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Abstract 

This paper deals with boolean linear programming problems involving coefficients in the objective function as fuzzy 
numbers. In the study of these problems different approaches can be proposed to use ranking fuzzy numbers methods 
and fuzzy preference relations obtaining auxiliary classical boolean programming problems, and to use the representa- 
tion theorem obtaining a convex set with extreme points defined by the lower or upper bound of the ~-level sets of the 
fuzzy coefficients, and consequently an auxiliary interval boolean programming problem. In this paper we develop and 
link the different approaches. 
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1. Introduction 

Boolean linear programming problems deal with problems of maximizing or minimizing a function of 
many variables subject to inequality and equality constraints and integrality restrictions on some or all of the 
variables (boolean variables). Due to the robustness of the general model, a wide variety of problems can be 
represented by this model. Applications in many fields, such as those related to operations research and 
management (knapsack, assignment, matching, covering, facility location, network flow, etc.) [36, 38] 
artificial intelligence (modeling propositional logic, reasoning, etc.) I-5, 11, 20, 25, 43, 44, 47], etc. 

To have some difficulties when modeling a real world problem by means of a boolean programming 
problem is normal. One of such difficulties is either in the fact that goals and constraints are often represented 
by the vague linguistic form or in the fact that the parameters are not known exactly. 

Often in a real world problem a decision-maker or an expert gives approximate estimates about the true 
values of the objective coefficients rather than the exact values of these, moreover those estimates can be 
given with some vagueness. As was observed in [29]: 
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"In practice, the unit costs/profits of new products or new projects, lendin9 and borrowing interest rates, and 
cash flows are always imprecise". 

To consider the costs as fuzzy numbers is the most reasonable way to model the former discrete 
optimization problem. Then the problem may be formulated as follows 

max z =  ~ c~xj 
j~N 

s.t. ~ aox j <~ bi, iEM, (1) 
j~N 

xjE{0,1}, j~N ,  

aij, bi~ R, i~M, j ~ N  and c~F(R), where F(R) is the set of fuzzy numbers. Thus one has the membership 
functions 

#i:R ~(0, 1], j ~ N  

expressing the lack of precision on the values of the coefficients that the decision-maker has. 
Fuzzy discrete programming models have been studied in various publications. A classification of them 

was shown in [13], different models, methods and applications have been presented [1, 10, 14, 18, 22, 27, 35, 
39, 48, 49], also some approaches to fuzzy boolean linear programming (FBLP) problems with fuzzy costs 
have been described [8, 9]. 

This paper is devoted to look further into the different approaches to FBLP problems with fuzzy costs. The 
first one consists of the use of several well known ranking fuzzy numbers methods, each of them provides 
a different auxiliary conventional optimization model solving the former problem. The second one explores 
the behavior of the representation theorem for fuzzy sets when used as tool to solve the proposed problem. 
The link between the auxiliary models will be finally studied. 

In order to do this the paper is set out as follows. In Section 2 the formulation of the problem is presented. 
Section 3 is addressed to the use of ranking fuzzy numbers methods, methods of optimal alternatives, ranking 
functions and fuzzy relations, along with a description of the linkage in the use of ranking functions and fuzzy 
relations. Section 4 is devoted to relating the approach using the representation theorem, solutions methods 
(with efficient points and weight vector, and with the interval arithmetic) and the link between them is 
shown. In Section 5 a numerical example is analyzed, and some interesting conclusions are finally pointed 
out. 

2. Formulation of the problem 

The overall situation corresponding to a FBLP problem with fuzzy costs can be described by the following 
example. 

Illustrative example. In a Faculty of Computer Science, one wishes to buy the equipment for some computer 
rooms. Each room will have different equipment in order to include a great variety of work-stations. Six 
different types of proposals are received and a study is carried out based on the number of students that will 
use the equipment. As seen in the following table each number of students is given as a percentage of total 
students and the cost of each class-room is given in millions of pesetas. 
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Type of class Cost Percentage of students 

A 14 55 
B 11 40 
C 17 50 
D 7 28 
E 13 35 
F 10 43 

the percentages of use can vary up to 8%, 5%, 12%, 10%, 7% and 12%, respectively. 
The goal is to purchase equipment for the classrooms so that they will be used by the maximum possible 

number of students. Thirty-two million pesetas are available in order to buy the equipment, it is only possible 
to buy equipment for three classrooms and it is necessary to have at least one of type A, B or C, and another 
of type C, E or F. 

In this problem the constraints are given in a precise form and the objective is imprecise. The percentage of 
use of every classroom can be represented by triangular membership functions. 

The formulation of this problem can be written as 

max ~ x ,  + 4.0x2 + ~x3  + ~ x ,  + ~ x 5  + 4 3 X 6  

s.t .  14Xl + llx2 + 17x3 + 7x4 + 13x5 + lOx6 ~< 32, 

x l + x 2 + x 3 1 > l ,  

X 3 "Jr- X 5 "~- X 6 ~ 1, 

xj~{0,1}, l~<j~<6, 

where the fuzzy costs are the following triangular fuzzy numbers 

.cl = (47, 55,63), .c2 = (35,40,45), c.3 = (38,50,62), 

.ca = (18,28,38), ~c5 = (28,35,42), f6 = (31,43,55). 

Next, the different approaches are studied. The above problem will be solved in Section 5. 

3. Approach using methods of ranking fuzzy numbers 

Let X be the finite set of feasible solutions to (1), 

X = { M A x  <~ b, x~{0, 1)") 

and O be the function mapping the set of alternatives into the set of fuzzy numbers, 

# : X ~ F(R) 

defined by 

#(x) = c x = Z c,, S = { i ~ N / x ,  = 1}, c ,~F(R)  V i e S .  
i~S 

(2) 

(3) 
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An alternative x' e X is called optimal if the fuzzy number 9(x') is the greatest in the set of fuzzy numbers 

A = {g(x)/x eX}, 

! being the number of elements of A, and L the indexset. In order to determine the greatest fuzzy number of 
the finite set A = {A 1 . . . . .  A z} c F(~) we have three possible methods. 

1. The first is the method of optimal alternatives, in the following form: 
Given A = {Ai/i e L}, the set of fuzzy numbers, where Si is the support of the fuzzy number A ~, 

Si = SuppA i =  {X~/IaA'(X) > O} c I 

in which, without loss of generality, one supposes that the domain of definition is in the interval I. 
The aim is to obtain a fuzzy set of optimal alternatives 

O =  {i, po(i)}, i eT ,  

where l~O(i) is the degree to which the ith alternative may be considered the best alternative. Some methods of 
optimal alternatives are [4, 50]: method of Jain, method of Chen, method of Baas and Kwakernaak, method 
of Baldwin and Guild, etc. 

2. The second method consists of the definition of a ranking function, f, mapping each fuzzy set into the 
real line, ~, where a natural order exists. 

So called f :  A --, ~, is such that 

f ( A  ~) < f ( A  j) implies A ~ is smaller than A J, 

f ( A  ~) > f ( A  J) implies A ~ is greater than A j, 

f ( A  i) = f ( A  j) implies A ~ is equal to A j. 

Hence, the greatest fuzzy number, A k, is obtained for the maximum value of the set {f(Ai), Aie A}, f(Ak), 
which is associated to A k. Some ranking functions are [4, 50]: functions of Yager, method of Chang, Adamo's 
index, average index, etc. 

3. The third method consists of the use of the concept of decision making with a fuzzy strict preference 
relation and nondominated alternatives [30]. In order to compare the elements in A, the fuzzy relation R is 
defined on the Cartesian product F(R)x  F(gR) into the interval [0, 1]. 

#n :F (R) x F(~) --} [0, 1], 

#R(A ~, A J), A ~, A J[  A, interpreted as a truth value of the expression "A~ is greater than or equal to Aj". This 
relation serves to build the fuzzy strict preference relation as follows 

#s(A i, A J ) = max {0, lzg(A i, A J ) - #R(A J, A i) }, 

we can say that A j is strictly dominated by A ~ to the degree #s(A ~, A J). And, we can define the fuzzy set #ND of 
nondominated elements as 

#No(A ~) = 1 -- max #s(A j, A~), 
AJ~ A 

which introduces the subset of nondominated alternatives, having the previous membership function. The 
value #ND(A i) is understood as a degree to which the alternative A ~ is dominated by none of the elements of 
set A. The greatest fuzzy number belongs to the following set 

{Ai e A/~ND(Ai) = maX #ND(AJ)} 

Some fuzzy preference relations are [17]: Degree of Possibility, Degree of Necessity, etc. 
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In order to obtain the solution to problem (1), we give the following definition, which depends on the 
method used. 

Definition 1. x*~ X is an optimal solution for (1) if 
(i) given a method of optimal alternatives, ~ = {i,/~O(/)}, then #0(g(x*))/> #O(#(x))Vx ~ X; 

(ii) given a ranking function f then f (g(x* ) ) >1 f (g(x) ) V x ~ X; 
(iii) given a fuzzy relation R, and having obtained the nondominated degree #ND(') then #NO(g(x*))= 

max~ s x FtND(g (X)). 

In this paper, linear triangular fuzzy numbers, c~ = (ri, c j, R j), are considered in order to simplify the 
operations. Its membership functions are given in the following way. 

( h ( u ) = ( u - r j ) / ( c j - r j ) ,  r j<.u<~cj ,  

V u ~ R , j ~ N ,  l~cj(U)=lg(u ) ( R j - - u ) / ( r j - - c j ) ,  c j<~u<~Rj,  (4) 

[ O, otherwise, 

graphically 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 
s : 

/ :: 
/ : 

/ 

/ i / 
h(ul," 

/ 

/ 

l" 
i 

',,,,g(u) 

rj ej R] 

Then the following result holds. 

Proposition 2. Let  us suppose that we have linear expression y = ~ jc jx j  = c x where c j, j = 1 . . . . .  n are fuzzy  
numbers the membership function of which is similar to (4) and x j >i O, j ~ N. Then the membership function of the 
fuzzy number y is 

[ (z - r x ) / ( c x  - rx)  i f  r x  <. z <~ cx ,  

# ( z ) = I ~ x - - z ) / ( R x - - c x )  otherwise,ifcx<~z<<'Rx' (5) 

where r = (rl, ... ,r,), c = (cl . . . . .  c,) and R = (R1, ... ,R,) .  

The proof is obvious. 
In the following we define the vectors d and d' such that d = R - c and d' = c - r. Hence dx and d'x are the 

lateral margins (right and left, respectively) of the fuzzy number cx. 
Next, we shall apply different methods of ranking fuzzy numbers to obtain the optimal value of A. It is 

interesting to observe how the optimal solution obtained when a FBLP problem is solved by using a ranking 
method is the same as the optimal one obtained by means of a boolean programming problem with a similar 
constraints set and a nonfuzzy objective function. 
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3.1. Method of optimal alternative of Jain [24] 

In the method suggested by Jain, firstly the maximum value of the support S must be determined, Zmax, 
where 

S =  [_) SuppA i. 
Ai~A 

Then the maximizing set of S is evaluated, 

Urea x = {Z, # m a x ( Z ) } ,  zES, 

where 

#max~- [~Z  ] k, k > 0 ,  
I._Zmax 1 

and finally, the selected alternative verifies, 

#o(i) = Sup { #A,(Z) ̂  #max(Z)}. 
z 

In our study we consider k = 1. The maximum value of the support S is determined by solving the 
following problem: 

max z = Rx 

s.t. Ax ~ b, (6) 

xj~{0,1}, j 6 N ,  

where Zm,~ = RX', with x' the optimal solution. 

Proposition 3. Given problem (1), x* ~ X is the optimal solution for (1) using the method of Jain if x* is the 
optimal solution for the followin9 boolean programming problem 

max T(x) 

s.t. Ax <~ b, (7) 

xj~{0,1}, j ~ N ,  

where 

T(x) = 
Rx-zma x - -  cx(Rx -- cx) 

Zmax 'Zmax  

and Zma x iS obtained in (6). 

Proof. x* is the solution for (1) if 

9(x*) = A k and #o(k) = #O(#(x*)) = Sup {#max(Z) ̂  #,e(z)}, 
z 

where #max(Z)= (Z/Zmax). This expression is developed in the following form. 
(rx k, cx k, Rxk), Vx  ~ X. 

Let g ( x )  = c x  = A k= 
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If cx k = R x  k then #6(k) = CXk/Zmax else #5(k) is the value of the function #max(" ), in the point obtained in the 
intersection of this function, #ma~(" ), and the right side of the fuzzy number, that is, Zo ~ R. 

(Rx  k - Zo) / (Rx ~ - cx k) = cxk/z . . . .  

Zo = R x  k - cxk(Rx k -- cxk)/z~,a,, 

R x k . zm~  -- cxk(Rx k - cx k) 
#o(k) = Zo/Zmx = 

Z m a  x • Z m a  x 

Thus, we define the function 

Rx'z=a~ - c x ( R x  - cx) 
T(x)  = 

Z m a  x • Z m a  x 

where if cx' = Rx '  then T(x ' )  = Rx ' / z  . . . .  a similar expression obtained for I~o(k) above. 
Therefore,/~0 (9 (x*)) = Sup, { #=a~ (z) ̂ /~A~(z) } if T (x*)/> T(x) V x e X, whereupon x* is optimal for (1) if it 

is the optimal solution for (7). []  

3.2. The use o f  ranking functions 

Consider a ranking function f mapping each fuzzy set into the real line, f :  A ~ R we have the following 
result. 

Proposition 4. Given the problem (1), x* ~ X is the optimal solution for  (1) usin9 a rankino function f if x* is the 
solution for  the followin9 boolean prooramming problem 

max f ( c x )  

s.t. A x  <<. b, (8) 

xj~{0,1}, j ~ N .  

Proof. As x*e  X is an optimal solution for (1) if given a ranking funct ionf ,  f ( o ( x * ) )  >~f(o(x)) V x  ~ X ,  and 
9(x) = c x, this is similar to solve the following problem: 

max f ( c x )  

s . t .  A x  <<. b, 

xj6{O, 1}, j ~ N .  [] 

3.2.1. Index o f  Chang [13] 
Chang defines the index function 

f (gJ)  = fS, Z" I~.~(Z) dz. 

For triangular fuzzy numbers, it is reduced to 

f ( c x )  = (dx + d'x)(3cx + dx - d'x)/6. 
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So that this allows us to obtain the optimal solution for (1), applying Chang's index if we solve the 
following boolean programming problem: 

d x + d '  
max 6 X (3cx + dx - d'x) 

s.t. Ax  <<, b, (9) 

xi6{0,1}, j ~ N .  

3.2.2. Index o f  Yager [45, 46] 
Yager has proposed several ranking functions, which we shall study next. 

3.2.2.1. First index o f  Yager. The first function is 

S s~ g(z)#u.~(z) dz 
f l (ul)  = Ssj~)(z)dz ' 

where the weight g(z) is a measure of the importance of the value z. If we assume linear weights, that is, 
g(z) = z, thenfl  (u)) represents the center of gravity of the fuzzy set .uj. For triangular fuzzy numbers 

fl(cx) = cx + 1/3(dx - d'x) = (c + 1/3(d - d'))x. 

So that this allows us to obtain the optimal solution for (1), applying the first Yager's index if we solve the 
following boolean programming problem 

max (c + 1 / 3 ( d -  d'))x 

s.t. Ax  <<. b, (10) 

xj~{0,1}, j 6 N .  

3.2.2.2. Second index o f  Yager. The second index is suggested by the possibility theory: 

f2 (u j) = max min(z, ~uj(z)). 
zeSj 

In this casef2(uj) measures the consistency of uj with the linear fuzzy set z defined by #~(z) = z. 
For triangular fuzzy numbers, it is reduced to 

f2(cx) = (cx + dx)/(dx + 1). 

Applying the second Yager's index we obtain the optimal solution for (1), solving the following boolean 
programming problem 

max (cx + dx)/(dx + 1) 

s.t. A x  <~ b, (11) 

xje{0,1}, j ~ N .  

3.2.2.3. Third index of  Yager. 

fa(uj) = 11M(U~)dc~, 
do 

The third ranking function proposed by Yager is the following: 
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where U] is the or-level set of uj and M ( U ~ )  is the mean value of the elements of U~. 
For triangular fuzzy numbers, it is reduced to 

f3(c.x) = cx  + 1 /4(dx  - d'x). 

The optimal solution for (1), applying the third Yager's index is obtained solving the following boolean 
linear programming problem: 

max c x  + 1 /4(dx  - d 'x)  

s.t. A x  <<. b, (12) 

xj~{O, 1}, j ~ N .  

3.2.3. Relat ion o f  A d a m o  
Adamo uses the concept of ~-level set to obtain an a-preference index which is given by 

F,(uj) = max { z / ~ ( z )  >>. c~} 

for a given threshold a~ [0, 1]. 
For triangular fuzzy numbers, it is reduced to 

F~(c.x) = c x  + dx(1  - ~) V~e[0,  1]. 

Given the problem (1), if we apply this method to solve it, we obtain the optimal solution solving the 
following parametric linear boolean programming problem 

max z(~) = c x  + dx(1 - ~) 

s.t. A x  <~ b, (13) 

x j ~ { O ,  1}, j ~ N ,  

where we denote this problem as P(~) and x*(a) its optimal solution, which depends on a, the level of 
preference of the solution x*(~) is represented by ~. A method to solve (13) can be seen in [14]. 

3.2.4. Average  index 
The average value was introduced to help in the ordering of fuzzy numbers and defined by means of an 

integrating process of a parametric function representing the position of every ~-cut in the real line. 
For triangular fuzzy numbers, it is reduced to 

V~(cx)  = c x  + (cx  --  r x ) / ( t  + 1) + 2 ( R x  - r x ) / ( t  + 1), 

where the parameter 2 is an optimism-pessimism degree, which must be selected by the decision-maker. 
When the most advantageous decision is to choose the lowest quantity (2 = 0) and an optimistic person 
would think of the upper quantity (2 = 1). We consider 2 = 1, 0.5, 0. The parameter t is used in the Stieltjes 
measure employed in its definition. We consider t = 2, 0.5, 0. More information about it can be found in [7]. 

The optimal solution for (1), applying this index is obtained solving the following boolean linear 
programming problem 

max c x  + (cx - r x ) / ( t  + 1) + 2 ( R x  - r x ) / ( t  + 1) 

s.t. Ax ~< b, (14) 

xj~{0,1}, j ~ N .  
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3.3. Fuzzy relations 

The method consists of the selection of the best alternative according to the concept of nondominated 
alternatives according to Orlovski [30]. A lot of fuzzy relations of ranking fuzzy numbers can be used. 
Among all of them, the two next will only be considered, because they are the most frequently employed. 

3.3.1. Degree of possibility of dominance of ui over uj [ 17] 
Given two fuzzy numbers ui, uj ~ F(•), the degree of possibility is defined as 

PD(ui) = Poss(ui I> u j ) =  Supmin (#,,(z),_ Sup #u~(v)/ 
\ v<~z / 

S urmin( ,,z, 
z>>,v 

For triangular fuzzy numbers cx and cy one has 

'0 if Rx <~ ry, 

Rx - ry i f c y > c x  and Rx > ry, R(cx, cy) = Poss(cx ~> cy) = dx + d'~ 

,1 if cy <~ cx. 

If a fuzzy strict preference relation is defined 

I~s(c.y, cx) = max {0, ~R(cY, cx) - #R (cx, cy) } 

then, 

'0 if cy <<. cx, 

#s(c.y, cx) = cy - cx i f c y > c x  and ry < Rx, 
dx + d' y 

.1 if ry >1 Rx 

and the nondominated degree is defined as 

I~ND(C.X) = 1 -- max#s(cy, cx). 
yEX 

Proposition 5. Given the problem (1), x* e X is the optimal solution for (1) usin9 the deoree of possibility of 
Dubois and Prade if x* is the optimal solution for the followin9 boolean linear proorammino problem: 

max cx 

s.t. Ax <~ b, (15) 

xj~{O, 1}, j ~ N .  

Proof. Let x * ~ X  such that cx*>>.ex V x E X ,  it is obvious that #s(CX, C X*)=O V x ~ X  therefore 
#ND(.CX*) = 1, CX* has the nondominated degree 1 and cx* is nondominated in A. So that x* is the optimal 
solution for (1), and it is the equivalent to obtaining the optimum for the following boolean linear 
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programming problem: 

max cx 

s.t. A x  <~ b, 

x je{O,  1}, j ~ N .  [] 

3.3.2. Degree o f  necessity o f  dominance o f  ui over uj [17] 
ui, uj e F(R) being two fuzzy numbers, the degree of necessity is defined as 

ND(ui) = Nec(ui >/u j) = inf Sup max(1 -/~,(z), #,,~(v)). 
Z O 

v<~z 

For triangular fuzzy numbers c-x and fy, it is reduced to 

t 
'0 if cx <<. ry, 

cx - ry i f c x > r y  and cy > rx, R(cx,  cy) = Nec(cx/> c y) = d'x + d'y 

,1 if cy <~ rx 

and the following strict preference relation is obtained 

#s(c-y,c-x)= 

i if cy <~ rx, 
cy + ry - (cx + rx) if cx > ry and cy > rx, 

v d'x + d'y 

if cx <<. ry 

and the nondominated degree defined by 

# N D ( C - X )  ~ -  1 - max #s(gY, cx). 
yeX 

This nondominated degree can be obtained Vx'e  X in the following way: First, the problem 

max z(x') = 
cy + ry -- (cx' + rx') 

d'(y + x') 

s.t. Ay  <<. b, 

yje {0, 1}, j ~ N  

is solved for every x 'e  X. 
Next, the degree to which the element c-x' is dominated by none is 

#ND(C-X,) = {Io-- Z(X' ) ifz(x')~<l,otherwise, 

the optimal solution for (1) is obtained as the points that belong to the set 

{X ~ X/#ND(C-X) /> #ND(c.y) Vy ~ S}. 

(16) 
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3.4. Linkage in the use of  ranla'ng functions and fuzzy relations 

Ko~odziejczyk studied conditions for the equivalence of the two aforementioned approaches, the use of 
ranking functions and the use of fuzzy relations [27]. The main result is the following: 

"If R is the antireflexive and weakly transitive fuzzy relation described in F(E) x F(~), and such that for 
any A, B, C, D ~ F(E), 

#R(A,B)>0  and #R(C ,D)>0  ~ /~R(AOD, C O B ) > 0  

then there is a ranking func t ionf '  such that if x ° is the solution of (8) usingf ' ,  then x ° is a nondominated 
alternative with/~ND(CX °) = 1". 

4. Approach using the representation theorem 

Suppose the fuzzy costs taking part in the objective of (1), and consider V c e  R", c = (cl, ..., c.), 

#(c) = Inf#j(c~), j E N ,  
J 

#(" ) defines a fuzzy objective which induces a fuzzy preorder in X, as was shown in [42]. Consequently, using 
the representation theorem, a fuzzy solution to (1) can be found from the solution of the multiobjective 
parametric boolean linear programming problem 

max {cx/Vc~ R":/z(c) ~> 1 - ~}. (17) 
x~X 

Taking into account that 

#(c)>>. l - ~  <:~ Inf#j(cj)>>. l - ~  .**. #j(cj)>>. 1 - ~ ,  j ~ N ,  ~E[0,1]  
J 

from (4) it is obtained that 

I~j(cj)>~ 1--ct ~ h f l ( 1 - c t ) < ~ c j  < ~ g f l ( 1 - ~ ) ,  j ~ N  

and then denoting ~bj - hj -1 , ~hj = g71, j e N ,  problem (17) can be written as, 

m a x { c x / x e X ,  4(1 - a) ~< c ~< 7,(1 - ~), cte [0, 1]}, (18) 

where 4 ( - ) =  [q~(.)  . . . . .  q~,(')] and 7' = [qJl(') . . . . .  ¢ . ( ' ) ] .  
According to (4), with hi(-) and g j( .)  linear functions, the interval [~bj(1 - a), ~,j(1 - a)] is [cj - ~(cj - r j), 

cj + a(Rj - cj)], j ~ N ,  ae [0 ,  1], because 

d P i ( 1 - a ) = h j - l ( 1 - a ) = c j - a ( c j - r j ) ,  g ' j ( 1 - c t ) = g f l ( 1 - - a ) = c j + a ( R j - c j ) ,  j e N .  

Moreover, if F(1 -- ct), ~ ~ [0, 1], denotes the set of vectors c e R ~ with all of their components cj being in the 
interval [q~j(1 - :t), ~hj(1 - ~)], j ~ N ,  (18) can be finally written as, 

m a x { c x / x e X ,  c~F(1 - a),~ ~ [0, 1]}, (19) 

which for each ~ ~ [0, 1] is a boolean interval multiobjective problem having in its objective functions costs 
that can assume values at respective intervals. 
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4.1. Solution methods 

Now,  two solut ion me thods  can be considered. The  first by means  of the criteria of  efficient points  and 
weight vector,  and  the second by means  of the interval  ari thmetic.  

4.1.1. Solution method with efficient points and weight vector 
Suppose  p rob l em (1) and its auxil iary representa t ion with interval objective function coefficients (19). 

Hav ing  fixed ~, an interesting set of  points  of  X to (19) is the set of  efficient points. A point  x* e X is said to be 
efficient to (19) if there is no x e X  such that  cx >>, cx* V c s F ( 1  - ~) with at least one strict inequality. 

Let  S(1 - at) denote  the set of  those efficient points. Thus,  in accordance  with the representa t ion theorem 
for fuzzy sets, it can be defined as 

S = U a ' S ( 1  -- a), (20) 

which is a fuzzy set giving the fuzzy solut ion to the former  p rob lem (1). 
Clearly, for any a ~ [ 0 ,  1], F(1 - a) c ~" is a convex set with extreme points  defined by c ~ F ( 1  - ~) such 

that  its componen t s  are in the intervals [~b~(1 - ~), ~0~(1 - a)],  j ~ N, this character izat ion was studied in [3]. 
Fol lowing [3] as was developed in [15], obta ining the efficient points  of (19) is equivalent  to obta ining the 
efficient points  for the p rob lem 

m a x  C l X  1 + "'" + CnX n 

s . t .  A x  <~ b, 
(21) 

x]6{0 ,1} ,  j e N ,  

t e E ( 1  -- ~), a ~  [0, 1] 

or  more  explicitly, 

m a x  (clx ,  c2x, ... ,c2"x) 

s.t. A x  <~ b, 

xj6  {0, 1}, j e N ,  

which is a 

E( i  - 

ck~E(1- -0 t ) ,  k = l  . . . . .  2", a ~ [ 0 , 1 ] ,  

convent ional  pa ramet r i c  mult iobject ive boo lean  p r o g r a m m i n g  problem,  and 

g) = {[4h(1 - a),~b(1 - ~) . . . . .  ~b.(1 - a)],  [~ba(1 - a), ~b2(1 - at), ... ,tk.(1 - ~)], 

• . . ,  [~Oa (1  - ct) . . . . .  q J . - x  (1  - a ) ,  0 . ( 1  - ~ ) ] ,  [ ~ 0 1 ( 1  - ct) . . . . .  ~O._ 1(1 - a ) ,  ~b . (1  - a ) ]  }, 

(22) 

where 

~bj(0) = rj, ~kj(0) = Rj,  ~bj(1) = cj, ~kj(1) -- cj V j e N .  

In order  to obta in  a fuzzy solution to (1) we rewrite (22) in a more  convenient  form. Let  T be the index set, 
T = {1 . . . . .  t} with t = 2". We  define the mat r ix  H(~), t x n, which contains  the vectors  of  E(1 - ct) as rows. 
Then H(a) .  x is a vector  of  d imension t x 1. 

n ( ~ ) ' x  = (c lx  . . . . .  dx ) ,  ck~E(1 -- a), k ~ T .  
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Problem (22) can be expressed as 

max H(~)'x 

s.t. Ax <~ b, 

xj6 {0, 1}, j e N ,  (23) 

hkj(~)~ {~bj(1 - ~), ~kj(1 - ~)}, kE T, j e N  

cc ~ [0, 1] 

denoted as M(~). We denote the set of efficient points of M(ct) as S(1 - ~) because it coincides with the set of 
efficient points of (19). 

Considering the partial order relation in ~", Vz, y~ R", 

z>~y ~ zj>>,yj, j e J = { 1  . . . .  ,n}, 

z >  y ¢~ zj>lyj ,  j e J a n d 3 i e H z ~ >  yj. 

A point x * e  X is said to be efficient to M(~) if there is no x E X such that H(~).x > H(~)" x*. 
Note that there exists an important difference between the set of efficient points of a multiobjective 

problem with real variables and a multiobjective boolean problem, because every efficient point in the real 
problem maximizes a linear functional of the type 2. H .  x for 2 ~ •t2 > 0 on the feasible set. In the latter case 
this may not happen. But we have the reciprocal as is shown in the following result. 

Proposition 6. Let fl~ R t, fl > 0 be such that x* is an optimal solution to max { fl" H . x/x ~ X } (P 1) then x* is an 
efficient point of the problem max {H. x/x e X } (P2). 

Proof. Let x* be an optimal solution to P1, and suppose that x' e X  exists such that H.  x' > H" x*. Because 
fl > 0 and fl # 0 that implies ft. H .  x' > fl" H" x* which is inconsistent with the optimality of x*. Then x* is 
an optimal solution (efficient point) to P2. [] 

In [41] a survey is given on the methods characterizing the set of efficient solutions of multiobjective 
discrete linear programming problems. These are too complex, with the added difficulty of the parameter ct. 
This leads us to consider efficient solutions with an associated weight vector. 

Definition 2. x* is an efficient point for M(~) with weight vector w, we R t, ~,Wk = 1, Wk >~ 0 if X* maximizes 
the following parametric boolean programming problem: 

max w. H(~t). x 

s.t. Ax <~ b, 

xj ~ {0, 1}, j ~ N, (24) 

hkj(a)~{dpj(1 - ~), ~j(1 - ~)}, kET,  j ~ N ,  

~[0 ,  1] 

denoted by Mw(~). 



F. Herrera, J.L. Verdegay / Fuzzy Sets and Systems 81 (1996) 57-76 71 

M~(~) can be written as 

max (F + Gct)x 

s.t. Ax <~ b, 

xj~ {0, 1}, j ~ N ,  

~E[0, 1], 

where F, G E R ~ have the following expressions: 

(25) 

F = w ' H ( O ) = ( c l  . . . . .  c,) 

and 

G = w ' D ,  

with D a t × n matrix the rows of which are the vectors of the following set E', 

E' = {(_bl,_b2 . . . .  ,b . ) ,  (~l,_b~, ...,_b.), . . . , ( ~ ,  ... ,~._~,_b.),  ( ~  . . . . .  ~.)} 

and _b~ = - ( c j -  r j) and bj = (R i - c  j), that is, E' is the vector set, the components of which belong 
to {_b j, b j}. Besides, these expressions of the vectors F and G are obtained in accordance with the expressions 
of hij(~), 

ho(o 0 ~ {~bj(1 - a), ~//j(1 - a)} = { C j  - -  O ~ ( C j  - -  rj), cj + oc(Rj - -  Cj)} ,  j ~ N, 0t E [0, 1]. 

Sw(1 - ~) denoting the set of optimal solutions to Mw(~) and according to the representation theorem, we 
can define the fuzzy solution with weight w to (1) as 

_Sw = U ~ s w ( 1  - ~), 

which is a subset of the fuzzy solution (20), because S~(1 - ~) c S(1 - ~). 
With regard to the weight vector w ~ R', its choice depends on the concrete situations and the preference of 

the decision-maker about the extremes to weigh up. 
Finally, we should point out that in [26] there is a list of methods to solve parametric discrete 

programming problems such as (25). 

4.1.2. Solution method with interval arithmetic 
We suppose the auxiliary boolean interval multiobjective problem, (19), 

m a x { c x / x e X ,  ceF(1  - ~), ~ [ 0 ,  1]}. 

In [24] Ishibuchi and Tanaka use order relations which represent the decision makers' preference between 
interval costs. To maximize the interval objective function, the order relations are defined by the right limit, 
the left limit, the center and the width of an interval. The maximization problem with the interval objective 
function is converted into a biobjective problem using the order relations. 

According to these results, (19) can be rewritten using the above criteria as the following parametric 
biobjective programming problem, 

max{z' = (z'(x, ~), zC(x, c t ) ) /x~X c R", ~t E(0, 1]}, (26) 
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denoted by N(e), where zl(x, ~) and zC(x, ~) are defined by 

z ' ( x ,  ~) = y ,  [c~ - ~(cj  - r j ) ] x j ,  
j=l  

zC(x, a) = (1/2) ~, [2cj + a[Rj + rj - 2c~)]xj. 
j = l  

A fuzzy solution for (1) can be found from the parametric solution of the biobjective parametric problem. If 
we define by S N ( 1  - a) the set of efficient solutions of (26), then in accordance with the representation 
theorem for fuzzy sets one can define 

_SN = U ~'S(1 - c0, (27) 
~t 

which is a fuzzy set giving the fuzzy solution to the former problem, using interval arithmetic. 
Concretely, if we consider a weight vector fle R 2, flie [0, 1] to each of the objectives taking part in (26), in 

such a way that fla + f12 = 1,-then a solution to (1) can be found from the solution of the problem, Na(a), 

max{(/~l "zi(x, ~) + fl2"z~(x, a ) ) / x e X  ~ R", ~e(0, 1]}. (28) 

As is evident, (28) is a conventional parametric boolean linear programming problem. If the set of optimal 
points for (28) is defined as S~(1 - ~) for every ~ e (0, 1], then the fuzzy solution with weight fl will be given by 
the fuzzy set 

Sa = U e'Sa(1 - ~), (29) 

which is a subset of the fuzzy solution (27). 

4.2. Relating the two solution methods 

Proposition 7. The problem Np(~), (28), is a specific problem of Mw(ct), (24). 

Proof. It is enough to assign the weight vector we  A t in the following form: wl = (ill + 1/2fl2), wt = 1/2fl2 
a n d w i = 0 , 2 ~ < i < t .  [ ]  

So, the 

max 

s . t .  

where F, 

F =  

and 

problem N0(a ) can be expressed as 

(F + G,)x 

Ax <<. b, 

xjE {0, 1}, j e N ,  

~e [0, 1], 

G e 1~, 

(C1 ,  . . . ,  Cn) 

G = (ill + 1/2f12)'(_bl ... .  ,bn) + 1/2f12(bl, ... ,bn), 

with _bj = - ( c j  - r f l  a n d  b j  = ( R j  - c j ) .  

(30) 
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5. Numerieal example 

W e  cons ider  the example  presen ted  at the beg inn ing  of  this paper ,  which  was  fo rmula t ed  as follows: 

m a x  5 5 x  1 At- 4 0 X  2 -~ 5 0 X  3 "-[- 2 8 X  4 -'[- 3 5 X  5 "-[- 4.~3X 6 

s.t. 14xl  q- l l x  2 q- 17x3 + 7x4 + 13x5 + 10x6 ~< 32, 

X 1 + X 2 -'~ X 3 ~ 1, 

X 3 "+- X 5 + X 6 ~ 1, 

x~e{0 ,1} ,  l ~ < j ~ < 6 ,  

where  the fuzzy costs  are  the fo l lowing t r i angu la r  fuzzy numbers :  

-Cl = (47, 55,63), -C2 = (35,40,45),  .ca = (38,50,62),  

-C4 = (18,28,38),  -C5 = (28,35,42),  -C6 = (31,43,55).  

(i) So lu t ions  using s o m e  r ank ing  fuzzy n u m b e r  m e t h o d s  
M e t h o d  of  Ja in  Zmax = 156.00 X* = (1 0 0 1 0 1), g(x*) = (96, 126, 156). 
M e t h o d  of  C h a n g  x* = (1 0 0 1 0 1), g(x*) = (96, 126, 156). 
F i rs t  m e t h o d  of  Yager  x* = (1 0 0 1 0 1), g(x*) = (96, 126, 156). 
Second  m e t h o d  of  Yager  x* = (0 1 0 0 1 0), g(x*) = (63, 75, 87). 
Th i rd  m e t h o d  of  Yager  x* = (1 0 0 1 0 1), g(x*) = (96, 126, 156). 
M e t h o d  of  A d a m o  Vo te [0 ,  1] x* = (1 0 0 1 0 1), g(x(ot)) = (96, 126, 156). 
Average  value x* = (1 0 0 1 0 1), g(x*) = (96, 126, 156). 
W i t h  the same  so lu t ion  for: 2 -- 1, 0.5, 0 and  t = 2, 1, 0.5. 
Degree  of  possibi l i ty x* = (1 0 0 1 0 1), g(x*) = (96, 126, 156). 
Degree  of  necessi ty x* = (0 1 0 1 0 1), g(x*)  = (84, 111, 138). 
W i t h  degree  of  n o n d o m i n a n c e :  1.000. 
(ii) So lu t ions  using the represen ta t ion  theorem.  
The  ex t reme func t ions  using the represen ta t ion  t h e o r e m  are: 

~b1(1 - -  ot) = 5 5  - -  8ot, ~bx(1 - -  0~) = 55  + 8ot, ~b2(1 -- ot) = 40 -- 5ot, ~k2(1 -- ot) = 40 + 5ot, 

4)3(1 -- ot) = 50 -- 12ot, ~b3(1 -- ot) = 50 + 12ot, ~b4(1 - a) = 28 - 100t, ~'4(1 - ot) = 28 + 10ot, 

4)5(1 - ot) = 35 - 7ot, 05(1 -- ot) = 35 + 7ot, (~6(1 -- ~) = 43 -- 12ot, 06(1 -- ot) = 43 + 12ot. 

Weight vectors 
W e  cons ider  the next  two  vectors ,  w ~, wl = 1, w~ = 0, 2 ~< i ~< 16, a n d  w 2, w 2 = 0, 1 ~< i ~< 15, w26 = 1. 

These  can  be cons idered  as the m o s t  pessimist ic  an d  the m o s t  opt imis t ic  vec to r  values, respectively.  
The  p r o b l e m  Mw,(ot) is 

m a x  (55 - 8ot)xl + (40 - 5ot)x2 + (50 - 12ot)x3 + (28 - 10ot)x4 + (35 - 7ot)x5 + (43 - 12ot)x6 

s.t. 14Xl + l l x 2  + 17x3 + 7x4 + 13x5 + 10x6 -%< 32, 

X1 q'-X2 q-X3 ~ 1, 

X 3 -[- X 5 -[- X 6 ~ 1, 
x i e { 0 , 1 } ,  l ~ < j ~ < 6 ,  o t e [ 0 , 1 ]  

a n d  its so lu t ion  is 

x(ot) = (1, O, O, 1, O, 1) 'v'ote[O, 1], 

z(ot) = 126 - 30ot Vote[O,  1], 

Sw 1 = {(1, O, O, 1, O, 1)/1}. 
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The problem Mw2(Ct) is the following: 

max (55 + 8~)xl + (40 + 5~)x2 + (50 + 12ct)x3 + (28 + 10ct)x4 + (35 + 70t)x5 + (43 + 12~)x6 

s.t. 14xl + l lx2  + 17x3 + 7x4 + 13x5 + 10x6 ~< 32, 

x~ + x2 + x3 >l l, 

X 3 "-~ X 5 + X 6 ~ 1, 

xj~{O,l}, l~<j~<6, ~ [ 0 , 1 ] ,  

the optimal solution of which coincides with the solution of M(00 

x(~) = (1, O, O, 1, O, 1) V0~[O, 1], 

z(~) = 126 + 30~ V~E[O, 1], 

_Sw2 = {(1, 0, 0, 1, 0, 1)/1}. 

Interval arithmetic 

zC(x, ~) = 55xa + 40Xz + 50x3 + 28x4 + 35xs + 43x6, 

f l(x,  ~) = (55 - 8~)xl + (40 - 5~)Xz + (50 - 12~)x3 + (28 - 10~)x4 + (35 - 7~)xs + (43 - 12~)x6 

and solving the biobjective problem for whatever weight vector fle R z, we obtain the same solution as that 
obtained above. 

Fig. 1. represents the fuzzy costs associated to the different solutions for this example. 

p 
1 

0,8 

0,6 

0,4 

0,2 

0 
63  75 84 87 96 111 126 138 156 

Fig. 1. FBLP with fuzzy costs. 
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6. Final remarks 

We have studied in greater depth the different methods to solve the FBLP problems with fuzzy costs. The 
use of methods to rank fuzzy numbers lead us to obtain classical boolean programming problems as auxiliary 
models whereas the use of the representation theorem leads us to obtain parametric interval boolean 
programming problems. Different ways to solve the parametric interval programming problems have been 
proposed. 

Other different approaches to solve the fuzzy linear programming problem with fuzzy costs have been 
presented in 1-31,40, 37, 12, 29J. In 1-16] it was shown how to obtain some of them 1-16, 37,40] as particular 
models of the parametric multiobjective problems. The rest of the approaches use the concept of a-level and 
therefore the solution methods obtain efficient solutions of the interval multiobjective problem (19), when 
they are used for solving the former problem. 

Finally, we can conclude that, according to the preference of the decision maker and the nature of the 
problem, different solutions methods may be used to solve the former problem and different solutions can be 
obtained as we can see in the example. The possibility of obtaining different solutions is in accordance with 
the imprecise raising of the problem. 

Future research is to design a general interactive decision support system for fuzzy boolean programming 
problems, with the possibility for the users to select the different solution approaches in a friendly 
environment, and to choose the final solution according to their preferences. Studies in this direction for 
fuzzy linear programming have been carried out (see [28, 30, 6]). 
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