptance (rejection) of alternative.

“best” representation of the overall individual information. ~ As the LOWA operator,¢, is an “orand” operator, the
importance degree of opinion of the groups, verifies the
following expression:

The first two aggregations are basedaamonical generaliza-
tions of weighted disjunction and conjunction of fuzzy goal

A. Linguistic Weighted Disjunction and Conjunction

Let {(c1,a1),- -, (cm,am)} be a set of weighted opinions ~ MIN(c1, ¢z, ¢) < cg S MAX (e1,¢2,++, Cm)-
expressed by a set of experfs,= {¢1,---, e}, to evaluate
an alternativez;, wherea; shows the opinion of exper;, B. Linguistic Weighted Averaging
assessed linguistically on the label s€fa; € 5, andc; the  Before defining the linguistic weighted aggregation (LWA)
relevance degree of expetf, assessed linguistically on theoperator, and assumin§ = L, consider the following two

label setL,¢; € L. . . ~ families of connectives:
Definition 1: The aggregation of the set of weighted indi- 1) Linguistic conjunction functions (LC™)

\Iil.dual. ?Pl%ohsgt{(glbql_),---t_, (cmlv_\‘/‘\flg)}v acctord_ln% tfc_) tk:je The linguistic conjunction functions that we shall
inguistic Weighted Disjunction ( ) operator is defined as use are the following-norms, which are monotonically

nondecreasing in the weights and satisfy the properties
required for any transformation function, [11]:

a) the classical MIN operator

LCT (w,a) = MIN(w, a);

(CE7 aE) = LWD[(Clv al)v ) (cmv am)]
where the opinion of the group,g, is obtained as

ap = MAXizlj...7m M'N(Ci, ai)
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b) the nilpotent MIN operatar Proof: Suppose that we have a group «af experts. If
a linguistic nondecreasing relative quantifi€},,, “At least

LCy (w,a) = {MIN(w,a) if w> l_\leg(a) m”, is chosen, as is shown in Fig. 3, the LOWA operator,

’ S0 otherwise; $om, as an aggregation operator, and the following linguistic

conjunction function as a transformation function,

¢) the weakest conjunction
LCT (w,a) = MIN(w, a),

LCT (w,a) = {MlN(w’a) i MAX.(w’a) =T then since the weighting vector ® = [w; = 1,wy =
S0 otherwise.
07"'7w7n = O]7
2) Linguistic implication functions (LI7). ag = ¢om[MIN(c1,a1), -+, MIN (¢, am)]
The linguistic implication functions that we shall use =MAX i_1 ....sMIN (¢, a;),

are monotonically nonincreasing in the weights and
satisfy the properties required for any transformatiois verified, and therefore,
function ¢ [11]:
. : . . . LWA ’ T AUmy Um =LWD ’ "\ Cmy Um J] -
a) Kleene—Dienes's implication function [(er, ) (e, am)] [(e1 ) (em am)]
Lemma 2: The linguistic weighted conjunction operator,

LI (w,a) = MAX (Negw), a); LWC, is a particular weighted aggregation operator of the
LWA operator type.
b) Gddel's implication function Proof: Assuming the above linguistic quantifier, if it is
_ chosen the I-LOWA operatord;ém, as aggregation operator,
- _Jsr ifw<a and the following linguistic implication operator as transfor-
LIy (w,a) can . .
a  otherwise; mation function,
c) Fodor’s implication function LI”(w,a) = MAX(Negw), a),
LI (w.a) {ST if w<a then as the weighting vector is
w,a) = .
3 MAX (Negw),a) otherwise. W=[w; =1wy=0,,wpy = 0],

Definition 3: The aggregation of the set of weighted init is verified
dividual opinions,{(c1,a1),- -+, (cm,am)}, according to the o :</>ém[MAX(Ne§xC1),a1),---,MAX(Neg(cm),am)]

Linguistic Weighted Averaging (LWA) operator is defined as
=MIN;=; ... n MAX (Neg(c;), a; ),
(ce,ag) = LWA[(c1,a1), -+, (€ms am)]; and therefore,

where the importance degree of the group opiniop, is LWA[(er,a1), -+ (my am)]

obtained as =LWC[(e1,a1), -, (Cms am)]-
ce = ¢glcL, s Cm). C. Axiomatic of the Aggregation Operators
for Linguistic Weighted Information
and, the opinion of the group.g, is obtained as Previous works on the aggregation of fuzzy weighted opin-
ions, developed in a numerical setting, are those by Cholewa,
ag = flgler,a1), -+, g(cm, am)]; Montero and Dubois and Koning. Cholewa [2] offers a col-

lection of axioms that weighted aggregations should follow,
where f € {d)g,d)é},g € {LCT,LCy,LC3} if f = ¢g, and proposes the weighted arithmetic mean as a typical ag-
andg € {LI;", LIy, LI} if f = </>é. gregation operator that satisfies these axioms, Montero [20]
It should be observed that according to the class of trarcharacterizes the fuzzy majority rule and studies the existence
formation functions proposed by Yager in [26] and [27] foof absolutely decisive groups, and Dubois and Koning [10]
MIN type aggregation, when the aggregation opergtpis the analyze briefly the different axiomatic approaches existing for
I-LOWA operator,¢é, and given thatbé is an aggregation op- weighted aggregation.
erator with characteristics of a MIN type aggregation operator As was mentioned earlier, in [2] a complete set of axioms in
(as was seen in the presentation of the LOWA operator), thire fuzzy set setting for heterogeneous groups is given. Some
we have decided to use the linguistic implications functionsef these axioms armdependence of alternatives, commutativ-
LI, as the transformation function type. Something similaty, etc. Obviously a particular weighted aggregation operator
happens wherf is the LOWA operatorpg. does not have to satisfy all the axioms together, it must
Lemma 1: The linguistic weighted disjunction operatoisatisfy those that its special application circumstances require.
LWD, is a particular weighted aggregation operator of thBellows, we are going to postulate an axiomatic approach with
LWA operator type. ten axioms, and we shall check which axioms our weighted
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aggregation operators verify. Specifically, Axioms |I-VI are Axiom IV: Quasi-equivalence and increasingness of power.
obtained directly from those proposed by Cholewa in [2]f everyone agrees on an opiniong”; about an alternative,

but defined in linguistic setting, and others are proposed by € X, and thusa; = a2 = --- = a,, = a, then if
ourselves.
As has been shown in the subsection above, if we choose (ce,ar) = LWA[(c1,a), -+, (Cm,a)]

the linguistic quantifier(), “At leastm”, and an appropriate

transformation function, the LWA operator is a generalizatiotme collective opinion,(cg, ag), must satisfy the following
of the LWD and LWC operators. Therefore, here, we shatbnditions:

only study the axiomatic of the LWA operator, and in those 1) 4, = o (quasi-equivalence); and

cases where the axiom not be verified, then, we shall studyp) (. >~ MAX (c1,--+,¢m) (increasingness of power).
what happens with the LWD and LWC operators.

Assume the following framework:

Let X = {z1,---,z,}(n > 2) be a finite non-empty set of
alternatives to be evaluated.

Let £ = {e1,---,en(m > 2) be a group of the experts
to analyzeX.

Let S = {s;: ¢ =0,---,T} be a label set to voice experts’
opinions and their respective importance degrees.

Axiom |: Independence of alternatives € X. The collec-
tive opinion forz;, (¢g, ag), only depends on the individual
opinions forz;, [(c1,a1),+ -+, (cm, am)]. This means that lin-
guistic functiongz andu); exist(for the)r}\ggregation of linguistic $0,(MAX (Neg(s0), 56), MAX (Neg(s1), 56)) = s7 # 6.
weighted opinions

This axiom is not verified for any of its conditions.

* The LWA operator is not quasi-equivalent. For example,
suppose a set of nine labels. Then, if we want to aggregate
the linguistic weighted opiniongso, s ), (s1, se)] Of two
experts, having fixed the linguistic quantifief),, “At
least 2, then the two weights arey; = 1,w,; = 0.
Thus,

Case L:If f = ¢5, and g = LI7(w,a) =
MAX (Neg(w), a), then

v: (S xS —= S Case 2. f = ¢g, andg = LO™ (w,a) = MIN(w, a),
and for the aggregation of the powers of aggregated opinions $q,(MIN(s0, s6), MIN (51, 56)) = 51 # 6.
w: S™ — 8§

Since this example of the LWA operator is the case in

such that which it works as the LWD and LWC operators then these
do not verify this property either.

« The LWA operator does not verify the increasingness of
It is basically technical, and is satisfied by the definition of the power. Clearly it is a consequence of the property of
LWA operator, with the LOWA operator being the functian the LOWA operator of being an “orand” operator, and
and the composition of the I-LOWA operator with a linguistic ~ therefore
implication operatofL/~) or the composition of the LOWA

(cEv aE) = (w[clv Tty cm]vv[(clv al)v Tty (cmv am)])'

operator with a linguistic conjunction functiof.C~) the MIN(c1,- -, em) < ep S MAX(cp, -+, Cm).
function v.
Axiom Il: CommutativityHaving fixed an alternatives;; Axiom V: Positive sensitivity in its strongest fornA
X, then weighted collective opinion is increased if and only if any
weighted individual opinion is increased. This means that if
LWA[(Clv al)v Ty (crnv arn)] 9 P

(ag, cg) is the weighted collective opinion obtained for as
= LWA[r(c1,a1), 7 (Cm, am)]
wherer is a permutation over the set of weighted opinions. (cm ap) = LWA[(c1,a1), -+ (m, am)]
Clearly it is satisfied, because the I-LOWA operator as well d b is th iahted collect - btained
as the LOWA operator use “ordered” weighted average of {8 (cz,bp) is the weighted collective opinion obtained for

arguments. Z; as
Axiom lll: Associativity.Having fixed an alternative;; €

X. then 4 J (CE7 bE) = LWA[(clv bl)v ) (cmv bm)]
LWA[(Cla al)a Tty (Cm, am)] with a; > bj, then

:LWA[LWA[(Clv al)v Tty (crn—lv arn—l)]v (crnv arn)]-

This axiom is not verified by the LWA operator, because

neither the I-LOWA operator nor the LOWA operator satisfiClearly this axiom is not verified by the LWA operator.
the associativity property as was demonstrated in [15]. S6xample: suppose a label set with eight elements. Let
it is not verified by the LWD and LWC operators becausfsi, s4), (s2, s5)] be two weighted opinions to be aggregated.
the aggregated weights are obtained by means of the LOWAnNsidering the linguistic quantifielys, “At least 2, then
operator. the two weights arer; = 1,w. = 0 and then,

ag > bg if and only if 3e;, € E such thatay > by..



654 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 27, NO. 5, SEPTEMBER 1997

Case 1:if f = ¢é2 and g = MAX (Negw), a), then known about both aréc;,a;) and (c;,a}), such thata; =
aj,vj, then
(cp,ap) = LWA[(s1, 84), (s2,85)] = (s2,85), and
LWA[(Cla al)v' ) (cmv am)] :LWA[(Clv all)v' ) (cm? a;n)]'
Case 2:if f = ¢g, andg = MIN(w, a), then
_ N Clearly this axiom is satisfied too.
(cp,ap) = LWA[(s1,54), (52,55)] = (52, 52). Axiom IX: Unrestricted domainHaving fixed any alterna-

If the first expert changes his opinion By, , s;) then tive, z; € X, for any set of weighted individual opinions,
Case 1:(cg,br) = LW A[(s1, s5), (52, 55)] = (52, 85), {(e1,a1), -+, (cm,am)}, there is a weighted collective opin-
Case 2:(cg,bg) = LWA[(s1,s85),(s2,85)] = (s2,82), ion, (cg,ag), which may be constructed, i.e.,

and therefore, although the opinion of an expert has been

increased, however, the collective opinion has not been in-  V[(c1,a1), -, (cm, @m)]

creased, independently of the aggregation operator of the € (S x 8™, Ice,ar) € (S x S) such that

weighted opinions considered in the LWA operator. The LWD (ciyap) = LWA[(cr,a), -, (s am)]

and LWC operators do not verify this axiom as also happens ’ P

n th? axiom above._ . It is satisfied in accordance with the LWA operator definition.
Axiom VI: Neutrality of complementf (c;,a;)° is the  ayiom x: TheLiw A operator is an “orand” operator.This

complement of weighted opinicfe;, a;), such thatc;, a;)° = jg 4 property of the LWA operator presented here in the form of

(¢, Neg(a;)), then, having fixed an alternative; € X, an axiom. This property is postulated in the following sense:

LWA[(c1,a), -, (cm,a)] _ha\_/ing fixed an alternativeg; € X, for any s_et of Weigh_ted
— LW A[(c1,a1)°, -, (e am)°]- Isnudclxldtﬂg_lt opinions,{(ci,a1), -, (Cm,am)}, if (cg,ap) is

This axiom is not verified by the LWA operator. Example:

consider a label set with eight elements. [(@t, s¢), (s1, $5)] (ce,ap) = LW A[(e1,a1), -, (Cm, am)]
be the weighted opinions to be aggregated and its complement

weighted opinions|(s4, s1), (s1, s2)], then having fixed the then

linguistic quantifier,(}>, “At least 2, then the two weights 1) MIN(ay, -, @m, 1y Cm) < ag <
arew; = 1,_w2 = 0, and then MAX (a1, Gm, €1y C); @Nd
Case Lif f = ¢5, and ¢ = LI7(w,a) = 2) MIN(c1, -, em) < e < MAX (c1,- -, ).
MAX (Neg(w), a), then This property is a consequence of the property of the LOWA
(ce,ar) = LW A[(s4, 56), (51, 535)]° and |I-LOWA operators of being “orand” operators.

In conclusion, the LWD operator, the LWC operator, and

=(54,56) # (54,53) = LWAl(sw, 1), (s, 92l o \a operator verify the following axiomsndependence

Case 2:And if f = ¢, and g = LC~(w,a) = ofalternativescommutativity positive sensitivity in its weaker
MIN (w, a), then form, neutrality with respect to alternativesinrestricted do-
. main, andbeing an “orand” operator The fulfillment of those
(ce,ap) = LW Al(s4, 56), (51, 55)] axioms provides evidence of rational aggregation of these
= (54, 84) # (54,51) = LWA[(s4,51),(s1,52)].  operators in particular frameworks. In the following sections

nyve shall show an application of the use of these aggregation
operators for linguistic weighted information in the choice
processes for alternatives in heterogeneous groups.

Thus, the LWD and LWC operators do not verify this axio
either.

Axiom VII: Positive sensitivity in its weaker fornif. an
expert increases his weighted opinion fgrthen the collective
weighted opinion forz; cannot decrease. This means that if V. EXAMPLE OF APPLICATION

i,c;) and(b;, c;) are such thatg; < b;, then if . . .
(a5, ¢4) (b, ¢5) 4 =% Assuming the set of seven labels presented in Section II,

(ce,ag) = LWA[(c1,01),---,(¢j,a5), 5 (Cm» Gm)] that is,
and S={s¢s=Pss=VH,s,=H,s3=M
(CE7 bE) = LWA[(Clv al)v ERIIN (cjv bj)v Tty (cmv am)] 52 :L’ s1= VL’ S0 = N}
then suppose an investment company, which wants to invest a sum

of money in the best option. There is a panel with four possible
options where to invest the money:

Obviously, this axiom is satisfied, it is a consequence of thexz; car company;
monotonic property of the LOWA and I-LOWA operators. zo food company;

Axiom VIII: Neutrality with respect to alternative$f. we x3 ~computer company; and
have two alternativesy; andxy, and the weighted opinions =z, arms company.

agp S bE
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The investment company has a group of four consultancy
departments: "

dy  risk analysis department;
ds  growth analysis department;
ds  social-political impact analysis department; and 2]
dy  environmental impact analysis department.
In each department there is one expert with different impor[-s]
tance degree&:; for the expert of the departmernt)
[4]

{Cl = 84,C2 = 55,03 = $2,C4 = 36}- [5]

The assessments of the option set by the experts from ealfh
department are the following;; is the assessment assignedm
to the optionz; by the expert from departmen; ):
1) Fore;: {a11 = s1,a21 = 85,031 = 54,041 = Sc} (8]
2) Forez: {a12 = s1,022 = $3,a32 = 53,042 = 51} [9]
3) Fores: {a13 = s4,023 = 55,033 = 53,043 = 52}
4) Forey: {a14 = 51,024 = S6,034 = 51,044 = S0}
Thus, using the linguistic weighted conjunction (LWD)11]
operator the issues are the following.
1) The collective assessments on alternatives are the iRl
lowing (a; for collective assessment of the alternative
x;): [13]

[20]

ay = MAX]'=17...74{M|N (Cj, alj)}

=MAX {MIN (54, 51), MIN (s5,51),MIN(s3, 54), E:-j
MIN (sg, 1)} = s2
ag =MAX j=1 ... 4 {MIN (¢}, a2j)} .
=MAX {MIN (s4, 55), MIN (55, 53), MIN (53, 55), 1
MIN (s6, 56)} = s6 (18]
as =MAX j—; ... 4{MIN(¢;, asj)}
=MAX {MIN (s4, 54), MIN (53, 53), MIN (53, 53), el
MIN (sg,51)} = s4 [20]
ay =MAX j=1 ... 4 {MIN (¢}, asj)}
=MAX {MIN (s4, 55), MIN (s5, 51), MIN (53, 52), o
MIN (sg, s0)} = s4. 122

2) The collective importance degreg;, meaning the cred- [23]
ibility degree of the solution, with the linguistic quanti-

24

fier, @, “As many as possiblavith the par (0.5, 1) and 24

W = [0,0,0.5,0.5] is [25]

26

ce = ¢g(c1, c2,¢3,c1) = P (54, 55,55, 56) = Sa- 126]

[27]

Clearly alternativer; is the best assessed one. (28]
V. CONCLUSIONS [29]

In this paper, various aggregation operators for the linguistigy
weighted information are presented. These operators are ver
useful for modeling those processes in which there are vari g
information sources and the information is linguistic in naturgz]
and is not equally relevant. Their aggregation has been checked
examining some of the axioms that an acceptable weightga]
aggregation operator must verify. [34]
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