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Applying Genetic Algorithms in FuzzyOptimization Problems�F. Herrera, M. Lozano, J.L. VerdegayDept. of Computer Science and Arti�cial InteligenceUniversity of Granada18071 - Granada, Spaine-mail: fherrera@ugr.es, lozano@robinson.ugr.es, jverdegay@ugr.esAbstractGenetic Algorithms as function optimizers are global optimization techniques based onnatural selection principles that can be e�ciently used in high dimensional, multimodal andcomplex problems. Genetic Algorithms are here presented as a tool to solve fuzzy optimiza-tion problems either on their associated auxiliary models or by assuming the existence ofsome fuzzy performance (�tness) function. Finally applications of Genetic Algorithms to�nd the maximum 
ow in a network with fuzzy capacities and assignment problems withlinguistic labels are studied.Keywords: Genetic algorithms, fuzzy optimization.1. IntroductionMethods and techniques of optimization have been successfully used in various �elds,and related to technical systems of relatively well-de�ned structure and behavior, the so-called hard ones. The success has motivated a direct application of the same traditionalapproaches to the modeling and analysis of what is often called the soft systems in whicha key role is played by human judgments, preferences, etc. Unfortunately, the progress inthis way have been much less than expected. There are some questions that we can state:Can we get some good solution satisfying a level of performance quickly?. If we work withimprecise (fuzzy) data will we be able to design an e�cient algorithm for obtaining anoptimal solution?. How to reach an acceptable solution based on human-like reasoningmechanisms?. Is it enough to obtain a good solution?. Here our very start point is thatattainment of the optimum is much less important for complex systems that to attainquickly a good solution. Genetic Algorithms (GA) are search methods drawing increasingattention regarding their potential as optimization techniques. They are search algorithmswith linear order which do not necessarily �nd an optimal solution to any problem, but do�nd good solutions to problems that are resistant to most other known techniques.GA were formerly introduced and developed by J. Holland and his colleagues at theUniversity of Michigan. He gave the theoretic foundations in his book "Adaptation in Natu-ral and Arti�cial Systems" (1975) [Hol75]. GA are iterative adaptative search algorithmsthat use operations found in natural genetic to guide their trek through a search space.They start with a population of randomly generated solutions and advance toward bettersolutions by applying the genetic operators modeled on the genetic processes occurring�Work supported by spanish DGICyT under project PB92-0933



in nature. In each generation, relatively good solutions reproduce to give o�spring thatreplace the relatively bad solutions which die. An evaluation or objective function playsthe role of the environment to distinguish between good and bad solutions.The purpose of this paper is to show how GA can be applied to solve some specialfuzzy optimization problems. To best achieve this goal, the paper is structured as follows:Section 2 introduces the foundations of GA. Section 3 describes the application of GA tosome conventional optimization problems and, �nally, Section 4 deals with the use of GAto solve two concrete cases: to �nd the maximum 
ow in a network with fuzzy capacitiesand assignment problems with linguistic labels.2. Foundations of Genetic AlgorithmsGA are di�erent from more normal optimization and search procedures in four ways:a) GAs work with a coding of the parameter set, not the parameters themselves, b) GAsearch from a population of points, not from a single point, c) GA use objective functioninformation, d) GA use probabilistic transition rules, not deterministic ones. GA requirethe natural parameter set of the optimization problem to be coded as a �nite-length stringover some �nite alphabet.Although there are many possible variants of the basic GA, the fundamental underlyingmechanism operates on a population of individuals, and consists on three operations: (1)evaluation of individual �tness, (2) formation of a gene pool, and (3) recombination andmutation. The initial population P (0) is chosen randomly and the individuals resultingfrom these three operations form the next generations's population. The process is itera-ted until the system ceases to improve. Generally, each individual in the population isrepresented by a �xed length binary string which encodes values for variables.During iteration t, the GA maintains a population P (t) of solutions xt1; :::; xtN (thepopulation size n remains �xed). Each solution, xti , is evaluated by the function E(�),and E(xti) is a measure of �tness of the solution. The �tness value determines the relativeability of an individual to survive and produce o�spring in the next generation. In thenext iteration (t + 1) a new populations is formed on the basis of the operations (2) and(3).The �gure 1 shows the structure of a simple GA, and in the �gures 2.1, 2.2, 2.3 areillustrated the basic operations: reproduction, crossover and mutation.Procedure genetic algorithmbegin (1)t = 0;inicialize P (t);evaluate P (t);While (Not termination-condition) dobegin (2)t = t+ 1;select P (t) from P (t � 1);recombine P (t);evaluate P (t);end (2)end (1)Figure 1: Structure of a GA
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Old Poblation                                                Gene Pool EvaluationFigure 2.1: Evaluation and contribution to the gene poolFigure 2.2: Recombination. One-point crossoverFigure 2.3: MutationThe crossover operator combines the features of two parent structures to form twosimilar o�spring, this is applied under a random position cross with a probability of per-formance, the crossover probability, Pc . The mutation operator arbitrarily alters one ormore components of a selected structure so as to increase the structural variability of thepopulation. Each position of each solution vector in the population undergoes a randomchange according to a probability de�ned by the mutation rate, the mutation probability,Pm.A schema is a similarity template describing a subset of strings with similarities atcertain string positions, [Gol89, Hol75]. Even though a standard GA processes only nstructures each generation it also processes approximately n3 schemata. This is an impor-tant propertie of GA that is called implicit parallelism.It is generally accepted that any GA to solve a problem must have �ve components:1. A genetic representation of solutions to the problem,2. a way to create an initial population of solutions,3. an evaluation function which gives the �tness of each individual,4. genetic operators that alter the genetic composition of children during reproduction,and5. values for the parameters that the GA uses (population size, probabilities of applyinggenetic operators, etc.).3. Genetic Algorithms and Optimization ProblemsGA-based function optimizers have demonstrated their usefulness over a wide range ofdi�cult problems.According their above description, �rst a representation of the solutions is needed. GArequire the natural parameter set of the optimization problem to be coded as a �nite-length



string over some �nite alphabet. It was noted very early that the choice of representationcan itself a�ect the performance of a GA-based function optimizer.The binary representation is just one of the ways to represent the space to be searched.Using the f0; 1g alphabet with a non-combinatorial problem, that is with real variables,we code the variables in the following way: If a single parameter xi has lower and upperbounds ai and bi respectively, �rst we must apply a discretization over the real parameterand then the standard way of binary coding xi using n bits is to let real values betweenai + k(bi�ai)(2n�1) and ai + (k+1)(bi�ai)(2n�1) corresponding to the standard binary code for the integerk for 0 � k < 2n � 1. To avoid talking about intervals, it is referred to the binary code forthe integer k above as corresponding to the left end of the interval, namely ai + k(bi�ai)(2n�1) .Non-binary string representations are often used, new techniques are directed to use areal valued space where a solution is coded as a 
oating point vector, that is the real-codedalternative [Gol91, Jan91, Mic92, Esh93].Initially, GA were applied directly only to unconstrained problems, but many practicalproblems contain one or more constraints that must also be satis�ed. Then it is necessaryto incorporate the constraints into GA search. The major di�culty in applicability of GA tovarious optimization problems is the lack of general methodology for handling constraints.Considering the next constrained problem,Max :s:t: f(x)hi(x) � 0 i = 1; :::;mx � 0 (1)diferent approaches to manage the constraints with GA have been proposed:a) To generate candidate solutions without considering constraints and penalizing themby decreasing the goodness of evaluation function. A constrained problem is transformedinto an unconstrained one by associating a penalty with all the constraint violations andincluding the penalties in the evaluation function as follows:Max : f(x) + �r mXi=1 �i(hi(x)): (2)where r is a penalty coe�cient, � is -1 for maximization and +1 for minimization problems,and �i is a penalty function related to the i-th constraint (see [Gol89, Ric89, Sie89, Lie91]).b) The second approach is concentrated on the use of special representation mappings whichguarantee (or at least increase the probability of) the generation of a feasible solution andthe application of special repair algorithms to "correct" any infeasible solution generated.These two approaches involve transforming potential solutions of the problem into aform suitable for a GA using penalty functions or intelligent decoding schemes and repairmechanisms.c) Another di�erent approach is to introduce richer data structures together with an appro-priate family of applicable genetic operators which can hide the constraints presented inthe problem (see [Vig91, Mic92, Nak91]).d) A �nal approach provides a way of handling constraints that is both general and problemindependent. It combines some of the ideas of the previous approaches. The main ideabehind this approach lies in the elimination of the equalities present in the set of constraints,and careful design of special genetic operators, which guarantee to keep all chromosomes



within the constrained solution space. The GENOCOP system (GEnetic algorithm forNumerical Optimization for COnstrained Problems) is behind of this approach (see [Mic91,Mic92]).Therefore, we must note that for optimization problems it is possible to transform theproblem into a form suitable for a GA (penalty functions, ...), and to design speci�c GA forsolving them, with special representations, incorporating problem speci�c knowledge intoGA, with modi�ed operator, etc. These di�erent techniques have allowed to apply GA toa wide class of optimization problems: Linear programming problems, Transportation pro-blems, Quadratic assignment problems, Traveling salesman problems, Vehicle routing, Job-shop problems,Bin-packing problems, Graph partitioning, Set covering problems, GraphColoring, Scheduling, Facility layout, and others NP-complete problems (see [Vol93] Listof References of Evolutionary Algorithms in Management Science).4. Genetic Algorithms Applications to Fuzzy OptimizationLet S = (s1; s2; :::; sN) be a population of N individuals, and denote E(�) the evaluationfunction giving a �tness for every si. The �tness E(si) for a solution candidate si servesto determine a selection probability PSi .The proportional selection [Gol89, Hol75] is the main selection scheme used in GA,PSi = E(si)PNj=1 E(sj) ; i = 1; :::; N; (3)(an overview about the selection probabilities proposed by di�erent authors can be foundin [Bac91]).When we work in a fuzzy environment, the feasible solutions of an optimization problemcan hold associated fuzzy objectives [Fed91], then the �tness associated to an individualis de�ned by a fuzzy number. Then, would be necessary to de�ne a method to obtainthe selection probabilities of the individuals. Next, we propose a method to do it, and wepresent some applications of GA to fuzzy optimization problems.4.1. Selection probability from fuzzy �tnessConsider the fuzzy �tness associated to each individual of the population, obtained bymeans of the evaluation function, E(�), and represented as a fuzzy number,E : S �! F (R),si 2 S, E(si) 2 F (R), where F (R) is the set of real fuzzy numbers.From these fuzzy numbers it is necessary to de�ne the selection probability associatedto each individual to obtain a gene pool. We can consider a function f : F (R) �! R,which according to (3) allows to de�ne the selection probability from the fuzzy �tness.In fact, for each individual si of the population S, PSi can be de�ned asPSi = f(E(si))f(PNj=1 E(sj)) ; (4)where the function f : F (R) �! R must be such that the set fPSigi=1;:::;N veri�es to beboth a distribution of probability and a selection probability which allows to reproducethe best strings, that is, the strongest individuals. In order to the function f veri�es thesedesired properties, we introduce the next conditions for the function f :1) Preserve the addition operation



f( NXi=1 E(sj)) = NXi=1 f(E(sj)); (5)necessary condition in order that PNi=1 PSi = 1.2) Preserve the order E(sk) � E(sj)() f(E(sk)) � f(E(sj)); (6)necessary condition for reproducing the strongest strings by means of the selectionprobability. Because of this condiction, the strongest individuals have larger selectionprobability, E(sk) � E(sj)() PSk � PSj :An important class of functions which verify these conditions, (5) and (6), are the linearranking functions [Bor85, Cam92, Zhu92].4.2. Linear ranking functionsFuzzy numbers [Dub80] are fuzzy subsets of R whose �-cuts are closed and boundedintervals on R when � > 0. If � = 0, A0 will denote the closure of supp(A). Hence,8� 2 [0; 1] the �-cuts of A will be represented byA� = [a1(�); a2(�)] (7)Extended sum and product by positive real numbers are considered to be de�ned inF (R) by means of the Zadeh's Extension Principle. Hence, given any two fuzzy numbersA;B 2 F (R), 8� 2 [0; 1], the following result concerned on their �-cuts will be used,(A+B)� = [a1(�) + b1(�); a2(�) + b2(�)] (8)(rA)� = [ra1(�); ra2(�)] 8r 2 R r > 0: (9)The problem of comparison of fuzzy numbers has been widely investigated in the lite-rature. Many fuzzy numbers ranking procedures (FNRP) can be found for instance in[Bon85, Zhu92]. Here we will focus on those FNRP which verify the conditions (8) and(9), linear ranking functions, what is no too restrictive because many well known FNRPmay be formulated by using linear ranking functions in some way.Consider A;B 2 F (R), a simple method of comparison between them consists on thede�nition of a certain function f : F (R) �! R. If this function f(�) is known, thenf(A) > f(B), f(A) = f(B), f(A) < f(B) are equivalent to A > B, A = B, A < Brespectively. Usually, f is called a Linear Ranking Function (LRF) if8A;B 2 F (R); 8r 2 R r > 0; f(A+B) = f(A) + f(B) and f(rA) = rf(A): (10)As it is well known, from this de�nition several FNRP may be considered. In particular,properties (8) and (9) suggest that FNRP using linear functions of the �-cuts could beexpressed by LRF. A good study of these LRF can be found in [Cam92]. Here, some ofthem are shown.



4.2.1. Linear functions based on only one �-cutConsider �, � 2 [0; 1] and A 2 F (R). One de�nesf(A) = �a1(�) + (1� �)a2(�): (11)The de�nition contains two parameters which depend on the decision-maker: the �rst,�, is an accomplishment degree of the comparison, and the second, �, is and optimism-pessimism level. Particular cases of this de�nition are:(a) If � = 1 and A 2 F (R) is any unimodal fuzzy number, then the �rst index of Yager,[Yag78], is obtained.(b) If � 2 [0; 1] is any �xed value and � = 0, then the index of Adamo [Ada80] is deduced.This de�nition is a particular case of the discrete method proposed in [Gon91]. Fromthe properties (8) and (9) is very easy to show as f(�) is linear in the sense of the abovede�nition.4.2.2. Linear functions based on all the �-cutsLet A 2 F (R), � 2 [0; 1] and P (�) be any additive measure on [0; 1]. One de�nesf(A) = Z 10 (�a1(�) + (1� �)a2(�)) dP (�): (12)As it can be seen, now one has only one parameter, �, which acts as an optimism-pessimism degree. Particular cases of this de�nition are:(a) If P (�) is the Lebesgue's measure and � = 12, then the fourth index of Yager, [Yag81],is obtained.(b) If P (�) is given by P ([a; b]) = b2� a2 and � = 12 , then the index of Tsumura, [Tsu81],is deduced.This general de�nition of f(A) was proposed in [Gon90], where also was shown asthis ranking function is linear. In particular for triangular fuzzy number f(A) takes thefollowing expression:f(A) = a1(1)� (a1(1) � a1(0))(r + 1) + �(a2(0)� a1(0))(r + 1)where r is a parameter according to which f(A) can take values either close to themodal values (r > 1) or close to the values on the support (r < 1).4.3. ApplicationsA lot of real problems consist on the optimization of a function such that all thecharacteristics of the problem can be completely represented by it. But the solution of anoptimization problems may lead to a polynomial problem of high order or a NP problem,as it is the case of many optimization problems in network and graphs, decision problems,satis�ability problems, etc. Many of them have served to show the power of the GA.Fuzzy logic based optimization approaches are proposed for representing uncertaintyand approximation in relationships among system variables. Among them, we have selectedtwo fuzzy optimization problems whose associated model may be solved by GA, as in fuzzyenvironment they can be used as a 
exible tool for optimization and search.



a) Maximum 
ow in a network with fuzzy capacities, [Baz77, Cha82 ,Cha84 ,Cha87]Let S = (N;A) be a network with m vertices and n arcs where a liquid or a gas gothrough it from a source node ns until a sink node nt with fuzzy arc capacities. N denotesthe set of nodes and A � NxN the set of arcs. The problem consists on �nding themaximum 
ow from ns to nt where associated to each arc (i; j) there is a capacity lij = 0giving a lower bound for the 
ow, and a fuzzy capacity uij� 2 F (R) given an upper boundfor the 
ow on the arc 
ows. Next the concept of cut in a network (basic in the developmentof the problem) as well as the concept of fuzzy capacity of a cut are introduced.De�nition 1. (Separation of the nodes ns and nt) [Baz77]Let N1 be any set of nodes in the network such that ns belongs to N1 and nt do notbelong to it, and let N2 be N2 = N � N1. Then (N1; N2) � f(i; j) : ni 2 N1; nj 2 N2g iscalled a cut which separates the nodes ns and nt.De�nition 2. [Cha84]The fuzzy capacity of the cut (N1; N2) is the fuzzy number de�ned asC�(N1; N2) = X(N1;N2) uij� = Xni 2 N1nj 2 N2 uij� (13)extending the addition operation on fuzzy numbers.Theorem 1. (Maximum 
ow-minimum cut theorem [For56])The value of the maximum 
ow from ns to nt is equal to the value of the minimumcut-set (N1; N2) separating ns from nt.The value of such a cut-set is the sum of the capacities of all arcs of S whose initialvertices are in N1 and the �nal vertices in N2. Then the minimum cut-set is the cut-setwith the smallest value C�(N1; N2).Thus, the problem is reduced to obtain a partition of the set N into N1; N2, whichseparates the two vertices ns; nt, and with minimun C�(N1; N2). It is possible to formulatethe minimum cut problem as a 0-1 programming problem as follows: Let xi be a 0-1variable associated with the node ni 2 N de�ned asxi = ( 1 if ni 2 N10 if ni 2 N2then the minimum cut problem can be formulated as to minimizeg(x) = mXi=1 mXj=i+1 uij� [xi(1� xj) + (1� xi)xj] (14)and a boolean function without constraints is obtained. In order to solve this problem byusing GA the following evaluation function E(�) is introduced,E(x) = mXi=1 mXj=i+1 uij� � g(x) (15)and therefore to maximize E(x), which obviously is equivalent to minimize g(x), is tobe done. Then with an adecuate genetic representation of the solutions, the selection



probability for each individual of the population will be obtained using a LRF, f(�), as itwas described in the expression (4).Remark: As it is known, [Chr75], if we consider a network with various source nodes andsink nodes, and assume that 
ow can go from any source to any sink. The problem of�nding the maximum total 
ow from all the sources to all the sinks can be converted tothe simple (ns to nt) maximum 
ow problem by adding a new arti�cial source node ns anda new arti�cial sink node nt with added arcs leading from ns to each of the real sourcenodes and from every real sink to nt. The �gure 3 shows this.
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tpFigure 3: Network with source nodes and sink nodesb) Assignment Problems with linguistic labelsThe linguistic approach assumes that the variables which participate in the problem areassessed by means of linguistic terms instead of numerical values, [Zad75]. This approach isadequate for a lot of problems, because it allows a representation of the experts informationin a more direct and adequate form when they are unable of expressing this with precision.Among them, we will study here the assignment problem with linguistic labels, whichis addressed as follows: Consider m workers and m jobs, and a linguistic valuation aboutthe assignment of the worker i to the job j. This valuation would be stablished in terms ofL = fimpossible, extremely-unlikely, very-low-chance,: : :g, it shows the �tting betweenthe worker i and the job j, and will be denoted by eij. Thus, we need a term set whichwill de�ne the uncertainty granularity, i.e. the �nest level of distinction among di�erentquanti�cations of uncertainty. The elements of the term set determine the granularityof the uncertainty and this granularity will limit the ability to di�erentiate between twosimilar operators.In [Bon85] it was studied the use of term set with odd cardinal, where the middle termrepresents a probability of "aproximately 0.5" and the rest terms are placed simetricallyaround it, and the limit of granularity is 11 or no more than 13. We choose a set of ninelabels studied in [Bon85], Ei i = 1; : : : ; 9, denoted by L and with the following termsL = fimpossible; extremely� unlikely; very � low � chance; small� chance;it may; meaningful chance; most likely; extremely likely; certaing (16)where the terms can be modi�ed according to the criteria of the decision-maker.The semantic of each element of the term set is given by a fuzzy number de�ned on the[0,1] interval, Ni, which can be described by its membership function �Ni .Provided that the linguistic assessments are just approximate ones, trapezoidal member-ship functions are good enough to capture their vagueness. The parametric representationof the trapezoidal membership functions is achieved by the 4-uple (ai; bi; �i; �i). The �gure4 shows the membership function of Ni.
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a b ba i i i− α + βi  iiFigure 4: Membership Functions of NiThe fuzzy numbers associated with each element were derived from an adaptation of theresults of psychological experiments on the use of linguistic probabilities [Bey82, Bon85].The table 1 indicates the semantic of the proposed term set L, [Bon85],impossible (0 0 0 0)extremely unlikely (0 .02 0 .05)very low chance (.1 .18 .06 .05)small chance (.22 .36 .05 .06)it may (.41 .58 .09 .07)meaningful chance (.63 .80 .05 .06)most likely (.78 .92 .06 .05)extremely likely (.98 1 .05 0)certain (1 1 0 0)Table 1: Semantic of the term set elements Land the �gure 5 illustrates the membership distribution of the term set elements.

0.0 1.0Figure 5: Membership Distribution of Elements in LTo solve the problem, a mathematical model for the assignment problem with linguisticlabels may be written as Maxs:t: mXi=1 mXj=1nijxijmXj=1xij = 1 i = 1; :::;m;mXi=1xij = 1 j = 1; :::;m;xij 2 f0; 1g i; j = 1; :::;m; (17)where nij are the fuzzy numbers de�ned on the [0,1] interval and associated to the labelseij 2 L.Basically, we have two di�erent approaches for handling with the objective function.The �rst, considering the objective as the sum of the fuzzy numbers associated with the



labels eij, such that we would have a fuzzy objective. The second combining the labels inorder to obtain another label which values the combination workers-jobs in each allocationof the variables. For this second, there exist basically two di�erent approaches for aggre-gation and comparison of linguistic values: The �rst one acts by direct computations onlabels whereas the second uses the associated membership functions. Most available tech-niques belong to the last kind, however, the �nal results of those methods are fuzzy setswhich do not correspond to any label in the original term set. If one want to have �nallya label, a "linguistic approximation" is needed [Zad75, Zad79]. There are neither generalcriteria to evaluate the goodness of an approximation nor a general method for associatinga label to a fuzzy set, so that speci�c problems may require speci�cally developed methods.A review of some methods for linguistic approximation may be found in [Zad75]. It maybe used the criterion of minimizing the euclidean distance between the R2-points (gravitycenter, area) associated to the mean fuzzy number obtained as ,( mXi=1 mXj=1nijxij)=m [Bon85,Del90], obtained in this way the linguistic valuations of the assignments.Following the ideas presented in the section 4.1 in order to obtain the selection probabili-ties, these are obtained either from the fuzzy objective as sum of fuzzy numbers associatedto labels, with evaluation function E(x) = mXi=1 mXj=1nijxijor from the fuzzy numbers associated to the linguistic valuations of the assignments, withevalutation function E(�); E : S ! F(L), where F(L) denote the set of fuzzy numbersassociated with the term set.In [Mic92, Vig91] it is described the algorithm Genetic-2, a GA for linear transportationproblems. It is possible to design a genetic representation of the assignment problem withlinguistic labels according this GA with the corresponding modi�cation for obtaining theselection probabilities form the fuzzy evaluation function.5. ConclusionsIn this paper have been presented GA, which have received a great deal of attentionregarding their potential as optimization techniques. The level of interest and successin this area has led to a number of improvements and progress in the use of GA. Wehave proposed a method in order to obtain the selection probabilities from fuzzy �tnessassociated to the individuals of the populations.We have reviewed in summary form the application of GA to optimization problems,and a description of some applications of GA to fuzzy optimization problems has beenpresented.The use of GA may give a great potential to fuzzy logic based optimization approachfor representing uncertainty and approximation in relationnships among system variables,because of the potential of GA in fuzzy environment as a 
exibility tool for optimizationand search.References[Ada80] J.M. Adamo, Fuzzy Decision Trees. Fuzzy Sets and Systems 4, 1980, 207-219.
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