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Abstract: From a conventional mathematical programming model, and in accordance with which fuzzification is used, several
models of fuzzy mathematical programming problems can be obtained. This paper deals with the study of the optimality concept
for (g, p)-fuzzified mathematical programming problems. An auxiliary parametric mathematical programming problem is
presented which allows the above model to be solved in a straightforward way. In addition, some results about the (g, p)-fuzzified
mathematical programming problem are obtained using the parametric mathematical programming problem.
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1. Introduction

There are many Mathematical Programming (MP) problems that cannot be modeled in a classical
way because the different elements of the problem are vaguely defined. A tool to make MP models
more realistic and human-consistent, and hence more applicable, is Zadeh’s fuzzy sets theory. Thus,
Fuzzy Mathematical Programming (FMP) is a tool to deal with this fuzziness which causes difficulties in
modeling [1, 2, 4,7-11, 13]. A survey on approaches, problems and methods of FMP can be found in
[3]-

In this paper we will examine the fuzzified version of this problem assuming that the coefficients in
the problem formulation are given by fuzzy numbers and the relations in the definition of the feasible
set are also fuzzy. Specially, we will examine the so called (g, p)-fuzzified mathematical programming
problems [6, 7, 8]. In this approach the side function g of the fuzzifying parameters and the generator
function g” of the Archimedean t-norm, used in the extension principle and in the intersection and
Cartesian product of fuzzy sets, are defined by the same function g. Thus, an inequality is fuzzified
using a generator function, g, of an Archimedean t-norm (g”:[0, 11— [0, ¢}, g”(x) = (g(x))"). We
present an alternative formulation of the optimality concept presented by Kovics [7,8]. This
formulation is based on the parametric programming which has been studied in [1, 2, 11].
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Let g:/— R, be a fixed function with the properties of a generator function and let F, denote the
subset of F(R) (set of fuzzy numbers over R) containing fuzzy numbers with membership functions

(g (a—al/d) if d>0,
ua)= {X{a)(a) if d=0, )

for all e R, d e R, U {0}. The elements of F, will be called quasitriangular fuzzy numbers generated
by g with the center « and spread d, and we will denote it by the pair (a, d).

Let T;, be an Archimedean t-norm given by the generator function g, 1<p <. It is easy to see
that lim,_,., T,,(a, b) = min(a, b), therefore we will also use the notation T, in the case p =« meaning
the min-norm for 7.

The T,,-Cartesian product of r quasitriangular fuzzy numbers generated by g will be called

(g, p)-fuzzy vector on F, i.e. pu, = py X - - - X u,, where u; =(a;, d;) €F,, i=1,...,r. We will use the
short notation u, = (a, d) e F;, meaning « € R". Without lack of generality we can assume that d; #0
fori=1,...,kandd,=0fori=k+1,...,r, where the cases kK =0 and k =r are also allowed. It is
easy to show that
D R-YA _ A : _ _ -
_ _[g7IDT @ —-a)ll,) ifk=rora=a,i=k+1,...,r,
Mal@) = ol - - @) {0 otherwise,
if k>0, where D =diag(d,, ..., dy), d=(ay, ..., a), &=(a, ..., a) and

k l/p
(Z |a,~|”) iflsp<oo,
j=1
lall, =

max |a;| if p=o0.
k

If £k =0, then it is obvious that

pa)=u(ay,...,a)=X, aa@1,...,a).
Thus, let the inequality f(a, x) = X]_, a;h;(x) < a, be fuzzified, according to [8], by the (g, p)-fuzzy
parameter vector y, = ji, = fo X i, = (&, d) € F;“, where a=(ay, a1, ..., ®,), d=(d,, d,, ..., d,),

dy=0,d;>0,j=1,...,kand d;=0, j=k+1,...,r

Then the (g, p)-valued inequality relation is a fuzzy set o € F(R") with the membership function
g (max{0, f(a; x) — a0}/ |IDh()Il,) if Dh(x) #0,
X (e f(ar)—ae=0y(X) otherwise,

o(x) = {

where D = diag(d,, d,, . . ., d,), h(x) = (-1, hy(x), . . ., h(x)),

@

r i/q
1 if p=oo, (‘Z |a,~|"> iflsg<e,
g=1= ifp=1, and [af,={
p/(p —1) otherwise, max |a;| if g = oo
j=1,..., r

The fuzzy feasible set is defined by the T, -intersection of the (g, p)-valued relations of the fuzzified
inequalities.

Next, we will focus on the concept of optimality presented by Kovics in [8], and then we will present
an alternative formulation based on the use of parametric mathematical programming problems. With
this aim, the paper is set up as follows. In Section 2 the above mentioned approach to solve the
problem is briefly introduced. Section 3 is devoted to relate this approach with the use of parametric
programming problems. Finally, to clarify the above developments a numerical example is analyzed
and some conclusions are pointed out.
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2. Fuzzification of the mathematical programming problem

Let us consider the classical MP problem
min ﬁ)(yy x) = 2 thj(x)r (3)
j=1

st fla, x)=2 ayh(x)<ay, ieM={1,...,s},
j=1

x=20, jeN={1,...,r},

where y=(y,,..., y,)and &, =(a;y, ..., a,)€R’, and ;o€ R, Vie M.

Let the i-th relation in (3) be fuzzified by the (g, p)-fuzzy vector ;= (&, d) eF;* fori=1,...,s,
where & = (&, @, - - -, &), d; = (dy, d;y, . . . , dy), d;=p:-d;, $;>0,i=1,...,s,j=0,1,...,r,
dy=0,d;>0forj=1,...,kandd;=0forj=k+1,...,r.

Then the (g, p)-fuzzy feasible set is defined as the T, -intersection of the fuzzified inequalities,
according to [8] by the membership function

_ [8"(G&)/IDR(x)Il,)  if Dh(x) #0,
)= {Xc(x) otherwise,
where

G(x) = |(fh(x) = a°).llqm
and (sfh(x)q — a°), denotes the vector in which the i-th coordinate is defined by
(fi @i, x) — @)+ = max{0, fi(a;, x) — &},

and a’=(ay, ..., a%0o}. |l‘llgg is the weighted [ -norm with the weight matrix B=
diag(B7, ..., B, D=diag(d,, d,,...,d,), h(x)=(~1, hy(x), ..., h(x)) and X is the charac-
teristic function of the constraint set defined in (3). We are supposing that all constraints are
inequalities, in the case of equalities they may be written as inequalities easily.

Introducing the notions #* = sup, g Fc(x) and Cj={x e R" | 9c(x) = 9*} the following statements
are valid:

(a) 9*=1 and C3# 0 if (3) has a solution.

(b) 9* =0 then there is no consistent perturbation of the constraint set (3).

(c) If 0 < &* <1 then there is no solution of (3) in a classical sense.

Thus, the concept of optimality was introduced as follows: A fuzzy number pg = (y, dw) € F, is a
(g, p)-fuzzy aspiration level for the objective function with the optimality rate w(x, y), if w(x, y) is the
(g, p)-valued relation < between the fuzzified objective function and the aspiration level.

Let the objective function be fuzzified by the (g, p)-fuzzy vector po=(y, d) €F;, y=(v1,..., ¥,)
and d°= (dy,, . . . , dy,). The optimality rate is [8]

_ [Ty, ) =) /IDRM)IL,) it I1DRG), %0,
o(x, y)= { X (s irmr—y=0y () otherwise,

(4)

(5)

where (fo(y, x) = y)+ = max{0, fo(y, x) — y}.

The fuzzy optimum set @w*(x, y) with the fuzzy aspiration level uq is the T, restriction of the fuzzy
set on X X Y defined by the optimality rate to the fuzzy feasible set ¥¢.

If the fuzzifying vector fiy= e X po = (&, do) is such that & =(y, v), do= (deo, doy, - - . , do,),
doj=PBo-d;, j=0,1,...,r, By>0, and the vector d=(dy, dy, ..., d,) is the same which was used for
the fuzzification of the feasible set, then it is easy to verify [8]

EO(d(x, y)/||\Dh(x if ||Dh(x)||, #0,
0* (5, 9) = T ), 0c0) ={%, | f(( () yi)l(lx) ) Oﬂlllerw(iszllq
x:fo(y,x)—y= ?

where @(x, y) = |[((fo(y, X) = ¥)+/Bo, G())lg-

(6)
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Therefore the (g, p)-fuzzy aspiration level ug = (y*, dg) is optimal for the fuzzified MP problem if
y* is the minimal root of the equation

Y(y) = sup w*(x, y)= 94" (7

In the next section we will present a relation between this approach and the parametric mathematical
programming problem, which we will build using the above results.

3. The parametric approach
Let us consider in (1) the linear function g:[0, 1]—[0, 1], g(x) =1—x, which is the generator
function of the Lukasiewicz t-norm. Then we obtain the following membership function:

_ [max{0, 1—|a—al|/d} ifd>0,
w(a) = {o ifd=0, ®

which is a linear membership function and may be written Vo € R and Vd e R, U {0} as

l-la—a|/d fa—d<sa<a+d,
= ) 9
uia) {0 otherwise. ©)
If we consider P =1 then g =, so |[x||, =max;_;__,|x;|, and under these conditions it is obtained

that

.....

Be(x) =max0, 1= max_ ((f(a x) @) /(B IDA@II,)} (10)

.....

which can be written as

1 - max ((fi(es, x) = @io)+/(B; IDR(x)Il,))  if 0< max (fi(@;, ¥) = &)+ < B, I DA()ll,,

19C(x) = (11)

0 otherwise.
Let us modify this membership function of the fuzzy feasible set as follows:
1 if fi(oy, x) < q Vi,
Fe(x)=4 1- max {(fi(ay, x) = @)t} if 3iffi(o, x)> @ and fias, x) < @0+, Vi, (12)
0 otherwise,

where d =max{dy, min;_, . {d;}}, for each constraint t,=p,-d>0 and clearly B; | Dh(x)|l,=

B: max; [d:h(x)|=t, Vie M.
More explicitly, we get

5C(x) = sup{A/E ah(x)<ao+t(1—-14),x;=20,i=1,...,s, A€(0, 1]}
j=1
The A-cut of this modified (g, 1)-fuzzy feasible set is:

(Bch={xeR | Ber) =4} = {x e R

Z’ a’,,h](x)saf,o+t,(l—/1), xl?0,1= 1, ey S}.
j=
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Let us fix A and let x; denote the solution of the following problem:

min{lé1 vhi(x) | x € [19C],1},

where y, = £7_; a;h;(x;,) — (1 — A)Bod, and evaluating this pair (x;, y») in (5) we obtain
®(x, y) =g M1 -2 =4
and therefore
O*(xp, Y1) = A
Now, denote by x(4) the parametric solution of the following parametric mathematical programming
problem P(4):
min ,2::1 Yihi(x) (13)

st D ohix)<ap+t(1-4), i=1,...,5,
j=1

%=0, Ae(0,1].

As is well known, sufficient conditions for the existence of x(A) are that [§], be compact and the
Lagrangian function of P(A) has a saddle point [8, 12]. Hence, the following results hold.

Theorem 1. The optimal value in (7) using the linear function g(x)=1—x is reached from the
parametric programming problem (13) by

x*=x(6),  y*=ys=2 vh(x*)—(1-6)Bod (14)
j=1
where 0 = sup, 1) {A | P(1) has optimal solution}; moreover 4* = 6.

Proof. It is obvious that
3c(x(8)=0=0-(x), VxeR’

and @*(x, y) = T, @(x, y), Oc(x)) <Pc(x)< 6, VxeR’, VyeR. Moreover @(x(8),y,)=6, and
@*(x(0), yo) = 0 =0*= ®d*(x, y), Vx € R, Yy e R. On the other hand, if x* is not optimal for P(8)
then there exists yo =y* — (X7-1 yjh;(x*) — Xj=1 v;h;(x(0))) such that the pair (x(8), yo) satisfies (7).
This contradicts the minimality of y*. Therefore x*=x(6) and y*=y,=Y/_, v;h(x*)—(1—
6)B,d. O

Thus, the optimal solution for the approach presented in [8] has been obtained as a particular value
of the parametric solution of (13).

When the generator function used, g’, is not a linear function, and [0, ¢], t = g,, is the range of the
function g’, the following result is obtained:

Theorem 2. Given the function g:[0, 11— [0, 1], g(x) =1-x, and g’ a generator function g':[0, 11—
[0, go] with g'(1) =0, g'(0) = go, then there exists a strictly increasing function r:[0, 1]— [0, t] such that
g =tog.

Proof. Clearly we have the inverse function of g, g~'(y) =1 —y, which is a strictly decreasing function,
and if we define the function t =g’ og™!, then it satisfies the required conditions. [
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If nonlinear functions g’ are used, the fuzzy optimum set w*(x, y) is written as:
@*(x, ) = (8")"(®(x, y)/IDR()I,), (15)
w*(x, y) =g (7 (P(x, y)/IDA(x)]|4))- (16)

Since ¢! is a strictly increasing function, the optimum for (16) is reached in the solution obtained
from Theorem 1 with y* = ¥7_; y;h;(x*) — (1 — 97)Bod. L
Setting &; = w*(x*, y*) =g~ (@(x*, y*)), where @(x, y) = ®(x, y)/||Dh(x)||,, then

dy =g @(x*, y*) =gt (@(x*, y*))
so that g(8}) ="' (p(x*, y*)) =t"'(g(¥7)) and
oy =g~ (¢ (g(9)))). 17

Thus, the above results imply that the optimal solution x* for w*(x, y) is the same independently of
the generator functions used. Moreover, by means of (17) we can obtain different degrees for the
optimal solution (x*, y*) in the fuzzy optimum set w*(x, y), by using nonlinear generator functions.
Clearly, if 9; =1 then @ =1 for all generator functions.

4. Numerical example

Consider the problem

min x; +x;

s.t.  —x;—3x,=<-9,
2%+ x, =<2,
—4x, —3x, =17,
x;=0,

with dy=2, di=2, d,=3, Bo=2, B1=2, B,=8 and B;=3 the tolerance margins for variables and
fuzzy inequalities respectively
Then, since d = max{d,, min;_, . {d;}} and ;= P;-d, one hasd=2, t,=4, t,=16 and t; =6, and
hence the associated parametric problem is
min x; +Xx;
st. —x;—3x,=-94+4(1-2),
le +st2+ 16(1 - A),
—4x; —3x,<—-17+6(1 — A),
x=0, Ae(0,1].
Solving it, the parametric solution obtained is:
x(A)=(2+0.666A, 1+ 1.1114), A€(0, 0.704].

If we use different generator functions we obtain the results shown in Table 1.

Table 1. Solutions using different generator functions

g(x) Hz) B x* v

1—x z 0.704 (2.466, 1.78) 4.246 — 4 - 0.296 = 3.062
Q-xy zf 1 - (0.296)'”7 (2.466, 1.78) 4.246 — 4 - (0.296)"7
aQ-xy* 22 0.456 (2.466, 1.78) 4.246 — 4 - 0.544 = 2.07

—In(x) -In(1-z)  0.744 (2.466,1.78)  4.246—4-0.256=3.222
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5. Conclusions

In this paper an alternative formulation of the optimality concept given by Kovics [7, 8] has been
presented, which is based on parametric mathematical programming and involves the model presented
in [8]. Together with this, a solution method has been provided, which allows us to obtain the solution
associated to the optimal concept presented by Kovdcs [8] in an easier way. It has been shown that the
optimal solution x* is the same for every generator function, and the differences in the use of different
generator functions are in the optimal objective function value and in the associated optimality degree.
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