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Abstract

Genetic Algorithms as function optimizers are global optimization techniques based on
natural selection principles that can be efficiently used in high dimensional, multimodal and
complex problems. Genetic Algorithms are here presented as a tool to solve fuzzy optimiza-
tion problems either on their associated auxiliary models or by assuming the existence of
some fuzzy performance (fitness) function. Finally applications of Genetic Algorithms to
find the maximum flow in a network with fuzzy capacities and assignment problems with
linguistic labels are studied.

Keywords: Genetic algorithms, fuzzy optimization.

1. Introduction

Methods and techniques of optimization have been successfully used in various fields,
and related to technical systems of relatively well-defined structure and behavior, the so-
called hard ones. The success has motivated a direct application of the same traditional
approaches to the modeling and analysis of what is often called the soft systems in which
a key role is played by human judgments, preferences, etc. Unfortunately, the progress in
this way have been much less than expected. There are some questions that we can state:
Can we get some good solution satistying a level of performance quickly?. If we work with
imprecise (fuzzy) data will we be able to design an efficient algorithm for obtaining an
optimal solution?. How to reach an acceptable solution based on human-like reasoning
mechanisms?. Is it enough to obtain a good solution?. Here our very start point is that
attainment of the optimum is much less important for complex systems that to attain
quickly a good solution. Genetic Algorithms (GA) are search methods drawing increasing
attention regarding their potential as optimization techniques. They are search algorithms
with linear order which do not necessarily find an optimal solution to any problem, but do
find good solutions to problems that are resistant to most other known techniques.

GA were formerly introduced and developed by J. Holland and his colleagues at the
University of Michigan. He gave the theoretic foundations in his book ” Adaptation in Natu-
ral and Artificial Systems” (1975) [Hol75]. GA are iterative adaptative search algorithms
that use operations found in natural genetic to guide their trek through a search space.
They start with a population of randomly generated solutions and advance toward better
solutions by applying the genetic operators modeled on the genetic processes occurring
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in nature. In each generation, relatively good solutions reproduce to give offspring that
replace the relatively bad solutions which die. An evaluation or objective function plays
the role of the environment to distinguish between good and bad solutions.

The purpose of this paper is to show how GA can be applied to solve some special
fuzzy optimization problems. To best achieve this goal, the paper is structured as follows:
Section 2 introduces the foundations of GA. Section 3 describes the application of GA to
some conventional optimization problems and, finally, Section 4 deals with the use of GA
to solve two concrete cases: to find the maximum flow in a network with fuzzy capacities
and assignment problems with linguistic labels.

2. Foundations of Genetic Algorithms

GA are different from more normal optimization and search procedures in four ways:
a) GAs work with a coding of the parameter set, not the parameters themselves, b) GA
search from a population of points, not from a single point, ¢) GA use objective function
information, d) GA use probabilistic transition rules, not deterministic ones. GA require
the natural parameter set of the optimization problem to be coded as a finite-length string
over some finite alphabet.

Although there are many possible variants of the basic GA, the fundamental underlying
mechanism operates on a population of individuals, and consists on three operations: (1)
evaluation of individual fitness, (2) formation of a gene pool, and (3) recombination and
mutation. The initial population P(0) is chosen randomly and the individuals resulting
from these three operations form the next generations’s population. The process is itera-
ted until the system ceases to improve. Generally, each individual in the population is
represented by a fixed length binary string which encodes values for variables.

During iteration ¢, the GA maintains a population P(¢) of solutions zf,...,z% (the
population size n remains fixed). Each solution, z! | is evaluated by the function FE(-),
and F(z!) is a measure of fitness of the solution. The fitness value determines the relative
ability of an individual to survive and produce offspring in the next generation. In the

next iteration (¢ 4+ 1) a new populations is formed on the basis of the operations (2) and
(3)-

The figure 1 shows the structure of a simple GA, and in the figures 2.1, 2.2, 2.3 are
illustrated the basic operations: reproduction, crossover and mutation.

Procedure genetic algorithm
begin (1)
t=20;
inicialize P(t);
evaluate P(t);
While (Not termination-condition) do
begin (2)
t=1+1;
select P(t) from P(t —1);
recombine P(t);
evaluate P(t);
end (2)
end (1)

Figure 1: Structure of a GA



Evaluation Old Poblation Gene Pool
1
> I
1
, I L
1| \1

1| | L
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Figure 2.3: Mutation

The crossover operator combines the features of two parent structures to form two
similar offspring, this is applied under a random position cross with a probability of per-
formance, the crossover probability, P. . The mutation operator arbitrarily alters one or
more components of a selected structure so as to increase the structural variability of the
population. Each position of each solution vector in the population undergoes a random
change according to a probability defined by the mutation rate, the mutation probability,
P,.

A schema is a similarity template describing a subset of strings with similarities at
certain string positions, [Gol89, Hol75]. Even though a standard GA processes only n
structures each generation it also processes approximately n® schemata. This is an impor-
tant propertie of GA that is called implicit parallelism.

It is generally accepted that any GA to solve a problem must have five components:
1. A genetic representation of solutions to the problem,

2. a way to create an initial population of solutions,

3. an evaluation function which gives the fitness of each individual,

4. genetic operators that alter the genetic composition of children during reproduction,
and

5. values for the parameters that the GA uses (population size, probabilities of applying
genetic operators, etc.).

3. Genetic Algorithms and Optimization Problems

G A-based function optimizers have demonstrated their usefulness over a wide range of
difficult problems.

According their above description, first a representation of the solutions is needed. GA
require the natural parameter set of the optimization problem to be coded as a finite-length



string over some finite alphabet. It was noted very early that the choice of representation
can itself affect the performance of a GA-based function optimizer.

The binary representation is just one of the ways to represent the space to be searched.
Using the {0,1} alphabet with a non-combinatorial problem, that is with real variables,
we code the variables in the following way: If a single parameter x; has lower and upper
bounds «; and b; respectively, first we must apply a discretization over the real parameter
and then the standard way of binary coding z; using n bits is to let real values between
a; + k((zb,’;:ii) and a; + % corresponding to the standard binary code for the integer
kfor 0 < k < 2" —1. To avoid talking about intervals, it is referred to the binary code for

the integer k above as corresponding to the left end of the interval, namely a; + %%1

Non-binary string representations are often used, new techniques are directed to use a
real valued space where a solution is coded as a floating point vector, that is the real-coded

alternative [Gol91, Jan91, Mic92, FEsh93].

Initially, GA were applied directly only to unconstrained problems, but many practical
problems contain one or more constraints that must also be satisfied. Then it is necessary
to incorporate the constraints into GA search. The major dificulty in applicability of GA to
various optimization problems is the lack of general methodology for handling constraints.

Considering the next constrained problem,

Mg T
hi(z) >00=1,....m (1)
x>0

diferent approaches to manage the constraints with GA have been proposed:

a) To generate candidate solutions without considering constraints and penalizing them
by decreasing the goodness of evaluation function. A constrained problem is transformed
into an unconstrained one by associating a penalty with all the constraint violations and
including the penalties in the evaluation function as follows:

Mazx : f(x)+ eriqﬁz(hz(x)) (2)

where r is a penalty coefficient, ¢ is -1 for maximization and +1 for minimization problems,
and ¢; is a penalty function related to the i-th constraint (see [Gol89, Ric89, Sie89, Lie9l]).

b) The second approach is concentrated on the use of special representation mappings which
guarantee (or at least increase the probability of) the generation of a feasible solution and
the application of special repair algorithms to ”correct” any infeasible solution generated.

These two approaches involve transforming potential solutions of the problem into a
form suitable for a GA using penalty functions or intelligent decoding schemes and repair
mechanisms.

c¢) Another different approach is to introduce richer data structures together with an appro-
priate family of applicable genetic operators which can hide the constraints presented in

the problem (see [Vig91, Mic92, Nak91]).

d) A final approach provides a way of handling constraints that is both general and problem
independent. It combines some of the ideas of the previous approaches. The main idea
behind this approach lies in the elimination of the equalities present in the set of constraints,
and careful design of special genetic operators, which guarantee to keep all chromosomes



within the constrained solution space. The GENOCOP system (GEnetic algorithm for
Numerical Optimization for COnstrained Problems) is behind of this approach (see [Mic91,
Mic92]).

Therefore, we must note that for optimization problems it is possible to transform the
problem into a form suitable for a GA (penalty functions, ...), and to design specific GA for
solving them, with special representations, incorporating problem specific knowledge into
GA, with modified operator, etc. These different techniques have allowed to apply GA to
a wide class of optimization problems: Linear programming problems, Transportation pro-
blems, Quadratic assignment problems, Traveling salesman problems, Vehicle routing, Job-
shop problems,Bin-packing problems, Graph partitioning, Set covering problems, Graph
Coloring, Scheduling, Facility layout, and others NP-complete problems (see [Vol93] List
of References of Evolutionary Algorithms in Management Science).

4. Genetic Algorithms Applications to Fuzzy Optimization

Let S = (s1, 82, ..., sn) be a population of N individuals, and denote E(-) the evaluation
function giving a fitness for every s;. The fitness E(s;) for a solution candidate s; serves
to determine a selection probability Ps,.

The proportional selection [Gol89, Hol75] is the main selection scheme used in GA,

__ B(si)
Z;‘V:I E(s;) 7

(an overview about the selection probabilities proposed by different authors can be found

in [Bac91]).

When we work in a fuzzy environment, the feasible solutions of an optimization problem
can hold associated fuzzy objectives [Fed91], then the fitness associated to an individual

Ps, i=1,..,N, (3)

is defined by a fuzzy number. Then, would be necessary to define a method to obtain
the selection probabilities of the individuals. Next, we propose a method to do it, and we
present some applications of GA to fuzzy optimization problems.

4.1. Selection probability from fuzzy fitness

Consider the fuzzy fitness associated to each individual of the population, obtained by
means of the evaluation function, F(-), and represented as a fuzzy number, £ : S — F(R),

si € 9, E(s;) € F(R), where F(R) is the set of real fuzzy numbers.

From these fuzzy numbers it is necessary to define the selection probability associated
to each individual to obtain a gene pool. We can consider a function f : F(R) — R,
which according to (3) allows to define the selection probability from the fuzzy fitness.
In fact, for each individual s; of the population S, Ps, can be defined as
FE S;
Py = L ()
f(Zj:l E(Sj))

where the function f : F(R) — R must be such that the set {Ps, }i=1,. n verifies to be
both a distribution of probability and a selection probability which allows to reproduce
the best strings, that is, the strongest individuals. In order to the function f verifies these

desired properties, we introduce the next conditions for the function f:

1) Preserve the addition operation
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JQUE(si) =22 [(E(s)), (5)

=1 =1
necessary condition in order that Y%, Ps. = 1.

2) Preserve the order

E(sk) < E(sj) <= f(E(s1)) < f(E(s)), (6)

necessary condition for reproducing the strongest strings by means of the selection
probability. Because of this condiction, the strongest individuals have larger selection
probability,

E(Sk) < E(S]‘) < Psk < PS]-

An important class of functions which verify these conditions, (5) and (6), are the linear
ranking functions [Bor85, Cam92, Zhu92].

4.2. Linear ranking functions

Fuzzy numbers [Dub80] are fuzzy subsets of R whose a-cuts are closed and bounded
intervals on R when o > 0. If o = 0, A° will denote the closure of supp(A). Hence,
Va € [0,1] the a-cuts of A will be represented by

Ay = [ar(a), aa(a)] (7)

Extended sum and product by positive real numbers are considered to be defined in
F(R) by means of the Zadeh’s Extension Principle. Hence, given any two fuzzy numbers
A,B € F(R),Va € [0, 1], the following result concerned on their a-cuts will be used,

(A+ B)" = lar(@) + bi(@), as(@) + by(@)] (8)
(rA)” = [ra1(a),raz(a)] ¥re Rr>0. 9)

The problem of comparison of fuzzy numbers has been widely investigated in the lite-
rature. Many fuzzy numbers ranking procedures (FNRP) can be found for instance in
[Bon85, Zhu92]. Here we will focus on those FNRP which verify the conditions (8) and
(9), linear ranking functions, what is no too restrictive because many well known FNRP
may be formulated by using linear ranking functions in some way.

Consider A, B € F(R), a simple method of comparison between them consists on the
definition of a certain function f : F(R) — R. If this function f(-) is known, then
flA) > f(B), f(A) = f(B), f(A) < f(B) are equivalent to A > B, A =B, A < B
respectively. Usually, f is called a Linear Ranking Function (LRF) if

VA, BE€ F(R); ¥re Rr>0; f(A+ B)= f(A)+ f(B) and f(rA) =rf(4).  (10)

As it is well known, from this definition several FNRP may be considered. In particular,
properties (8) and (9) suggest that FNRP using linear functions of the a-cuts could be
expressed by LRF. A good study of these LRF can be found in [Cam92]. Here, some of
them are shown.



4.2.1. Linear functions based on only one a-cut

Consider a, A € [0,1] and A € F(R). One defines

FlA) = das(a) + (1 — Nag(a). (11)

The definition contains two parameters which depend on the decision-maker: the first,
«, is an accomplishment degree of the comparison, and the second, A, is and optimism-
pessimism level. Particular cases of this definition are:

(a) If a =1 and A € F(R) is any unimodal fuzzy number, then the first index of Yager,
[YagT78], is obtained.

(b) If o € [0, 1] is any fixed value and A = 0, then the index of Adamo [Ada80] is deduced.

This definition is a particular case of the discrete method proposed in [Gon91]. From
the properties (8) and (9) is very easy to show as f(-) is linear in the sense of the above
definition.

4.2.2. Linear functions based on all the a-cuts

Let A€ F(R), A € [0,1] and P(-) be any additive measure on [0, 1]. One defines

1
0

f(A)Z/ (Aar(a) + (1 = Aas(a)) dP(a). (12)

As it can be seen, now one has only one parameter, A, which acts as an optimism-
pessimism degree. Particular cases of this definition are:

a) If P(-) is the Lebesgue’s measure and A = %, then the fourth index of Yager, [Yag81],
g 2 g g
is obtained.

(b) If P(-) is given by P([a,b]) = b* —a® and A = 1, then the index of Tsumura, [Tsu81],
is deduced.

This general definition of f(A) was proposed in [Gon90], where also was shown as
this ranking function is linear. In particular for triangular fuzzy number f(A) takes the
following expression:

(@(1) — an(0) | (as(0) — ar(0))
T e . Y o1

where r is a parameter according to which f(A) can take values either close to the
modal values (r > 1) or close to the values on the support (r < 1).

4.3. Applications

A lot of real problems consist on the optimization of a function such that all the
characteristics of the problem can be completely represented by it. But the solution of an
optimization problems may lead to a polynomial problem of high order or a NP problem,
as it is the case of many optimization problems in network and graphs, decision problems,
satisfiability problems, etc. Many of them have served to show the power of the GA.

Fuzzy logic based optimization approaches are proposed for representing uncertainty
and approximation in relationships among system variables. Among them, we have selected
two fuzzy optimization problems whose associated model may be solved by GA, as in fuzzy
environment they can be used as a flexible tool for optimization and search.



a) Maximum flow in a network with fuzzy capacities, [Baz77, Cha82 ,Cha84 ,Cha87]

Let S = (N, A) be a network with m vertices and n arcs where a liquid or a gas go
through it from a source node n; until a sink node n; with fuzzy arc capacities. N denotes
the set of nodes and A C NaxN the set of arcs. The problem consists on finding the
maximum flow from ns to n; where associated to each arc (7, ) there is a capacity [;; =0
giving a lower bound for the flow, and a fuzzy capacity u;; € F(R) given an upper bound

for the flow on the arc flows. Next the concept of cut in a network (basic in the development
of the problem) as well as the concept of fuzzy capacity of a cut are introduced.

Definition 1. (Separation of the nodes ns and n;) [Baz77]

Let Ny be any set of nodes in the network such that ns; belongs to Ny and n; do not
belong to it, and let Ny be Ny = N — Ny. Then (Ny, Ny) = {(¢,7) : ni € Ny,nj € Ny} is

called a cut which separates the nodes n, and n;.
Definition 2. [Cha84]
The fuzzy capacity of the cut (N, N3) is the fuzzy number defined as

C Nl,NQ = Z u” = Z u” (13)
(N1,N2) ™ n; € N ~

n; € le

extending the addition operation on fuzzy numbers.

Theorem 1. (Maximum flow-minimum cut theorem [For56])

The value of the maximum flow from n, to n; is equal to the value of the minimum
cut-set (Ny, NVy) separating n, from n,.

The value of such a cut-set is the sum of the capacities of all arcs of S whose initial
vertices are in /Ny and the final vertices in Ny. Then the minimum cut-set is the cut-set

with the smallest value C'(Ny, Nz).

Thus, the problem is reduced to obtain a partition of the set N into Ny, N3, which
separates the two vertices ng, ns, and with minimun C'(Ny, Nz). It is possible to formulate

the minimum cut problem as a 0-1 programming problem as follows: Let z; be a 0-1
variable associated with the node n; € N defined as

TN 0 ifn €N,

then the minimum cut problem can be formulated as to minimize

-y > uNw —aj) + (1= @) (14)

=1 j=i+

and a boolean function without constraints is obtained. In order to solve this problem by
using GA the following evaluation function E(-) is introduced,

~ Yy —g(e) (15)

i=1j=i+1 "~
and therefore to maximize E(x), which obviously is equivalent to minimize g(z), is to
be done. Then with an adecuate genetic representation of the solutions, the selection



probability for each individual of the population will be obtained using a LRF, f(-), as it
was described in the expression (4).

Remark: As it is known, [Chr75], if we consider a network with various source nodes and
sink nodes, and assume that flow can go from any source to any sink. The problem of
finding the maximum total flow from all the sources to all the sinks can be converted to
the simple (ns to n;) maximum flow problem by adding a new artificial source node n, and
a new artificial sink node n; with added arcs leading from n, to each of the real source
nodes and from every real sink to n;. The figure 3 shows this.

0 Ny G
= No Np G|
Ny Network S Ny
Artificial O Nyt Np1 O~ Artificial
source nsk ntp sink

Figure 3: Network with source nodes and sink nodes

b) Assignment Problems with linguistic labels

The linguistic approach assumes that the variables which participate in the problem are
assessed by means of linguistic terms instead of numerical values, [Zad75]. This approach is
adequate for a lot of problems, because it allows a representation of the experts information
in a more direct and adequate form when they are unable of expressing this with precision.

Among them, we will study here the assignment problem with linguistic labels, which
is addressed as follows: Consider m workers and m jobs, and a linguistic valuation about
the assignment of the worker ¢ to the job j. This valuation would be stablished in terms of
L = {impossible, extremely-unlikely, very-low-chance....}, it shows the fitting between
the worker ¢ and the job j, and will be denoted by e;;. Thus, we need a term set which
will define the uncertainty granularity, i.e. the finest level of distinction among different
quantifications of uncertainty. The elements of the term set determine the granularity
of the uncertainty and this granularity will limit the ability to differentiate between two
similar operators.

In [Bon85] it was studied the use of term set with odd cardinal, where the middle term
represents a probability of "aproximately 0.5” and the rest terms are placed simetrically
around it, and the limit of granularity is 11 or no more than 13. We choose a set of nine
labels studied in [Bon85], K; ¢« =1,...,9, denoted by L and with the following terms

L = {impossible, extremely — unlikely, very — low — chance, small — chance, (16)

it_may, meaning ful_chance, most_likely, extremely likely, certain}

where the terms can be modified according to the criteria of the decision-maker.

The semantic of each element of the term set is given by a fuzzy number defined on the
[0,1] interval, N;, which can be described by its membership function gy, .

Provided that the linguistic assessments are just approximate ones, trapezoidal member-
ship functions are good enough to capture their vagueness. The parametric representation
of the trapezoidal membership functions is achieved by the 4-uple (a;, b;, o, 3;). The figure
4 shows the membership function of N;.



a-0a; g bj by + B;
Figure 4: Membership Functions of N;
The fuzzy numbers associated with each element were derived from an adaptation of the

results of psychological experiments on the use of linguistic probabilities [Bey82, Bon85].
The table 1 indicates the semantic of the proposed term set L, [Bon85],

impossible (0000)
extremely_unlikely (0 .02 0 .05)
very_low_chance (.1 .18 .06 .05)
small_chance (.22 .36 .05 .06)
it_may (41 .58 .09 .07)
meaningful_chance (.63 .80 .05 .06)
most_likely (.78 .92 .06 .05)
extremely_likely (.98 1 .05 0)
certain (1100)

Table 1: Semantic of the term set elements L

and the figure 5 illustrates the membership distribution of the term set elements.

0.0 1.0

Figure 5: Membership Distribution of Elements in L

To solve the problem, a mathematical model for the assignment problem with linguistic
labels may be written as

Ma:z; ZZn”x”

21]1

iy, =1e=1,..,m,
Z ) (17)
Zl‘ij =1 j = 1,...,m

=1
Ti; € {0, 1} Z,j = 1, e, m
where n;; are the fuzzy numbers defined on the [0,1] interval and associated to the labels
€ij € L.
Basically, we have two different approaches for handling with the objective function.
The first, considering the objective as the sum of the fuzzy numbers associated with the



labels ¢;;, such that we would have a fuzzy objective. The second combining the labels in
order to obtain another label which values the combination workers-jobs in each allocation
of the variables. For this second, there exist basically two different approaches for aggre-
gation and comparison of linguistic values: The first one acts by direct computations on
labels whereas the second uses the associated membership functions. Most available tech-
niques belong to the last kind, however, the final results of those methods are fuzzy sets
which do not correspond to any label in the original term set. If one want to have finally
a label, a "linguistic approximation” is needed [Zad75, Zad79]. There are neither general
criteria to evaluate the goodness of an approximation nor a general method for associating
a label to a fuzzy set, so that specific problems may require specifically developed methods.
A review of some methods for linguistic approximation may be found in [Zad75]. It may

be used the criterion of minimizing the euclidean distance between the R*-points (gravity

center, area) associated to the mean fuzzy number obtained as ,(> > ngz;;)/m [Bon85,
i=15=1
Del90], obtained in this way the linguistic valuations of the assignments.
Following the ideas presented in the section 4.1 in order to obtain the selection probabili-
ties, these are obtained either from the fuzzy objective as sum of fuzzy numbers associated
to labels, with evaluation function

E(x) = iinﬂ‘y

i=15=1

or from the fuzzy numbers associated to the linguistic valuations of the assignments, with
evalutation function E(:),E : S — F(L), where F(L) denote the set of fuzzy numbers
associated with the term set.

In [Mic92, Vig91] it is described the algorithm Genetic-2, a GA for linear transportation
problems. It is possible to design a genetic representation of the assignment problem with
linguistic labels according this GA with the corresponding modification for obtaining the
selection probabilities form the fuzzy evaluation function.

5. Conclusions

In this paper have been presented GA, which have received a great deal of attention
regarding their potential as optimization techniques. The level of interest and success
in this area has led to a number of improvements and progress in the use of GA. We
have proposed a method in order to obtain the selection probabilities from fuzzy fitness
associated to the individuals of the populations.

We have reviewed in summary form the application of GA to optimization problems,
and a description of some applications of GA to fuzzy optimization problems has been
presented.

The use of GA may give a great potential to fuzzy logic based optimization approach
for representing uncertainty and approximation in relationnships among system variables,
because of the potential of GA in fuzzy environment as a flexibility tool for optimization
and search.
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