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ABSTRACT

In this paper, a sequential selection process in group decision making un-
der linguistic assessments is presented, where a set of linguistic preference re-
lations represents individuals preferences. A collective linguistic preference is
obtained by means of a defined linguistic ordered weighted averaging operator
whosie weights are chosen according to the concept of fuzzy majority, specified
by a fuzzy linguistic quantifier. Then we define the concepts of linguistic non-
dom’ nance, linguistic dominance, and strict dominance degrees as parts of the
sequantial selection process. The solution alternative(s) is obtained by applying
these concepts.

1. INTRODUCTION

A group decision making process can be defined as a decision situation
in which (i} there are two or more individuals who differ in their prefer-
ences (value systems), but have the same access to information, each of
thera characterized by his or her own perceptions, attitudes, motivations,
and personalities; (ii) who recognize the existence of a common problem;
and (ili) who attempt to reach a collective decision [2].

The use of preference relations is normal in group decision making,.
Moreover, since human judgments including preferences are often vague,
fuzzy sets play an important role in decision making. Several authors
have provided interesting results on group decision making or social choice
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theory with the help of fuzzy sets. They have proven that fuzzy sets pro-
vided a more flexible framework for the discussion of group decision making
[8, 10-14, 16, 18].

In a fuzzy environment, it is supposed that there exists a finite set of
alternatives X = {z1,...,z,} as well as a finite set of individuals N =
{1,...,m}, and each individual k € N provides his fuzzy preference relation
on X, ie, pr C XzX, and pp,(z;,2;) denotes the degree of preference of
alternative z; over z;, up, (z;, ;) € [0,1]. In this framework, to make
decisions consists of choosing one or more alternatives of the mentioned
alternatives set according to the individuals’ fuzzy preference relations.

Sometimes, however, an individual could have vague information about
the preference degree of alternative z; over z;, and cannot estimate his
preference with an exact numerical value. Then a more realistic approach
may be to use linguistic assessments instead of numerical values, i.e., by
supposing that the variables (preference relations) which participate in the
problem are assessed by means of linguistic terms [4, 6, 7, 9, 15, 20]. A
scale of certainty expressions (linguistically assessed) would be presented
to the individual, who could then use it to describe his degree of certainty
in a preference.

Assuming a set of alternatives or decisions, the basic question is how to
relate to different decision schemata. According to [3], there are (at least)
two possibilities, a group selection process and a consensus process. The
first, a calculation of some mean value decision schema of a set of decisions,
would imply the choice of an algebraic consensus as a mapping ! : DD —
D, whereas the second, the measure of distance between schemata, could
be called topological consensus involving a mapping k : Dz D — L, where
L is a complete lattice.

Here, we shall focus on the first possibility, for developing a group choice
process under linguistic preferences.

Assuming a set of linguistic preferences representing individuals prefer-
ences, the group choice process develops according to the following scheme:
a linguistic ordered weighted averaging (LOWA) operator is defined for lin-
guistic labels, based on the ordered weighted averaging operator [19], and
the convex combination of linguistic labels [5]. The concepts of fuzzy major-
ity, represented by means of linguistic quantifiers and the LOWA operator,
are used in order to obtain a collective linguistic preference. Finally, a
sequential selection process acting on the collective preference relation is
defined according to the following two steps:

1. Using the concept of nondominated alternatives [17] for defining a
nondominance linguistic degree, and obtaining the set of maximal
nondominated alternatives from the collective linguistic preference.
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2. Defining the concepts of linguistic dominance degree and strict dom-
inance degree with linguistic labels, and applying them to the set of
maximal nondominated alternatives for obtaining the best alterna-
tives.

Graphically, see Figure 1.

The aim of this paper is to present the group choice process using a
sequential selection process. To do so, Section 2 shows the linguistic ap-
proach in group decision making, Section 3 presents the linguistic ordered
weighted averaging operator, Section 4 shows how to obtain the collective
linguistic preference relation under a fuzzy majority, Section 5 is devoted
to developing the sequential selection process, Section 6 presents examples,
and at the end, some conclusions are pointed out.

2. THE LINGUISTIC APPROACH IN GROUP DECISION MAKING

The linguistic approach considers the variables which participate in the
problem assessed by means of linguistic terms instead of numerical val-
ues [21]. This approach is appropriate for many problems since it allows a
representation of the experts’ information in a more direct and adequate
form, whether they are unable to express that with precision.

A linguistic variable differs from a numerical variable in that its val-
ues are not numbers; they are words or sentences in a natural or artificial
language. Since words, in general, are less precise than numbers, the con-
cept of a linguistic variable serves the purpose of providing a means of
approximated characterization of phenomena which are too complex or
too ill-defined to be amenable to description in conventional quantitative
terms.

A linguistic variable is associated with two rules:

1. a syntactic rule, which may take the form of a grammar for generating
the names of the values of the variable, and

2. a semantic rule, which defines an algorithmic procedure for comput-
ing the meaning of each value.

DEFINITION [21]. A linguistic variable is characterized by a quintuple
(H,T(H),U,G, M) in which H is the name of the variable; T(H) (or simply
T) denotes the term set of H, i.e., the set of names of linguistic values
of H, with each value being a fuzzy variable denoted generically by X
and ranging across a universe of discourse U which is associated with the
base variable u; G is a syntactic rule (which usually takes the form of a
grammar) for generating the names of values of H; and M is a semantic
rule for associating its meaning with each H, M (X), which is a fuzzy subset
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of U. Usually, the semantic of the elements of the term set is given by fuzzy
numbers defined on the [0, 1] interval, which are described by membership
functions.

Provided that the linguistic assessments are just approximate ones given
by the experts or decision-makers, we can consider that linear trapezoidal
membership functions are good enough to capture the vagueness of those
linguistic assessments since obtaining more accurate values may be impos-
sible or unnecessary.

Therefore, we need a term set defining the uncertainty granularity, i.e.,
the finest level of distinction among different quantifications of uncertainty.
The elements of the term set determine the granularity of the uncertainty.
In [1], the use of term sets was studied with odd cardinals, representing
the middle term a probability of “approximately 0.5,” the remaining being
terms placed symmetrically around it and the limit of granularity 11 or
with o more than 13.

Le: § = {s;},t € H=1{0,...,T} be a finite and totally ordered term
set on [0,1] in the usual sense [1, 4, 21]. Any label s; represents a possible
value for a linguistic real variable, i.e., a vague property or constraint on [0,
1]. We consider the term set with an odd cardinal, where the middle label
represents an uncertainty of “approximately 0.5” and the remaining terms
are placed symmetrically around it. Moreover, we require the following
properties for the term set:

1) The set is ordered: s; > s; if i > j.

2) The negation operator is defined: Neg(s;) = s; such that j =T — .
3) Maximization operator: Max(s;,s;) = s; if s; > s;.

4) Minimization operator: Min(s;, s;) = s; if s; < s;.

Since aggregation of uncertainty information is a recurrent need in the
decision process, combinations of linguistic values are needed. Two main
different approaches can be found in order to aggregate and compare lin-
guistic values: the first acts by direct computation on labels [5], and the
second uses the associated membership functions [1, 21].

Most available techniques belong to the latter kind; however, the final
results of those methods are fuzzy sets which do not correspond to any
label in the original term set. If one finally wants to have a label, then a
“ling aistic approximation” is needed [1, 7, 21, 22]. The process of linguis-
tic approximation consists of finding a label whose meaning is the same
or the closest (according to some metric) to the meaning of an unlabeled
membership function generated by some computational model. A simpli-
fied solution is the following. For each element of the term set and for the
unlabeled membership function representing the result of some arithmetic
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Fig. 2. Distribution of the nine linguistic term set.
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operation, two features are extracted: the first moment of the distribution,
and the area beneath the curve. A weighted Euclidean distance, where the
weights reflect the relevance of the two parameters in determining semantic
similarity, provides the metric required to select the element of the term set
that most closely represents the result. There is neither a general criterion
to evaluate the goodness of an approximation nor a general method for
associating a label to a fuzzy set, so that specific problems may require to
develop tailored methods.

Consider the following nine linguistic term set with the associated se-
mantic [1] (the first two parameters indicate the interval in which the mem-
bership value is 1.0; the third and fourth parameters indicate the left and
right width of the distribution):

C Certain

EL  Extremely_Likely )

ML  Most_Likely 0.78,0.92,0.06, 0.05)

MC Meaning ful_Chance 0.63,0.80,0.05,0.06)
)
)

(1,1,0,0)
(
E
IM  It-May (0.41,0.58,0.09,0.07
(
(
(
(

0.98,0.99,0.05,0.01

SC  Small_.Chance 0.22,0.36,0.05,0.06

VLC Very_Low_Chance 0.1,0.18,0.06,0.05)

EU  Extremely Unlikely 0.01,0.02,0.01,0.05)
I Impossible 0,0,0,0)

and shown graphically in Figure 2.

Formally speaking, it seems difficult to accept that all individuals should
agree on the same membership function associated to linguistic terms, and
therefore there are not any universality distribution concepts. For example,
the two close perceptions shown in Figure 3 for the evaluation could be
considered.

It is well known and accepted that the tuning of membership functions
is a crucial issue in process control. In our context, we consider an envi-
ronment where experts can discriminate perfectly the same term set under
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Fig. 3. Different distribution concepts.

a similar conception, taking into account that the concept of a linguistic
variable serves the purpose of providing a means of approximated charac-
terization of imprecise preference information.

On the other hand, we shall focus on the second approach, which is in-
dependent of the semantic of the term set, considering a similar discrimina-
tion of the experts. We present an aggregation operator of linguistic labels
by direct computation on labels, which is based on the ordered weighted
averaging (OWA) operator [19] and the convex combination of linguistic
labels defined by Delgado et al. [5]. We call it a linguistic ordered weighted
averaging (LOWA) operator.

3. THE LINGUISTIC ORDERED WEIGHTED AVERAGING
OPERATOR

A mapping F,
F:[0,1]" — [0,1]

is celled an OWA operator of dimension n if associated with F' is a weighting
vector W, W = [wy,...,wy], such that, i) w; € [0,1], ii) >°, w; = 1, and
F(aq,...,ap) =wy by +wy by + -+ +wy, - by, where b; is the ith largest
element in the collection ay,...,a,. Denoting B as the vector consisting
of the arguments of F' put in descending order,

F(ay,...,an) =W -BT
provides an aggregation type operator that always lies between the “and”

and the “or” aggregation. Its properties are presented in [19] and its first
use in group decision making in [8].
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This operator can be extended to linguistic arguments using the convex
combination of linguistic labels defined in [5]. In fact, let M be a collection
of linguistic labels, pr € M, k =1,...,m, and assume p,, < pp_1 < -+ <
p1 without loss of generality. For any set of coefficients {Ax € [0,1],k =
1,2,...,m,>_ A = 1}, the convex combination of these m generalized
labels is the one given by

C{hi,p, k=1,....m} =2 O0p &1~ X)) OC{Bh,pn, h=2,...,m}
ﬁh:)\h/Z)\k;hZZ,...,m.
2

In [5], the aggregation of labels was defined by addition, the difference
of generalized labels, and the product by a positive real number over a
generalized label space S, based on S, i.e., the Cartesian product § =
SzZ*, with the basic label set S = {(s;,1),% € H}. In our context, all
the operations are carried out over the basic set S. Briefly, the result
of the expression A ® s; & (1 — A) ©® s;, 7 > i, is the s, such that k =
min{7, ¢ + round(A- (j —9))}.

An example to clarify of this operation is the following. Suppose the
term set

S = {Sg :C,S7=EL,SG :ML,SE, —‘:MC,
s4=IM, s3=8C,8p =VLC,s1 = EU, 89 =1}

and A = 0.4,

1-X2=06
SC VLC C EL

ML IM IM EL EL
A=04 1 VLC EU MC IM
IM SC SC ML ML
VLC SC VLC ML MC

where, for example,

k11 = min{8,3 + round(0.4 % (6 — 3))} = 4 (IM)
ko1 = min{8,0 + round(0.6 x (3 — 0))} = 2 (VLC).

Therefore, the LOWA operator can be defined as

F(ai,...,am) =W -BT = C{wg, by, k=1,...,m}
:U)lebl@(l_UH)QC{ﬂh,bh,h=2,---7m}
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where By = wp/EFwg, h = 2,...,m, and B is the associated ordered
label vector. Each element b; € B is the ith largest label in the collection
Aly.-.,am.

4. THE COLLECTIVE LINGUISTIC PREFERENCE RELATION
UNDER A FUZZY MAJORITY

Suppose we have a set of n alternatives X = {z3,...,z,} and a set of
individuals N = {1,...,m}. Each individual k € N provides a preference
relation linguistically assessed in the term set S,

d)Pk : XzX — S,

where ¢pr (24, ;) = pfj € S represents the linguistically assessed preference
degree of the alternative z; over z;. We assume that py is reciprocal in
the sense, pf; = Neg(pk;), and by the definition pf, = None (the minimum
label in S).
As is now known, basically two approaches may be considered. A direct
approach
{P',...,P™} — solution

according to which, on the basis of the individual preference relations, a
solution is derived, and an indirect approach

{P},...,P™} = P — solution

providing the solution on the basis of a collective preference relation, P,
which is a preference relation of the group of individuals as a whole.

Here, we consider the indirect derivation, and hence we must derive a
collective linguistic preference relation.

First, we introduce the concept of a fuzzy quantifier [23], used in order
to specify the fuzzy majority concept as proposed Kacprzyk [10]. The fuzzy
linguistic quantifiers were introduced by Zadeh {23]. Linguistic quantifiers
are typified by terms such as most, at least half, all, as many as possible, and
assurning a quantifier Q is a fuzzy set in [0, 1]. Zadeh distinguished between
two types of quantifiers, absolute and proportional or relative. Absolute
quantifiers are used to represent amounts that are absolute in nature. These
quantifiers are closely related to the concepts of the counting of the number
of elements. Zadeh suggested that these absolute quantifiers values can
be represented as fuzzy subsets of the nonnegative real numbers, Rt. In
particular, he suggested that an absolute quantifier can be represented by
a fuzzy subset @, where for any r € R*, Q(r) indicates the degree to which
the value r satisfies the concept represented by (). And, relative quantifiers
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represent proportion type statements. Thus, if @@ is a relative quantifier,
then @ can be represented as a fuzzy subset of [0, 1] such that for each r €
[0,1], Q(r) indicates the degree to which r portion of objects satisfies the
concept denoted by Q.

An absolute quantifier satisfies

Q(0) =0,
3k such that Q(k) = 1.

A relative quantifier
Q:0,1] — [0,1]

satisfies

Q(0) =0,
Ir € [0,1] such that Q(r) = 1.

A nondecreasing quantifier satisfies
Va,b if a > b then Q(a) > Q(b).
The membership function of a relative quantifier can be represented as

0 ifr<a

Q(r) = Z_a fa<r<b

1 ifr>b

with a,b,rz € [0,1].

Some examples of relative quantifiers are shown in Figure 4, where the
parameters (a,b) are (0.3,0.8),(0,0.5), and (0.5, 1), respectively.

By means of the concept of fuzzy majority specified by a fuzzy linguis-
tic quantifier and the use the LOWA operator, the collective preference
relation, P, is obtained as

P=F(P!,. . ., P™
with p;; = F(p}j, ...,pfy) and the weight vector, W, obtained from the

nondecreasing fuzzy linguistic quantifier representing the fuzzy majority
over the individuals [19].
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"Most” “At least half” "As many as possible”

Fig. 4. Linguistic quantifiers.

Yager computes the weights w; of the aggregation from the function
Q@ describing the quantifier [19]. In the case of an absolute proportional
quantifier

w; = QGE)— QU —1), i=1,...,m,

anc in the case of a relative proportional one,
w, = Qifm) — Qi - 1)/m),  i=1,...,m.

5. THE SEQUENTIAL SELECTION PROCESS

As we said earlier, the sequential selection process acts on the collective
preference relation in two steps:

1. Using the concept of nondominated alternatives [17] for defining the
concept of linguistic nondominance degree and obtaining the set of
maximal nondominated alternatives from the collective linguistic pref-
erence.

2. Defining the concepts of dominance and strict dominance with lin-
guistic labels, and applying them to the set of maximal nondominated
alternatives for obtaining the best alternative.

5.1. LINGUISTIC NONDOMINANCE DEGREE

Suppose the linguistic collective preference P = (p;;),i,7 = 1,...,m;
then let P be a linguistic strict preference relation pps{(z;, ;) = pj; such
that

p'fj = None if Dij < Pjis
or pj; = Sk € S if pi; > pji with p;; = s;,pjs =sgand Il =t + k.
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The linguistic nondominance degree of x; is defined as
pnp(T:) = i\([eir)x([Neg(ups (5, 24))]

where the value pxp(z;) is meant as a linguistic degree to which the alter-
native z; is not dominated by any of the elements in X.

Finally, a set of mazimal nondominated alternatives, X™P C X, is ob-
tained as

XNP = {w € X /unp(z) = Il\l/Iea)%([uND(y)]}.

XND

Therefore, aggregating the knowledge of the experts, is selected as

the set of preferred alternatives in our choice process.

5.2. LINGUISTIC DOMINANCE DEGREE

We define a linguistic degree which acts on the alternatives of XV P,
LDD(ml) = FQi;éj (Pij),

where Fp is a LOWA operator whose weights are defined the using relative
quantifier @, and whose components are the elements of the corresponding
row of P, i.e., for x;, the set of n — 1 labels {p;; / j=1,...,n and i # j}.

This measure allows us to define the set of nondominated alternatives
with maximum linguistic dominance degree:

XUPP _ {3 ¢ XMP | LDD() - yg{%[wp(y)]}.

5.8. STRICT DOMINANCE DEGREFE

We define this degree as a real degree which acts on the alternatives of
XLDD

SDD(%):Q( & >,

n-—1
where
r; = card{py € S / Piqg > Pqi}-
Thus, we obtain the final solution to the selection process as the following
set of alternatives,

XSDD {z € X'PP ) SpD(z) = yel\;l(%D[SDD(y)]}-

REMARK. The last two dominance degrees use the concept of fuzzy
majority in their definition represented by a fuzzy linguistic quantifier.
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6. EXAMPLES

EXAMPLE 1. Consider the above nine linguistic term set (Figure 2)
and an associated semantic, and four individuals whose linguistic prefer-
ences using the above nine element term set are

- SC MC VILC - IM IM VIC
p_|MC - IM IM |, _|IM - MC IM
“|sc M - vic|" T|liMm sc - viC
| ML IM ML - ML IM ML -
[~ IM  MC I - IM McC SC
pi_ | IM - ML IM | 4 |IM - IM SC
SC VILC - VIC sc IM - VIC
c M ML - MC MC ML -

Using the linguistic quantifier “At least half” with the pair (0.0, 0.5), and
the corresponding LOWA operator with W = (0.5,0.5,0,0), the collective
linguistic preference is

- IM MC VLC
IM - MC IM
sC IM - VLC
EL IM ML -

Next, we apply the sequential selection process: the linguistic strict
preference relation is '

- I VvIC I
s I - BU I
PP=1r 1 - 1

MC I I -

and the linguistic nondominance degree
)U’ND(wly Z2,T3, :I"4) = {ch Cv IM, C]
The set of maximal nondominated alternatives, XV P is

XND = {IEQ,.’L‘4}.



236 F. HERRERA ET AL.

As we have obtained a nondominated alternative set with more than one
element, then we apply the linguistic dominance degree on the alternatives
of XNP_ To do so, we use the same linguistic quantifier, obtaining

(LDD(z3), LDD(z4)) = [ML, EL).

Therefore,
XLDD — {I4}

Since XZPP has only one alternative, this is the best alternative for the
group selection process.

EXAMPLE 2. Consider the following 13 linguistic term set with an
associated semantic, [1]:

C Certain (1,1,0,0)

EL Extremely_Likely (0.98,0.99,0.05,0.01)
VHC Very_High Chance  (0.87,0.96,0.04,0.03)
ML Most_Likely (0.78,0.92,0.06,0.05)
HC High_Chance (0.75,0.87,0.04,0.04)
MC Meaning ful Chance (0.63,0.80,0.05,0.06)
L Likely (0.53,0.69,0.09,0.12)
IM  It-May (0.41,0.58,0.09, 0.07)
SC Small_Chance (0.22,0.36,0.05,0.06)
VLC Very.Low-Chance (0.1,0.18,0.06,0.05)
NL Not_Likely (0.05,0.15,0.03,0.03)
EU Extremely Unlikely  (0.01,0.02,0.01,0.05)
I Impossible (0,0,0,0)

and shown graphically in Figure 5.

Consider the same four individuals whose linguistic preferences, using
the above thirteen element term, are

[— SC HC NL ] - IM MC VIC
pi_ |HC - MC MC |, _|MC - HC IM
sc IM - VIC IM SC - NL
\VHC IM ML - | | ML MC VHC -
[— IM  HC I ] - IM HC SC
p3_ |MC - ML IM |, _|MC - IM SC
sc viLc - vic|' T |sc MC - NL
¢ Mc ML - | |HC HC VHC -




SEQUENTIAL SELECTION PROCESS 237

0.5

Fig. 5. Distribution of linguistic term set.

Note that these preferences represent the same problem as before (Ex-
amp.e 1), but with a finest granularity in the linguistic term set.

As in the earlier example, the linguistic quantifier “At least half” and

the corresponding LOWA operator are used in order to obtain the collective
linguistic preference:

- IM HC VLC

P MC - HC L
| SC L — VLC
EL MC VHC -
The linguistic strict preference relation is
- I sC I
s | NL - NL I
P = I I - 1

HC EU MC

and the linguistic nondominance degree is
,U,ND(.’El,xQ,:Eg,I4) = [SC, EL,IM, C]
The set of maximal nondominated alternatives is

XND = {1114}

In the first step, the sequential selection process has found the best alterna-
tive, i.e., 4. This can be explained by the finest granularity of the second
term set.
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7. CONCLUSIONS

In this paper, we have presented a sequential decision process in group
decision making where the preferences of the individuals are represented
by linguistic preference relations. The sequential decision process has been
based on the concepts of fuzzy majority, fuzzy linguistic quantifiers, linguis-
tic ordered weighted averaging operators, nondominance, and dominance
degree.

We have developed one of the two possibilities in a decision schema, the
group selection process. The second possibility, a consensus process under
a linguistic assessment approach, ought to be developed in order to obtain
a linguistic consensus degree and to cooperate in the solution of the group
decision problem. This is a problem to be discussed in future work.

We would like to express our gratitude to the referees, whose comments
and suggestions helped to improve the previous version of the paper.
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