
European Journal of Operational Research 169 (2006) 450–476

www.elsevier.com/locate/ejor
Continuous scatter search: An analysis of the integration
of some combination methods and improvement strategies q

F. Herrera *, M. Lozano, D. Molina

Department of Computer Science and A.I., University of Granada, ETS de Ingeniera Informatica,

Avda. Andalucia 38, Granada 18071, Spain

Received 28 July 2003; accepted 5 May 2004
Available online 7 October 2004
Abstract

Scatter search is an evolutionary method that shares with genetic algorithms, a well-known evolutionary approach,
the employment of a combination method that combines the features of two parent vectors to form several offspring.
Furthermore, it uses improvement strategies to efficiently produce the local tuning of the solutions. An important aspect
concerning scatter search is the trade-off between the exploration abilities of the combination method and the exploi-
tation capacity of the improvement mechanism.

In this paper, we deal with a continuous version of the scatter search, which works directly with vectors of real com-
ponents. Our objective is to study the balance between the reliability induced by the combination method and the accu-
racy levels provided by the improvement mechanism in continuous scatter search. To do this, we analyse two
combination methods that may be applied to continuous scatter search: (1) the BLX-a operator, which is one of the
most effective combination methods for real-coded genetic algorithms; and (2) the average combination method, which
is the classical combination method for continuous scatter search. We investigate the interrelations that exist between
these combination methods and two improvement mechanisms, the Solis and Wets� algorithm and the Nelder–Mead
simplex algorithm, which are well-known continuous local searchers. In addition, we also perform a comparison among
continuous scatter search and other continuous optimization algorithms presented in the literature.
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1. Introduction

Scatter search (SS) [15,19,31,32]) is a population-
based meta-heuristic method that uses a reference

set to combine its solutions and construct others.
It generates a reference set from a population of
ed.
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solutions. Then the solutions in this reference set are
combined to get starting solutions to run an
improvement procedure, whose result may indicate
an updating of the reference set and even an updat-
ing of the population of solutions. From the stand-
point of meta-heuristic classification, SS may be
viewed as an evolutionary algorithm (EA) [1,14,33]
because it builds, maintains and evolves a set of
solutions throughout the search.

An important point in common between SS and
another well-known evolutionary approach, genet-
ic algorithms (GAs) [22,28] is that both algorithms
apply a crossover or combination mechanism to
create new solutions [16]. The solution combina-
tion mechanism is a method for sharing informa-
tion between solutions. Generally, it combines
features of two parent vectors to form several off-
spring, with the possibility that good solutions
may generate better ones. It has always been re-
garded as the main search operator in both GAs
[9,29] and SS [20], because it manages the available
information in previous samples to influence fu-
ture searches.

In SS, the importance of the combination meth-
od could be even greater, due to the differences in
the method used to select the solutions to combine.
In traditional EAs, such as GAs, parents are cho-
sen following a random sampling scheme. By con-
trast, in SS, the selection of the parents is made
using a deterministic method called Subset Gener-
ation Method. This method generates all subsets
of size 2, skipping subsets for which both elements
have not changed from previously iterations.

The possible improvement solution methods
applied to the solutions range from simple local
searches to a very specialized search. An example
of a very simple procedure is a local search based
on basic moves in which the best improving move
or the first improving move found is selected. The
procedure must allow the use of tools like recent or
intermediate memory, variable neighborhoods, or
hashing scanning methods of the neighborhood.
Among the methods to apply there are the Tabu
Search [18], a Variable Neighborhood Search [23]
or any sophisticated hybrid heuristic search [21].
In this sense, SS procedures can be classified as
well as memetic algorithms (MAs). MAs [34,35]
are EAs that apply a separate local search process
to refine individuals. An important aspect concern-
ing MAs is the trade-off between the exploration
abilities of the EA, and the exploitation abilities
of the local search mechanism used [30].

The combination method and the improvement
method are two of the main components of SS that
decisively affect the trade-off between the explora-
tion and the exploitation maintained by this search
procedure. The combination method has a strong
influence on the exploration because population
diversity is generated by creating new solutions.
Therefore, its goal is to induce reliability in the
search process. The improvement method is ap-
plied with the aim of exploiting the diversity pro-
vided by the combination method. In order to do
this, an effective refinement on the individuals re-
turned by this method is produced. Thus, its prin-
cipal objective is to obtain the best possible
accuracy levels.

Originally, SS was introduced as a heuristic to
obtain a near optimal solution to an integer-pro-
gramming problem [15]. It was also used to gener-
ate both starting as well as trial solutions. Recently,
the SS approach was refined and used for both dis-
crete and continuous optimization problems
[13,16,17,31,42,43]. Continuous SS (CSS) directly
handles vectors of real components and combines
these vectors by linear combinations to produce
new ones through successive generations. In addi-
tion, it uses continuous local searchers, such as
the Solis and Wets� algorithm [39] and the Nelder
and Mead�s simplex method [36], as improvement
procedures. This paper deals with CSS algorithms.

The objective of this paper is to study the effects
of the balance between the exploration induced by
the combination method and the exploitation
introduced by the improvement mechanism on
the CSS performance. To do this, we undertake
the analysis of two combination methods that
may be applied to continuous scatter search:

• BLX-a operator, which is one of the most effec-
tive combination methods for real-coded GAs
(RCGAs) [25]. RCGAs are specific GA imple-
mentations that were provided to deal with
continuous problems. They are based on
real number representation of the solutions.
Most RCGA research has been focused on the



Fig. 1. Average combination method.
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developing of effective real-parameter combina-
tion operators, and as a result, many different
possibilities have been proposed [7,27]. In [27],
we carry out an empirical study of different com-
bination method instances for RCGAs, which
offers some clues as to the key features that have
a positive influence on the combination method
behaviour. Our experiences on the application
of solution combination methods to RCGAs
and the similarity between RCGAs and CSS
make us believe that their implementation in
the CSS framework may enhance the operation
of this search algorithm.
We have considered BLX-a as a combination
method for CSS due to three reasons: (1) its in-
cludes randomness, which can be effective [31],
(2) it favors the production of diversity in the
population of an EA, which may improve the
CSS reliability, and finally, (3) BLX-a has a
self-adaptive behaviour [3].

• Average combination method, which is the classi-
cal combination method for CSS.

In addition, we investigate the interrelations
that exist between these combination methods
and two improvement mechanisms, the Solis and
Wets� algorithm and the Nelder–Mead simplex
algorithm, which are well-known continuous local
searchers. The performance of the improvement
mechanism depends on the number of iterations
assigned to this method (local search depth). Obvi-
ously, the greater the local search depth is, the
more refinement on the solutions will be accom-
plished. In order to study the impact of this
parameter on the exploration/exploitation bal-
ance, different values have been used when carry-
ing out our experiments.

The paper is set up as follows. In Section 2, we
present the combination methods used in this
work. In Section 3, we describe the local searchers.
In Section 4, we provide details of the implementa-
tion considered for CSS. In Section 5, we describe
the experiments carried out in order to determine
the suitability of CSS instances designed with dif-
ferent combination methods, local searchers, and
local search depth values. In Section 6, we provide
a comparison among our best performing CSS
instances and different optimization procedures
proposed in the literature to deal with continuous
domains. Finally, we draw our conclusions in Sec-
tion 6. In addition, in Appendix A, we include the
features of the test suite used for the experimental
study and in Appendix B, we introduce all the re-
sults of our experiments.
2. Combination methods for continuous problems

The combination operator is a fundamental
search operator because it exploits information
about the search space that is currently available
in the population. Much effort has been put in
developing sophisticate combination methods for
RCGAs, and as a result, many different instances
has been proposed [7,26,27]. Real-coding of solu-
tions for numerical problems offers the possibility
of defining a wide variety of special real-parameter
combination methods which can take advantage of
its numerical nature.

Let us assume that X = (x1, . . . ,xn) and
Y = (y1, . . . ,yn) (xi; yi 2 ½ai; bi� � R, i = 1, . . . ,n)
are two real-coded vectors selected to be com-
bined. Below, we describe the operation of the
combination methods considered in this paper,
and show their effects in graph form.

Average combination method. It returns an off-
spring: Z1 = (z1, . . . , zi, . . . , zn) with zi ¼ 1

2 � xiþ
1
2 � yi (Fig. 1).

BLX-a combination method [11]. In this case, an
offspring is generated: Z = (z1, . . . , zi, . . . , zn),
where zi is a randomly (uniformly) chosen number
of the interval [cmin � I Æ a, cmax + I Æ a], where
cmax = max (xi, yi), cmin = min(xi, yi), and I =
cmax � cmin (Fig. 2).

Investigations have reported that BLX-a with
a = 0.5 performs better than BLX-a operator with
any other a value [8].



Fig. 2. BLX-a combination method.
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We consider BLX-a a convenient combination
method for CSS because of the following
reasons:

• Combination methods that include randomness
can be effective [31]. BLX-a is a variable-wise
operator that determines the values for each
decision variable of the offspring by extracting
values from intervals defined in neighborhoods
associated with the decision variables of the
parents using uniform probability distributions.
Thus, it is a uniformly emphasized combination
operator.

• Population diversity is crucial to an EA�s ability
to continue the fruitful exploration of the search
space. If the lack of population diversity takes
place too early, a premature stagnation of the
search is caused. Under these circumstances,
the search is likely to be trapped in a local opti-
mum before the global optimum is found. This
problem, called premature convergence, has long
been recognized as a serious failure mode for
EAs [10]. In addition, in the MA literature,
keeping population diversity while using local
search together with an EA is always an issue
to be addressed, either implicitly or explicitly
[24,30].
Nomura et al. [37] have demonstrated theoreti-
cally that BLX-a has the ability to promote
diversity in the population of an EA. In particu-
lar, these authors provide a formalisation of this
operator to analyse the relationship between the
solution probability density functions before
and after its application, assuming an infinite
population. They state that BLX-a spreads
the distribution of the chromosomes when
a >

ffiffi
3
p
�1
2

, reducing it otherwise. This property
was verified through simulations. In particular,
Nomura et al. observed that BLX-0.0 makes
the variances of the distribution of the chromo-
somes decrease, reducing the distribution,
whereas BLX-0.5 makes the variances of the dis-
tribution increase, spreading the distribution.
In this way, BLX-0.5 arises as a useful tool to
enhance the global search (exploration) capa-
bilities of an MA (and in particular of CSS).
In the case of the CSS, this aspect becomes
even more important, because it uses reference
sets with very few individuals, thus increasing
the risk of premature convergence. We intro-
duce BLX-0.5 in the CSS algorithm to induce
reliability in the search process, ensuring that
different promising search zones are the focus
of the improvement method.
Furthermore, Nomura et al. offer theoretical
properties of the average combination method
and conclude that it decreases the variances
and the covariances between the different co-
ordinates of the solutions. Thus, repeated
applications of average crossover reduce the
distribution of the population.

• BLX-a has a self-adaptive nature in that it can
generate offspring adaptively according to the
distribution of parents without any adaptive
parameter.
Beyer et al. [3] argue that a variation operator
that harness the difference of the parents in
the search space is essential for the resulting
EA to exhibit self-adaptive behaviour on the
population level. BLX-a uses probability distri-
butions that are calculated according to the dis-
tance between the decision variables in the
parents (xi and yi). If the parents are located
closely to each other, the offspring generated
by this combination method might distribute
densely around the parents. On the other
hand, if the parents are located far away
from each other, then the offspring will be spar-
sely distributed around them. An emergent
property of this setting is that BLX-a allows
the EA to convergence, divergence, or adapt
to changing objective function landscapes with-
out incurring into extra parameters or mecha-
nisms to achieve the mentioned behaviour. In
fact, in the recent past, RCGAs with BLX-a
have been demonstrated to exhibit self-adaptive
behaviour similar to that observed in evolution
strategies and evolutionary programming
approaches [3].
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3. Continuous local searchers

In this section we present a detailed description
of two well-known continuous local searchers, the
Solis and Wets� algorithm [39] and the Nelder and
Mead�s simplex method [36], that have been con-
sidered as improvement methods for CSS. They
are random hill-climbing that search efficiently
only for a local optimum. Next, we present a de-
tailed description of these procedures.

Solis and Wets’ algorithm. This local search algo-
rithm is a randomized hill-climber with an adap-
tive step size. Each step starts at a current point x.
A deviate d is chosen from a normal distribution
whose standard deviation is given by a parameter
q. If either x + d or x � d is better, a move is made
to the better point and a success is recorded.
Otherwise, a failure is recorded. After several
successes in a row, q is increased to move more
quickly. After several failures in a row, q is
decreased to focus the search. Additionally, a bias
term is included to put the search momentum in
directions that yield success. See [39] for details.

Nelder–Mead simplex algorithm. This is a classical
and very powerful local descent algorithm, which
makes no use of the objective function derivatives.
A simplex is a geometrical figure consisting, in n

dimensions, of n + 1 points s0, . . . ,sn. When a
point of a simplex is taken as the origin, the n

other points are used to define vector directions
that span the n-dimension vector space. Thus, if
we randomly draw an initial starting point s0, then
we generate the other n points si according to the
relation si = s0 + kej, where the ej are n unit vec-
tors, and k is a constant which is typically equal
to one (but may be adapted to the problem
characteristics).

Through a sequence of elementary geometric
transformations (reflection, contraction, expan-
sion and multi-contraction), the initial simplex
moves, expands or contracts. To select the appro-
priate transformation, the method only uses the
values of the function to be optimized at the
vertices of the simplex considered. After each
transformation, a better vertex replaces the current
worst one.
At the beginning of the algorithm, only the
point of the simplex where the objective function is
worst is replaced, and another point, the image of
the worst one, is generated. This being the reflec-
tion operation. If the reflected point is better than
all other points, the method expands the simplex in
this direction, otherwise, if it is at least better than
the worst one, the algorithm performs again the
reflection with the new worst point. The contrac-
tion step is performed when the worst point is at
least as good as the reflected point, in such a way
that the simplex adapts itself to the function
landscape and finally surrounds the optimum. If
the worst point is better than the contracted point,
the multi-contraction is performed. At each step
we check that the generated point is not outside
the allowed reduced solution space.
4. Continuous scatter search: Components and

implementation

In this section, we describe the implementation
of CSS used for the experimental part of this paper
(Section 5). It is based on the basic procedure out-
line in Fig. 3 [31], where P denotes the set of solu-
tions generated with the diversification generation
method, RefSet is the set of solutions in the refer-
ence set and Pool is the set of trial solutions con-
structed with the combination and improvement
methods. Psize is the size of P (Psize = 100), b1
is the initial number of high-quality in the refer-
ence set (b1 = 10), b2 is the initial number of di-
verse solutions in the reference set (b2 = 10), and
d(Æ, Æ) is a dissimilarity measure between two
solutions (we have employed the Euclidean
distance).

The main method involved in the implementa-
tion of CSS are the following:

Diversification generation method. This method
employs controlled randomization and frequency
memory to generate a set of diverse solutions. We
divide the range of each variable into four equal
size sub-range. Afterwards, a solution is con-
structed on two step. In the first step, one of the
sub-range is randomly selected, being the proba-
bility of selection inversely proportional to its



Fig. 3. Pseudocode algorithm for CSS.
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frequency count. in the second step, a value
within the selected sub-range is randomly
generated.

Improvement method. We have considered the
Solis and Wets’ algorithm and the Nelder–Mead

simplex algorithm (Section 3).

Subset generation method. This method produces
a subset of the solutions of the reference set as a
basis for creating combined solutions. In particu-
lar, it generates all subsets of size 2, skipping sub-
sets for which both elements have not changed
from previously iterations.
Solution combination method. We use the BLX-a
(a = 0.5) operator and the average combination
method (Section 2).
5. Experiments

In this section, we present the computational
experiments carried out. Our main objective is to
analyse the behaviour of CSS with different combi-
nation methods and local searchers (with different
local search depth values).

In Section 5.1, we summarize the main charac-
teristics of the test problems used for the
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experimentation. In Section 5.2, we provide details
of the CSS instances executed and explain the
choices of the parameter values. In Section 5.3,
we explain the performance measure used to com-
pare the results of the different CSS instances. In
Section 5.4, we pay close attention to the local
searchers. In Section 5.5, we detect whether the
performance of CSS is improved using the BLX-
0.5 operator instead of the average combination.
Finally, we draw some preliminary conclusions in
Section 5.6.

5.1. Test problems

The viability of a new feature in EAs is typically
assessed by testing it on a number of problems.
Here we restrict our attention to continuous opti-
mization problems (minimization) and execute
the experiments on a test suite that consists of 45
test functions (F1–F45) and three real-world prob-
lems (F46, F47, and F48). Table 1 summarizes
their main features. A full description for these test
problems is presented in Appendix A.

In order to facilitate the study of the results of
the experiments, we have classified all the test
problems into two groups, simple problems and
complex problems. Table 2 outlines this classifica-
tion. The first group includes those problems with
a number of variables less or equals than three and
some well-known functions that traditionally have
been considered as easy problems. Examples are
the Sphere function (F39 and F41) and the Trid
problem (F25). The second group comprises the
problems with more than three variables and those
that are not categorized in the group of simple
problems.

5.2. CSS Instances and parameter settings

We have implemented several CSS instances
that are distinguished by the combination method,
the improvement method, and the number of iter-
ations (local search depth) (nI) assigned to this
method (nI = 0,10,50,100) (in the case of nI = 0
no improvement method is applied). They follow
the CSS framework presented in Section 4 with
the following values for the CSS parameters:
Psize = 100, b1 = 10, and b2 = 10.
The CSS instances based on BLX-a are denoted
as ‘‘B-SW nI’’ (with Solis and Wets� algorithm) and
‘‘B-S nI’’ (with Nelder-Mead simplex algorithm),
whereas the ones based on the average
combination are denoted as ‘‘A-SW nI’’ and ‘‘A-
S nI’’, respectively. We call ‘‘B’’ and ‘‘A’’ the
CSS instances that do not use the improvement
method.

There exist at least two ways to study the per-
formance of search algorithms:

• The first one studies it from the point of view of
the efficacy of the algorithms. This quality
determines the accuracy levels of the solutions
returned by the algorithm, without taking into
account the time needed to obtain them. Effec-
tive algorithms are recommendable for real
problems where the objective function may be
evaluated very quickly and a precise solution
is needed. To study the efficacy, we assign
enough objective function evaluations to the
algorithms and analyze the quality of the final
solutions achieved.

• The second view concentrates on of the effi-

ciency of the algorithms. Search algorithms
are efficient when they return solutions with
an �acceptable� quality requiring few objective
function evaluations. They are advisable for
real-problem with a time-consuming objective
function and where obtaining the exact solution
is not the crucial objective. We access the effi-
ciency of the algorithms by running them with
a small number of objective function
evaluations and analyzing the solutions
obtained.

In our experiments, we are interested in investi-
gating both the efficacy and the efficiency of the
CSS instances. In order to do this:

• We carried out all the algorithms with different
values for the maximum of evaluations (nev),
25,000, 50,000, 100,000, and 500,000.

• They were executed 50 times for every nev
value.

The results obtained are shown in Appendix
B.



Table 1
Test problems

Dimensions Functions Name and parameters Range f (x*)

2 F1 Branin [�5, 15] 0.397887
F2 B2 [�50, 100] 0
F3 Easom [�100, 100] �1
F4 Goldstein and Price [�2, 2] 3
F5 Shubert [�10, 10] �186.7309
F6 Beale [�4.5, 4.5] 0
F7 Booth [�10, 10] 0
F8 Matyas [�5, 10] 0
F9 SixHumpCamelBack [�5, 5] �1.0316285
F10 Schwefel(2) [�500, 500] 0
F11 Rosenbrock(2) [�10, 10] 0
F12 Zakharov(2) [�5, 10] 0

3 F13 DeJoung [�2.56, 5.12] 0
F14 Hartmann(3,4) [0, 1] 0

4 F15 Colville [�10, 10] 0
F16 Shekel(5) [0, 10] �10.1532
F17 Shekel(7) [0, 10] �10.4029
F18 Shekel(10) [0, 10] �10.53641
F19 Perm(4,0.5) [�4, 4] 0
F20 Perm0(4,10) [�4, 4] 0
F21 PowerSum(8,18,44,114) [0, 4] 0

6 F22 Hartmann(6,4) [0, 1] 0
F23 Schwefel(6) [�500, 500] 0
F24 Trid(6) [�100, 100] �50

10 F25 Trid(10) [�100, 100] �210
F26 Rastrigin(10) [�2.56, 5.12] 0
F27 Griewank(10) [�300, 600] 0
F28 Sum Squares(10) [�5, 10] 0
F29 Rosenbrock(10) [�10, 10] 0
F30 Zakharov(10) [�5, 10] 0

20 F31 Rastrigin(20) [�2.56, 5.12] 0
F32 Griewank(20) [�300, 600] 0
F33 Sum Squares(20) [�5, 10] 0
F34 Rosenbrock(20) [�10, 10] 0
F35 Zakharov(20) [�5, 10] 0

>20 F36 Powell(24) [�4, 5] 0
F37 Dixon and Price(25) [�10, 10] 0
F38 Levy(30) [�10, 10] 0
F39 Sphere(30) [�2.56, 5.12] 0
F40 Ackley(30) [�15, 30] 0

F41 Sphere(25) [�4, 6] 0
F42 Rosenbrock(25) [5.12, 5.12] 0
F43 Schewefel(25) [�35, 95] 0
F44 Rastrigin(25) [�8.5, 1.5] 0
F45 Griewank(25) [�200, 1000] 0
F46 System Linear Equation(25) [�127, 127] 0
F47 Frequency Modulation Sounds(25) [�6.4, 6.35] 0
F48 Polynomial Fitting(25) [�512, 512] 0
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Table 2
Classification for the test problems

Group Problems Number of problems in the group

Simple F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11,
F12, F13, F14, F16, F24, F25, F38, F39, F41

20

Complex F15, F17, F18, F19, F20, F21, F22, F23, F26, F27,
F28, F29, F30, F31, F32, F33, F34, F35, F36, F37, F40, F40,
F42, F43, F44, F45, F46, F47, F48

28
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5.3. Performance measure

The performance measure used to facilitate the
analysis of the performance of the CSS instances is
defined taking into account a criterion of reaching
a successful solution and a comparison criterion
among algorithms. Both criteria were presented
in [5,41]:

Successful solution. We consider that an algorithm
reached a successfully solution, xs, when the
following is fulfilled [5,41]:

jf ðxsÞ � F Optj 6 10�4 � F Opt þ 10�6;

where FOpt is the value for the objective function
of the global optimum.

Comparison criterion. We have assumed that algo-
rithm A is better than B when:

• A successfully finds solutions in a number of
runs greater than B, i.e., Rs(A) > Rs(B).

• Rs(A) = Rs(B) and to locate successfully solu-
tions A required fewer objective function evalu-
ations than B, i.e., Ns(A) < Ns(B). A t-test (at
0.05 level of significance) was applied in order
to ascertain if differences in Ns(A) are signifi-
cant when compared with Ns(B).

• Rs(A) = Rs(B) = 0 and the average of the best-
objective function found by A at the end of each
run is lower than for B. Again, a t-test is applied
to determine whether the differences among A

and B with respect to this performance measure
are significant.
This comparison criterion allows us to deter-
mine the best performing algorithm from a given
set of CSS instances for each test problem. In par-
ticular, we may evaluate the performance of a par-
ticular CSS instance by counting the number of
test problems where it arises as the best algorithm
or statistically equivalent to this one. All the tables
presented below to analyze the behaviour of CSS
are built based on this performance measure. A
distinction is made between simple and complex
test problems, as stated in Section 5.1, and the re-
sults for the different values for nev are shown, with
the objective of facilitating the study of the effi-
ciency and the efficacy of the algorithms.

5.4. Study of the local searchers

In our first empirical study of the local search-
ers, we investigate the influence of nI (number of
iterations accomplished by the local searchers,
i.e., the local search depth) on the performance
of the CSS, because it has a significant effect upon
the exploration/exploitation balance. Tables 3–6
show the results of CSS instances based on the
same combination methods and local searchers
but with different nI values (nI = 0, 10, 50, 100).
They follow the structure described in the previous
section.

From these tables we draw the following
conclusions:

• An adequate performance is achieved when the
Nelder–Mead simplex algorithm is applied on
the simple problems with nI = 100 (see B-S
100 and A-S 100 in Tables 3 and 4, respec-
tively). This search procedure has a very good
exploitation feature. In addition, high values
for nI provide an elongated operation of the
local searcher. For the simple problems, these
facts allowed an effective refinement of solu-
tions to be accomplished.



Table 3
BLX-a + Nelder–Mead simplex with different nI values

Algorithm/nev Simple (20) Complex (28)

25,000 50,000 100,000 500,000 25,000 50,000 100,000 500,000

B 6 5 6 6 9 8 9 14
B-S 10 2 2 2 2 2 3 2 0
B-S 50 6 6 6 6 12 7 2 3
B-S 100 17 17 17 16 14 20 21 15

Table 4
Average combination + Nelder–Mead simplex with different nI values

Algorithm/nev Simple (20) Complex (28)

25,000 50,000 100,000 500,000 25,000 50,000 100,000 500,000

A 0 0 0 1 2 3 4 6
A-S 10 2 2 1 1 2 0 0 0
A-S 50 7 7 6 6 7 3 3 3
A-S 100 18 18 18 17 25 25 24 23

Table 5
BLX-a + Solis and Wets with different nI values

Algorithm/nev Simple (20) Complex (28)

25,000 50,000 100,000 500,000 25,000 50,000 100,000 500,000

B 2 4 4 4 2 0 0 2
B-SW 10 5 3 4 5 14 4 3 1
B-SW 50 6 7 7 7 10 22 13 11
B-SW 100 11 13 14 15 10 12 19 21

Table 6
Average combination + Solis and Wets with different nI values

Algorithm/nev Simple (20) Complex (28)

25,000 50,000 100,000 500,000 25,000 50,000 100,000 500,000

A 0 0 0 0 0 1 2 2
A-SW 10 6 6 7 7 6 2 1 2
A-SW 50 7 7 6 6 19 19 11 8
A-SW 100 12 12 12 12 9 16 23 23
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• nI = 100 arises as the best choice for dealing
with the complex problems when the Nelder-
Mead simplex algorithm is combined with the
average combination method (Table 4). Fur-
thermore, similar results are achieved when we
jointly apply this local searcher with BLX-a.
However, in this case, there exists an important
difference; the use of BLX-a with no local
search procedure becomes sufficient to cause
an effective performance for nev = 500,000.
The diversity levels provided by this operator
throughout these evaluations produce an ade-
quate exploration of the search space that is
well-suited for complex problems.
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• In general, with nI = 100 the most robust oper-
ation is obtained for the simple problems when
the Solis and Wets� algorithm is applied (Tables
5 and 6). Again, an intense local search depth
becomes suitable to deal with these problems.

• For the complex problems, nI = 50 and nI = 100
constitute the most interesting local search
depths when using the Solis and Wets� algo-
rithm. With nI = 50, a remarkable efficiency is
obtained (see the results for nev = 25,000 and
50,000 in Tables 5 and 6), whereas with
nI = 100, this local searcher provides efficacy
to the CSS instances (see the results for
nev = 100,000 and 500,000). In the initial stage
of CSS, the application of the combination
method is fundamental to explore the search
space and locate promising zones to be refined
by local searchers. Thus, when the CSS has
few evaluations to carry out its operation, it is
more important to perform the combination
method quite a lot of times rather than wasting
evaluations using deep local searches. nI = 50
allows the CSS instances to execute the combi-
Table 8
CSS instances with average combination method

Algorithm/nev Simple (20)

25,000 50,000 100,000 500,00

A 0 0 0 0
A-SW 10 4 4 4 4
A-SW 50 5 5 5 5
A-SW 100 3 2 3 3
A-S 10 0 0 0 0
A-S 50 4 4 4 4
A-S 100 11 12 11 12

Table 7
CSS instances with BLX-a

Algorithm/nev Simple (20)

25,000 50,000 100,000 500,00

B 1 2 2 2
B-SW 10 5 3 3 4
B-SW 50 3 4 4 4
B-SW 100 2 4 5 6
B-S 10 0 0 0 1
B-S 50 3 3 3 4
B-S 100 11 11 11 11
nation method more times than when
nI = 100, and therefore, it may induce better
efficiency. On the other hand, when many eval-
uations are available, enough combination
events may cover the search space to reach good
zones, and deep local searches may accomplish
the effective refinement of the solutions. The
later explaining that nI = 100 gains effectiveness
as nev increases.

An additional objective of our experiments is to
ascertain the local searcher that provides the best
behaviour. In order to do this, we introduce Tables
7 and 8. All the algorithms in these tables apply the
same combination method but differ in the local
searcher and local search depth used.

In general, the Solis and Wets� algorithm with
nI = 50 and nI = 100 was very useful for the com-
plex problems, whereas the Nelder–Mead simplex
algorithm with nI = 100 obtained promising solu-
tions for the simple problems. We should point
out that the Solis and Wets� algorithm has explor-
ative power whereas the Nelder–Mead simplex
Complex (28)

0 25,000 50,000 100,000 500,000

0 0 2 2
5 2 1 2
14 14 10 6
9 15 20 19
0 0 0 0
1 1 0 0
6 6 6 6

Complex (28)

0 25,000 50,000 100,000 500,000

2 0 0 1
12 4 2 1
8 19 11 9
9 12 16 18
0 1 1 0
1 0 0 0
5 3 3 4
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algorithm shows exploitative nature. Thus, each
local searcher has the ability to adjust the search
according to the peculiarities of particular problem
instances.

Finally, we highlight that these tables show
again the differences (regarding the efficiency and
the efficacy) between the CSS instances based on
the Solis and Wets� algorithm with nI = 50 and
nI = 100 in complex problems.

5.5. Comparison between combination methods

We have introduced Tables 9–12 to compare
the performance of the BLX-a operator and the
Table 9
BLX-a vs. average combination (Nelder–Mead simplex with nI = 50)

Algorithm/nev Simple (20)

25,000 50,000 100,000 500,00

A-S 50 14 13 12 14
B-S 50 18 18 18 17

Table 10
BLX-a vs. average combination (Nelder–Mead simplex with nI = 100

Algorithm/nev Simple (20)

25,000 50,000 100,000 500,00

A-S 100 19 18 17 18
B-S 100 17 17 17 17

Table 11
BLX-a vs. average combination (Solis and Wets� with nI = 50)

Algorithm/nev Simple (20)

25,000 50,000 100,000 500,00

A-SW 50 18 19 19 19
B-SW 50 16 15 15 15

Table 12
BLX-a vs. average combination (Solis and Wets� with nI = 100)

Algorithm/nev Simple (20)

25,000 50,000 100,000 500,00

A-SW 100 19 19 20 20
B-SW 100 15 16 16 16
average combination method. They outline the re-
sults of CSS instances based on the BLX-a opera-
tor and on the average combination with same
conditions for the local searcher (type and number
of iterations). Only the values 50 and 100 for nI
have been considered.

Based on these results, we would make the fol-
lowing comments:

• The BLX-a operator outperforms the average
combination method when combined with the
Nelder–Mead simplex algorithm with a value
of nI = 50 (Table 9). In this case, the relation-
ship between the exploration supplied by
Complex (28)

0 25,000 50,000 100,000 500,000

14 6 7 12
17 26 26 23

)

Complex (28)

0 25,000 50,000 100,000 500,000

20 15 11 12
14 22 23 23

Complex (28)

0 25,000 50,000 100,000 500,000

24 18 16 13
8 17 18 20

Complex (28)

0 25,000 50,000 100,000 500,000

25 23 17 15
9 14 17 21
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BLX-a and the exploitation of the Nelder–
Mead simplex algorithm allowed promising
results to be reached.

• In general, Tables 9–12 indicate that the aver-
age combination method slightly outperforms
the BLX-a operator on the simple problems.
However, for the complex problems, regarding
efficiency and efficacy, there exists a compro-
mise between these operators. In particular,
the use of BLX-a allows the best efficacy to be
obtained on this type of problems (see the
results of B-S 100, B-SW 50, and B-SW 100
for nev = 500,000 in Tables 9–12), while the
average combination method contributes effi-
ciency to the CSS instances (see the perform-
ance of A-S 50, A-SW 50, and A-SW 100 for
nev = 25,000).

5.6. Main results of the experiments

In this section, we summarize the main conclu-
sions derived from the results of the experiments:

1. The local search method affects decisively the
CSS behaviour. The Nelder–Mead simplex
algorithm (nI = 100) becomes determinant to
achieve the best solutions for the simple
problems, while for the complex ones, the Solis
and Wets� algorithm is the best choice to
obtain efficiency (nI = 100) and reach efficacy
(nI = 50).

2. BLX-a appears to be as an attractive combina-
tion method for CSS, because it may bring
together properties that are needed in an effec-
tive combination method (randomness, diver-
sity, and self-adaptation). However, we should
point out that these features have an impact
when many CSS iterations have been accom-
plished. In the case of problems where the eval-
uation of the objective function takes quite a
long time, the average combination method
becomes recommendable, with its associated
high exploitation property inducing a rapid
convergence towards the initially detected
promising zones. In this way, it may show an
efficient behaviour because obtains good results
requiring few evaluations.
6. Comparison of CSS with other continuous optimi-

zation algorithms

In this section, we compare CSS with other con-
tinuous optimization techniques appeared in the
literature. We have considered the CSS instance
based on the effective BLX-a operator and on
the Nelder–Mead simplex algorithm (which pro-
vided an adequate performance on the simple test
problems). The algorithms we are comparing CSS
with are the following:

• Continuous Hybrid Algorithm (CHA) [6]. This
algorithm performs a fast exploration step with
a GA, and then a exploitation step with the
Nelder-Mead simplex algorithm.

• Enhanced Continuous Tabu Search (ECTS) [5].
This algorithm firstly locates the most promis-
ing areas of the search space by fitting the size
of the neighborhood structure to the objective
function and its definition domain, and thus
continues the search by intensification within
one of these areas.

• Continuous Genetic Algorithm (CGA) [4]. This
GA pays a special attention to the choice of
the initial population. Then, it locates the most
promising area of the search space, and contin-
ues the search through an intensification inside
this area. The selection, the crossover and the
mutation are performed by using the decimal
base.

• Enhanced Simulated Annealing (ESA) [38]. This
is a variant of the classical Simulated Annealing.
In ESA, the original Metropolis iterative ran-
dom search (that takes place in the Euclidean
space, Rn) is replaced by another similar explo-
ration technique, which is performed within a
succession of Euclidean spaces, Rp, with p� n.

• Continuous Reactive Tabu Search (CRTS) [2].
This algorithm is a variant of the Tabu Search,
which is based on a different Tabu scheme. The
appropriate size of the list is learned in an
automated way by reacting to the occurrence
of cycles. In addition, if the search process
appears to be repeating an excessive number
of solutions excessively often, then the search
is diversified by making a number of random
moves proportional to a moving average of
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the cycle length. Two versions of CRTS have
been proposed, the CRTR minimum and the
CRTR average.

The comparison is made on a set of eight test
problems for which there exist results of the previ-
ous algorithms that are available in the correspond-
ing publications. They include F1, F2, F4, F5, F11,
F12, F14, and F16 (Table 1). All these problems
were classified as simple problems (Table 2).

The continuous optimization algorithms were
executed 100 times with different random seeds.
These algorithms finish a run when a successful
solution is achieved (see Section 5.3), except for
CRTS, which use its own criterion [2].

The experimental results are shown in Table 13,
with some results not available for some of the
methods. The following information appears for
each function and algorithm:

• One number only. This means that the algo-
rithm might return successful solutions after
the 50 runs, and the number outlined is the
average number of evaluations accomplished
to achieve successful solutions.

• Two numbers. The number in parentheses is the
percentage of runs in which the algorithm found
successful solutions (when this percentage is
zero, we introduce a # sign). The first number
is the average number of evaluations accom-
plished to achieve successful solutions during
these runs.

We may remark that, the CSS instance outper-
forms most of the other algorithms on six test
Table 13
CSS instances vs. other continuous optimization algorithms

Problem Algorithms

B-S 100 CHA CGA ECT

F1(RC) 65 295 620 245
F2(B2) 108 132 320 210
F4(GP) 190 259 410 231
F5(SH) 762 345 575 370
F11(R2) 292 459 960 480
F12(Z2) 59 215 620 195
F14(H3,4) # 492 582 548
F16(S4,5) 1197 598 (85%) 610 (76%) 825 (
problems (F1, F2, F4, F11, F12, and F16). There-
fore, we may conclude that CSS is very competi-
tive with continuous optimization algorithms.
7. Conclusions

In this paper, we empirically studied the two
main components of CSS, the combination
method and the local searcher. In particular, we at-
tempted to determine the efficiency and efficacy of
two combinations methods, the BLX-a operator
and the classical average combination method,
and two local searchers, the Nelder–Mead simplex
algorithm and the Solis andWets� algorithm. In or-
der to do this, we have considered two types of test
problems, simple and complex, and ran many CSS
instances with different number of evaluations.

The principal conclusions derived from the re-
sults of the experiments carried out are:

1. BLX-a is a suitable combination method for
CSS. Its properties contribute to improve the
efficacy of CSS, with respect to the one provided
by the classical average combination method.
However, with applications with problems with
time-consuming objective functions, the later
becomes the best election, because it was more
efficient.

2. The exploitation properties of the Nelder–Mead
simplex algorithm allow the best refined solu-
tions to be achieved for the simple problems,
while the exploration ability of the Solis and
Wets� algorithm produces adequate improve-
ments for the complex problems.
S CRTS min. CRTS ave. ESA

41 38 –
– – –
171 248 783
– – –
– – 796
– – 15820
609 513 698

75%) 664 812 1137 (54%)
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3. CSS is very competitive with continuous opti-
mization algorithms.

In essence, CSS is a very promising method and
indeed worth further research. In particular, exten-
sions of the present study may be carried out in
different ways: (1) analysis of the effects of other
combination methods proposed for RCGAs [27]
on the CSS behaviour; (2) design adaptive tech-
niques that select, during the CSS run, the local
searcher (and the value for the local search depth)
most appropriate to the problem being solved; (3)
study the synergy produced by combining the dif-
ferent styles of the traversal of solution space asso-
ciated with the different combination methods.
This may be done by means of hybrid combination
methods, which generate two offspring for every
pair of parents, each one with a different combina-
tion method. In fact, in [31], it was suggested the
use of multiple combination methods may be
suitable.
Table 14
Functions: Part 1

Name f(x)

Branin x2 � 5
4p2

� �
x21 þ 5

p

� �
x1 � 6

� �2 þ 10 1� 1
8p

� �
cosð

B2 x21 þ 2x22 � 0:3 cosð3px1Þ � 0:4 cosð4px2Þ þ 0

Eason � cosðx1Þ cosðx2Þ expð�ððx1 � pÞ2 þ ðx2 � pÞ
Goldstein & Price 1þ x1 þ x2 þ 1ð Þ2 19� 14x1 þ 3x21 � 14x2

��

30þ ð2x1 � 3x2Þ2 18� 32x1 þ 12x21 þ 48x2
��

Shubert
P5

j¼1j cos ðjþ 1Þx1 þ jð Þ
� � P5

j¼1j cos ðjþð
�

Beale ð1:5� x1 þ x1x2Þ2 þ ð2:25� x1 þ x1x22Þ
2 þ ð2

Booth (x1 + 2x2 � 7)2 + (2x1 + x2 � 5)2

Matyas 0:26ðx21 þ x22Þ � 0:48x1x2

SixHumpCamelBack 4x21 � 2:1x41 þ 1
3 x

6
1 þ x1x2 � 4x22 þ 4x42

Schwefel 418:9829nþ
Pn

i¼1

�
� xi sin

ffiffiffiffiffiffi
jxij

p �

Rosenbrock
Pn=2

i¼1100ðx2i � x22i�1Þ
2 þ ð1� x2i�1Þ2

Zakharov(n)
Pn

j¼1x
2
j þ

Pn
j¼10:5jxj

� �2
þ

Pn
j¼10:5jxj

� �
DeJoung x21 þ x22 þ x23

Hartmann(3,4) �
P4

i¼1ci exp
P3

j¼1aijðxj � pijÞ
2

� �
(see Table

Colville 100ðx2 � x21Þ
2 þ ð1� x1Þ2 þ 90ðx4 � x23Þ

2 þ ð
þ10:1ððx2 � 1Þ2 þ ðx4 � 1Þ2Þ þ 19:8ðx2 � 1Þð

Shekel(n) �
Pn

i¼1ððx� aiÞTðx� aiÞ þ ciÞ; x = (x1, x2, x
ai ¼ ða1i ; a2i ; a3i ; a4i Þ

T (see Table 16)
Appendix A. Test suite

The test suite that we have used for the experi-
ments consists of 45 test functions and three real-
world problems. They are described in Sections
A.1 and A.2, respectively.

A.1. Test functions

This appendix contains the description of the
set of test functions. We have included the objec-
tive function, parameter values, and the bounds
of each variable (Tables 14 and 17; also Tables
15, 16 and 18.

A.2. Real-world problems

We have chosen the following three real-world
problems, which, in order to be solved, are trans-
lated to optimization problems of parameters with
variables on continuous domains: Systems of
Range Dimension

x1Þ þ 10 �5 6 x1, x2 6 15 2

:7 �50 6 xi 6 100 2
2ÞÞ �100 6 xi 6 100 2

þ 6x1x2 þ 3x22
��

� 36x1x2 þ 27x22
��

�2 6 xi 6 2 2

1Þx2 þ jÞ
�

�10 6 xi 6 10 2

:625� x1 þ x1x32Þ
2 �4.5 6 x1, x2 6 4.5 2

�10 6 x1, x2 6 10 2

�5 6 x1, x2 6 10 2

�5 6 x1, x2 6 10 2

�500 6 xi 6 500 n

�10 6 xi 6 10 n

�5 6 xi 6 10 n

�2.56 6 xi 6 5.12 3

15) 0 6 xi 6 1 3

1� x3Þ2
x4 � 1Þ

�10 6 xi 6 10 4

3, x4)
t; 0 6 xi 6 10 4



Table 15
Parameters used in Hartmann(3,4)

i aij ci pij

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828

Table 16
Parameters used in Shekel(n)

i aTj ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5
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Linear Equations [12], Frequency Modulation

Sounds Parameter Identification Problem [44], and
Polynomial Fitting Problem [40]. They are de-
scribed below.
Table 17
Functions: Part 2

Name f(x)

Perm(n, b)
Pn

k¼1
Pn

i¼1ðik þ bÞ xi
i

� �k � 1
� �� �

Perm0(n, b)
P

k¼1n
Pn

i¼1ðiþ bÞ xki � 1
i

� �k� �� �2

PowerSum(b1 � � � bn)
Pn

k¼1
Pn

i¼1x
k
i

� �
� bk

� �2
Hartman(6,4) �

P4
i¼1ci exp �

P6
j¼1aij xj � pij

� �2
� �

(see Tabl

Trid(n)
Pn

i¼2ðxi � 1Þ2
� �

�
Pn

i¼2xixi�1

Rastrigin(n) 10nþ
P

i¼1n x2i � 10 cosð2pxiÞ
� �

Griewank(n)
Pn

i¼1
x2i

4000�
Qn

i¼1 cosð xiffiip Þ þ 1

Sum Squares(n)
Pn

i¼1ix
2
i

Powell(n)
Pn=4

j¼1ðx4j�3 þ 10x4j�2Þ2 þ 5ðx4j�1 � x4jÞ2 þ ðx4j�
þ10ðx4j�3 � x4jÞ4

Dixon & Price(n)
Pn

i¼1ið2x2i � xi�1Þ2 þ ðx1 � 1Þ2

Levy(n) sin2ðpy1Þ þ
Pk�1

i¼1 ðyi � 1Þ2ð1þ 10sin2ðpyi þ 1ÞÞ
where yi ¼ 1þ xi�1

4 for i = 1, � � �, n
Sphere(n)

Pn
i¼1x

2
i

Ackley(n) 20þ e� 20e�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

i¼1x
2
i

p
� e

1
n

Pn

i¼1 cosð2pxiÞ
Systems of Linear Equations. In this problem,
given the matrix A and vector B, the elements of
a vector, X, has to be obtain such that: A Æ X = B.
The evaluation function used for these experi-
ments is

P sleðx1; . . . ; xnÞ ¼
Xn

i¼1

Xn

j¼1
ðaij � xjÞ � bj:

Clearly, the best value for this objective function is
Psle(x*) = 0. Inter-parameter linkage (i.e. nonline-
arity) is easily controlled in systems of linear equa-
tions, their nonlinearity does not deteriorate when
the numbers of parameters used increases, and
they have proven to be quite difficult.

We have considered a 10-parameter problem in-
stance. Its matrices are shown in Table 19.
Range Dimension

�n 6 xi 6 n n

�n 6 xi 6 n n

0 6 xi 6 n 2

e 18) 0 6 xi 6 n 6

�n2 6 xi 6 n2 n

�2.56 6 xi 6 5.12 n

�300 6 xi 6 600 n

�5 6 xi 6 10 n

2 � 2x4j�1Þ4 �4 6 xi 6 5 n

�10 6 xi 6 10 n

þ ðyk � 1Þ2ð1þ sin2ð2pxkÞÞ �10 6 xi 6 10 n

�2.56 6 xi 6 5.12 n

�15 6 xi 6 30 n



Table 18
Parameters used in Hartman(6,4)

i aij ci pij

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10.0 17.0 0.10 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Table 19
Matrices for the system of linear equations

5 4 5 2 9 5 4 2 3 1
9 7 1 1 7 2 2 6 6 9
3 1 8 6 9 7 4 2 1 6
8 3 7 3 7 5 3 9 9 5
9 5 1 6 3 4 2 3 3 9
1 2 3 1 7 6 6 3 3 3
1 5 7 8 1 4 7 8 4 8
9 3 8 6 3 4 7 1 8 1
8 2 8 5 3 8 7 2 7 5
2 1 2 2 9 8 7 4 4 1

��������������������

��������������������

1
1
1
1
1
1
1
1
1
1

��������������������

��������������������

¼

40
50
47
59
45
35
53
50
55
40

��������������������

��������������������
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Frequency Modulation Sounds Parameter Identi-

fication Problem. The problem is to specify six
parameters a1, w1, a2, w2, a3, w3 of the frequency
modulation sound model represented by

yðtÞ ¼ a1 � sinðw1 � t � hþ a2 � sinðw2 � t � hþ a3

� sinðw3 � t � hÞÞÞ;

with h ¼ 2p
100
. The objective function is defined as

the summation of square errors between the
evolved data and the model data as follows:

P fmsða1;w1; a2;w2; a3;w3Þ ¼
X100
t¼0
ðyðtÞ � y0ðtÞÞ

2
;

where the model data are given by the following
equation:

y0ðtÞ ¼ 1:0 � sinð5:0 � t � h� 1:5 � sinð4:8 � t � hþ 2:0

� sinð4:9 � t � hÞÞÞ:

Each parameter is in the range �6.4 to 6.35.
This problem is a highly complex multimodal
one having strong epistasis, with minimum value
Pfms(x*) = 0.

Polynomial Fitting Problem. In this problem the
coefficients of the following polynomial in z:
P ðzÞ ¼
X2k
j¼0

cj � zj; k > 0 is integer;

have to be found, such that

P ðzÞ 2 ½�1; 1� for z 2 ½�1; 1�; and

P ð1:2ÞP T 2kð1:2Þ and P ð�1:2ÞP T 2kð�1:2Þ;

where T2k(z) is a Chebychev polynomial of degree
2k.

The solution to the polynomial fitting problem
depends on the coefficients of T2k(z). This polyno-
mial oscillates between �1 and 1 when its argu-
ment z is between �1 and 1. Outside this region
the polynomial rises steeply in direction of high
positive ordinate values. This problem has its roots
in electronic filter design and challenges an optimi-
zation procedure by forcing it to find parameter
values with grossly different magnitudes, some-
thing very common in technical systems. The
Chebychev polynomial employed here is

T 8ðzÞ ¼ 1� 32 � z2 þ 160 � z4 � 256 � z6 þ 128 � z8:
So, it is a nine-parameter problem. The pseudo-

code algorithm shown below was used in order to
transform the constraints of this problem into an
objective function to be minimized, called PChev.
We consider that C = (c0, . . . , c8) is the solution
to be evaluated and PCðzÞ ¼

P8
j¼0cj � zj.

Choose p0, p2, . . . , p100 from [�1, 1];
R = 0;
For i = 0, . . . , 100 do

If (�1 > PC (pi) or PC (pi) > 1) then R R +
(1 � PC(pi))

2;
If (PC (1.2)�T8(1.2) < 0) then R R + (PC (1.2) �
T8(1.2))

2;
If (PC (�1.2) � T8(�1.2) < 0) then R R +
(PC (�1.2) � T8(�1.2))2;
Return R;



Table 20
Results of CSS instances with average combination and nev = 25,000

Functions A A-S 10 A-S 50 A-S 100 A-SW 10 A-SW 50 A-SW 100

f1 4495(62%) 3251(40%) 59(100%) 65(100%) 3032(100%) 232(100%) 106(100%)
f2 12948(6%) 8045(14%) 8392(94%) 108(100%) 5925(100%) 8003(100%) 872(100%)
f3 5730(74%) 4764(82%) 4028(100%) 3615(100%) 4546(100%) 11945(100%) 14297(88%)
f4 11392(32%) 7253(22%) 7885(100%) 190(100%) 5350(100%) 8555(100%) 4583(100%)
f5 10438(14%) 3872(20%) 485(100%) 762(100%) 4377(100%) 2051(100%) 2748(100%)
f6 1854(28%) 3731(62%) 391(100%) 132(100%) 4093(100%) 6198(100%) 3975(100%)
f7 5461(68%) 4107(76%) 325(100%) 62(100%) 4075(98%) 3926(100%) 138(100%)
f8 5182(82%) 2866(82%) 94(100%) 54(100%) 2921(100%) 960(100%) 165(100%)
f9 4623(78%) 4435(88%) 57(100%) 54(100%) 2650(100%) 224(100%) 147(100%)
f10 4.873186e+01 1.764338e+01 1.421264e+01 1.421263e+01 7.521872e+01 1029(100%) 1963(100%)
f11 6078(18%) 5370(14%) 5420(100%) 292(100%) 6144(96%) 14284(98%) 17452(36%)
f12 8042(54%) 5257(42%) 176(100%) 59(100%) 3709(100%) 1068(100%) 118(100%)
f13 2.477039e+03 6388(12%) 12972(80%) 8219(100%) 12873(94%) 9039(100%) 13912(100%)
f14 1.302887e�03 3.772719e�05 3.772719e�05 3.772719e�05 5(100%) 5(100%) 6(100%)
f15 4.805646e+00 1.317702e+00 23074(6%) 23200(100%) 10950(4%) 23662(46%) 8.099810e�03
f16 �4.521676e+00 8053(16%) 11114(90%) 1197(100%) 5926(84%) 8316(100%) 568(100%)
f17 �4.926995e+00 5897(14%) 11248(84%) 1837(100%) 6220(84%) 8384(100%) 637(100%)
f18 �4.981920e+00 8138(16%) 12050(86%) 2264(100%) 6058(92%) 8693(100%) 762(100%)
f19 4.539528e+01 3.142514e�01 2.457277e�03 24996(2%) 3.786004e�02 3.916290e�02 4.787346e�01
f20 9.548831e+00 2.048213e�01 9.753939e�04 24593(32%) 3.563897e�03 23367(4%) 5.915593e�04
f21 1.901987e�01 1.344705e�01 22164(4%) 21620(30%) 1.836404e�03 5.445992e�04 6.056357e�03
f22 1.364826e�04 1479(100%) 401(100%) 394(100%) 5(100%) 5(100%) 5(100%)
f23 8.691992e+02 6.932100e+02 5.026535e+02 4.615707e+02 8.555608e+02 14392(72%) 10179(72%)
f24 �3.285721e+01 �4.929780e+01 13928(80%) 10951(100%) 7642(100%) 10073(100%) 14903(100%)
f25 �5.315097e+01 �1.741643e+02 �2.092337e+02 23037(10%) �2.074414e+02 19731(24%) 23172(28%)
f26 3.671281e+01 1.694190e+01 9.691185e+00 8.796759e+00 7.190457e+00 2.707225e+00 6.619372e+00
f27 7.291894e+00 2.230309e+00 8.015551e�01 5.745147e�01 4.181902e+00 6.171703e�02 2.921184e�02
f28 3.964451e+01 8.354419e+00 1.897373e�01 7.478959e�03 5.201159e�03 24744(72%) 24847(2%)
f29 1.550863e+01 3.814218e+01 1.699491e+01 8.105333e+00 7.897178e+00 6.167869e+00 5.502973e+00
f30 7.166821e+02 7.278385e+01 1.589024e+00 2.819667e�02 2.446548e�02 24913(2%) 2.727571e�03
f31 1.156995e+02 5.886076e+01 5.707052e+01 5.986409e+01 2.185188e+01 3.136370e+01 3.364579e+01
f32 3.677444e+01 2.788269e+01 9.167075e+00 5.713997e+00 1.677493e+01 1.142510e�01 3.641588e�01
f33 3.482395e+02 2.078542e+02 8.547853e+01 5.394773e+01 7.060854e�01 5.430729e�02 3.030565e�01
f34 6.066603e+01 2.366067e+02 5.629692e+01 4.103627e+01 2.437798e+01 1.807899e+01 2.564524e+01
f35 1.061222e+05 1.912938e+04 4.841746e+03 1.222154e+03 1.203542e+01 3.512694e+00 8.872391e+00
f36 1.568707e+01 2.663586e+01 6.603822e+00 4.575637e+00 2.537351e+00 4.651300e�01 1.684909e+00
f37 3.291454e+01 2.607162e+02 4.764015e+01 2.837178e+01 1.035493e+01 3.915858e+00 1.976865e+01
f38 20399(10%) 20157(18%) 19490(100%) 20827(6%) 7539(100%) 22480(44%) 3.137262e+03
f39 2.100659e+01 2.055288e+01 1.230474e+01 1.014949e+01 1.847689e�02 1.452993e�03 1.681603e�02
f40 1.398503e+01 1.403284e+01 1.306967e+01 1.339294e+01 1.358756e+00 1.224861e+01 1.538767e+01
f41 1.092729e+00 3.537832e+00 4.638581e�01 1.455110e�01 1.155768e�02 2.814789e�04 2.792748e�03
f42 3.864811e+01 1.564716e+02 7.757815e+01 5.012898e+01 2.564599e+01 2.313399e+01 3.395975e+01
f43 9.883974e+03 9.902742e+03 9.872872e+03 9.897276e+03 9.886531e+03 8.575071e+03 8.464005e+03
f44 3.225228e+02 1.758841e+02 1.943536e+02 2.256733e+02 1.356565e+02 1.539154e+02 1.925844e+02
f45 5.032617e+02 4.978353e+02 3.838256e+02 3.348829e+02 4.135740e+02 9.536303e�01 1.098985e+00
f46 9.824179e+01 2.345598e+02 6.889354e+01 2.950849e+01 1.799457e+02 4.577628e+01 1.170855e+02
f47 2.526427e+01 2.154433e+01 1.512113e+01 1.465682e+01 1.944825e+01 1.644269e+01 1.739829e+01
f48 3.503341e+03 1.410794e+04 4.160209e+03 1.737367e+03 9.267834e+03 8.067575e+02 6.944975e+02
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Table 21
Results of CSS instances with average combination and nev = 50,000

Functions A A-S 10 A-S 50 A-S 100 A-SW 10 A-SW 50 A-SW 100

f1 11074(68%) 15558(66%) 59(100%) 65(100%) 3032(100%) 232(100%) 106(100%)
f2 27678(26%) 9910(26%) 8358(94%) 108(100%) 5925(100%) 8003(100%) 872(100%)
f3 17411(82%) 5127(86%) 4028(100%) 3615(100%) 4546(100%) 11945(100%) 18007(100%)
f4 25074(84%) 5323(40%) 7885(100%) 190(100%) 5350(100%) 8555(100%) 4583(100%)
f5 18704(38%) 6725(32%) 485(100%) 762(100%) 4377(100%) 2051(100%) 2748(100%)
f6 396(22%) 7398(72%) 391(100%) 132(100%) 4093(100%) 6198(100%) 3975(100%)
f7 11013(94%) 5731(78%) 325(100%) 62(100%) 4789(100%) 3926(100%) 138(100%)
f8 10592(100%) 7773(90%) 94(100%) 54(100%) 2921(100%) 960(100%) 165(100%)
f9 12581(94%) 7816(96%) 57(100%) 54(100%) 2650(100%) 224(100%) 147(100%)
f10 4.568131e+01 8.278274e+00 7.106348e+00 4.737560e+00 9.972440e+01 1029(100%) 1963(100%)
f11 28250(4%) 5545(10%) 5420(100%) 292(100%) 5746(94%) 13948(100%) 23847(100%)
f12 18264(70%) 14488(64%) 176(100%) 59(100%) 3709(100%) 1068(100%) 118(100%)
f13 3.211981e+03 20008(18%) 14698(84%) 8219(100%) 13580(94%) 9039(100%) 13912(100%)
f14 1.566265e�03 3.772719e�05 3.772719e�05 3.772719e�05 5(100%) 5(100%) 6(100%)
f15 3.896128e+00 1.091291e+00 24235(10%) 23421(100%) 10610(4%) 24729(86%) 39267(82%)
f16 �5.676348e+00 17018(14%) 11114(90%) 1197(100%) 9452(96%) 8316(100%) 568(100%)
f17 �5.766817e+00 5672(12%) 11460(84%) 1837(100%) 8856(98%) 8384(100%) 637(100%)
f18 �5.516780e+00 9405(10%) 12050(86%) 2264(100%) 8998(98%) 8693(100%) 762(100%)
f19 3.130638e+01 2.652995e�01 2.417995e�03 35618(30%) 1.477766e�02 45827(2%) 2.971024e�02
f20 3.639802e+00 1.280329e�01 1.260188e�03 29048(64%) 10667(2%) 32129(22%) 43945(10%)
f21 1.139009e�01 1.013293e�01 22164(4%) 25468(56%) 8.562680e�04 35474(16%) 43570(4%)
f22 35789(4%) 1479(100%) 401(100%) 394(100%) 5(100%) 5(100%) 5(100%)
f23 7.557223e+02 6.749472e+02 5.111435e+02 4.592233e+02 8.057628e+02 14743(88%) 20022(96%)
f24 �3.525688e+01 26514(4%) 14790(82%) 10951(100%) 7642(100%) 10073(100%) 14903(100%)
f25 �5.845191e+01 �1.762982e+02 �2.095566e+02 27712(96%) 48662(12%) 28915(50%) 28502(74%)
f26 3.196390e+01 1.751431e+01 9.671264e+00 7.820723e+00 6.639897e+00 46451(20%) 9.026495e�01
f27 7.847097e+00 2.782024e+00 7.564416e�01 3.002372e�01 3.303316e+00 42081(8%) 43180(80%)
f28 3.708076e+01 9.596960e+00 1.770890e�01 2.362650e�03 3.993481e�03 25327(100%) 30638(100%)
f29 9.988137e+00 3.044578e+01 1.752342e+01 6.801684e+00 7.748381e+00 5.007183e+00 4.329500e+00
f30 5.327165e+02 9.945566e+01 1.523272e+00 4.872865e�03 1.141444e�02 32962(96%) 39359(92%)
f31 1.086446e+02 5.410379e+01 3.867251e+01 3.923264e+01 2.084147e+01 1.558646e+01 1.336928e+01
f32 3.297391e+01 2.797297e+01 5.685273e+00 2.252134e+00 1.994313e+00 49800(2%) 7.518748e�04
f33 3.380801e+02 2.069725e+02 8.038028e+01 3.585555e+01 2.462571e�01 48482(6%) 2.409492e�03
f34 2.831090e+01 2.330962e+02 5.982933e+01 3.624471e+01 2.258575e+01 1.679650e+01 1.656665e+01
f35 9.277589e+04 2.067851e+04 4.896130e+03 7.115791e+02 4.211476e+00 8.521118e�01 8.369693e�02
f36 7.004126e+00 2.966574e+01 8.365118e+00 2.673407e+00 1.436270e+00 2.124654e�01 1.371583e�01
f37 9.326137e+00 2.007701e+02 3.765279e+01 8.572660e+00 5.212566e+00 1.091511e+00 3.267276e�01
f38 30305(20%) 22372(24%) 19490(100%) 26091(100%) 7539(100%) 26031(98%) 44803(80%)
f39 1.994750e+01 2.030755e+01 1.115737e+01 7.118457e+00 1.383008e�02 47155(100%) 49325(26%)
f40 1.380028e+01 1.400962e+01 1.270217e+01 1.163112e+01 4.079616e�01 4.995921e+00 1.149521e+01
f41 7.205580e�01 3.367512e+00 6.604856e�01 1.265742e�01 8.525758e�03 41006(100%) 47063(100%)
f42 2.866305e+01 1.442163e+02 7.487326e+01 3.912127e+01 2.558928e+01 2.228399e+01 2.178021e+01
f43 9.877439e+03 9.902106e+03 9.870922e+03 9.861414e+03 9.884616e+03 8.309106e+03 8.025182e+03
f44 3.134398e+02 1.268564e+02 1.102564e+02 1.247502e+02 1.295620e+02 8.582814e+01 1.105471e+02
f45 5.073042e+02 4.886622e+02 3.838905e+02 2.838981e+02 2.968400e+02 2.071416e�03 5.794679e�03
f46 4.828107e+01 2.202468e+02 6.813753e+01 1.656185e+01 1.531308e+02 3.673621e+01 4.378755e+01
f47 2.419638e+01 2.139149e+01 1.453266e+01 1.213491e+01 1.812524e+01 1.246198e+01 1.323554e+01
f48 1.284203e+03 1.292494e+04 3.071011e+03 8.747302e+02 4.123514e+03 5.439471e+02 3.923095e+02
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Table 22
Results of CSS instances with average combination and nev = 100,000

Functions A A-S 10 A-S 50 A-S 100 A-SW 10 A-SW 50 A-SW 100

f1 21435(90%) 22313(76%) 59(100%) 65(100%) 3032(100%) 232(100%) 106(100%)
f2 55228(52%) 27893(50%) 8375(96%) 108(100%) 5925(100%) 8003(100%) 872(100%)
f3 25226(100%) 9482(84%) 4028(100%) 3615(100%) 4546(100%) 11945(100%) 18007(100%)
f4 32103(100%) 12772(22%) 7885(100%) 190(100%) 5350(100%) 8555(100%) 4583(100%)
f5 42607(56%) 26982(30%) 485(100%) 762(100%) 4377(100%) 2051(100%) 2748(100%)
f6 9091(18%) 10451(84%) 391(100%) 132(100%) 4093(100%) 6198(100%) 3975(100%)
f7 13223(100%) 11148(86%) 325(100%) 62(100%) 4789(100%) 3926(100%) 138(100%)
f8 10592(100%) 13303(98%) 94(100%) 54(100%) 2921(100%) 960(100%) 165(100%)
f9 16867(100%) 10146(100%) 57(100%) 54(100%) 2650(100%) 224(100%) 147(100%)
f10 3.552374e+01 7.994367e+00 6.765843e�05 2.545514e�05 8.658698e+01 1029(100%) 1963(100%)
f11 42323(12%) 8403(16%) 5420(100%) 292(100%) 6575(100%) 13948(100%) 23847(100%)
f12 28869(100%) 21951(82%) 176(100%) 59(100%) 3709(100%) 1068(100%) 118(100%)
f13 2.878806e+03 27479(28%) 13868(86%) 8219(100%) 18574(98%) 9039(100%) 13912(100%)
f14 5.548391e�04 3.772719e�05 3.772719e�05 3.772719e�05 5(100%) 5(100%) 6(100%)
f15 2.561524e+00 8.165845e�01 24285(10%) 23421(100%) 10592(2%) 25922(94%) 37896(94%)
f16 �6.165482e+00 17526(16%) 11181(88%) 1197(100%) 10808(100%) 8316(100%) 568(100%)
f17 �5.497251e+00 13771(12%) 11608(86%) 1837(100%) 8823(98%) 8384(100%) 637(100%)
f18 �5.750058e+00 20133(8%) 17360(90%) 2264(100%) 11180(98%) 8693(100%) 762(100%)
f19 1.889669e+01 1.450726e�01 2.567199e�03 35016(28%) 6.458802e�03 3.638562e�03 88249(4%)
f20 2.183872e+00 7.816190e�02 1.332706e�03 29063(66%) 1.563970e�03 35146(20%) 51920(32%)
f21 5.863955e�02 6.234422e�02 22667(6%) 25537(56%) 3.805371e�04 38283(12%) 75774(16%)
f22 44382(6%) 1479(100%) 401(100%) 394(100%) 5(100%) 5(100%) 5(100%)
f23 6.837380e+02 6.305916e+02 4.641912e+02 4.505078e+02 7.944516e+02 20663(98%) 16891(98%)
f24 �3.789352e+01 15571(4%) 18635(90%) 10951(100%) 7642(100%) 10073(100%) 14903(100%)
f25 �6.865895e+01 �1.771048e+02 �2.095764e+02 27796(96%) 58316(100%) 49406(100%) 37957(100%)
f26 3.040757e+01 1.685428e+01 9.844015e+00 7.355569e+00 5.875442e+00 53085(46%) 68289(92%)
f27 7.415561e+00 2.486820e+00 7.322774e�01 2.331749e�01 2.209664e+00 41519(12%) 45209(94%)
f28 3.321437e+01 9.745727e+00 1.454554e�01 2.021885e�03 1.927107e�03 25327(100%) 30638(100%)
f29 9.012775e+00 2.892736e+01 1.609748e+01 6.350123e+00 6.793416e+00 4.044014e+00 65582(6%)
f30 5.284858e+02 8.626617e+01 1.627879e+00 4.572595e�03 5.901610e�03 34260(100%) 41894(100%)
f31 1.049695e+02 5.604364e+01 3.817690e+01 3.270031e+01 1.953302e+01 1.332921e+01 5.981080e+00
f32 3.354334e+01 2.590402e+01 5.076167e+00 1.550312e+00 2.268281e�02 55546(76%) 62782(94%)
f33 3.059898e+02 2.153750e+02 8.799361e+01 2.658387e+01 1.272582e�01 71408(42%) 67979(80%)
f34 2.067580e+01 2.040045e+02 5.555925e+01 3.152109e+01 1.980073e+01 1.645973e+01 1.624744e+01
f35 7.972229e+04 1.934855e+04 4.965156e+03 7.665297e+02 1.673975e+00 9.801505e�02 96431(2%)
f36 3.772769e+00 1.952026e+01 6.198155e+00 2.603502e+00 7.761122e�01 6.393214e�02 4.751352e�02
f37 2.748572e+00 1.245165e+02 4.047646e+01 7.000093e+00 3.488934e+00 3.435861e�01 5.681354e�02
f38 51011(76%) 44821(26%) 19490(100%) 26091(100%) 7539(100%) 28052(100%) 45964(100%)
f39 1.894339e+01 1.945148e+01 1.148252e+01 3.782681e+00 9.492146e�03 46784(100%) 52915(100%)
f40 1.355881e+01 1.365634e+01 1.218741e+01 1.108025e+01 4.591285e�01 1.472246e�03 3.365022e+00
f41 3.619886e�01 2.972191e+00 5.608871e�01 1.362783e�01 4.873395e�03 41006(100%) 47381(100%)
f42 2.444540e+01 1.399445e+02 6.276827e+01 4.281121e+01 2.389321e+01 2.176554e+01 2.123099e+01
f43 9.873876e+03 9.894939e+03 9.869283e+03 9.860955e+03 9.890213e+03 8.226050e+03 7.719751e+03
f44 3.207480e+02 7.687706e+01 6.755800e+01 7.753551e+01 1.269375e+02 7.949769e+01 5.348926e+01
f45 5.145244e+02 4.942640e+02 3.922601e+02 1.887260e+02 1.266021e+02 73122(84%) 79261(90%)
f46 2.611656e+01 1.691584e+02 6.662800e+01 1.681278e+01 1.121659e+02 3.563965e+01 2.559633e+01
f47 2.328121e+01 2.082928e+01 1.269110e+01 66474(2%) 1.747625e+01 83401(8%) 97483(2%)
f48 5.369802e+02 9.190404e+03 2.279762e+03 6.669642e+02 1.167642e+03 4.737414e+02 3.627938e+02
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Table 23
Results of CSS instances with average combination and nev = 500,000

Functions A A-S 10 A-S 50 A-S 100 A-SW 10 A-SW 50 A-SW 100

f1 39020(100%) 57963(100%) 59(100%) 65(100%) 3032(100%) 232(100%) 106(100%)
f2 98519(100%) 141040(94%) 12389(100%) 108(100%) 5925(100%) 8003(100%) 872(100%)
f3 25226(100%) 37351(100%) 4028(100%) 3615(100%) 4546(100%) 11945(100%) 18007(100%)
f4 32103(100%) 129590(42%) 7885(100%) 190(100%) 5350(100%) 8555(100%) 4583(100%)
f5 93711(100%) 203471(72%) 485(100%) 762(100%) 4377(100%) 2051(100%) 2748(100%)
f6 38027(22%) 94811(100%) 391(100%) 132(100%) 4093(100%) 6198(100%) 3975(100%)
f7 13223(100%) 63854(100%) 325(100%) 62(100%) 4789(100%) 3926(100%) 138(100%)
f8 10592(100%) 15492(100%) 94(100%) 54(100%) 2921(100%) 960(100%) 165(100%)
f9 16867(100%) 10146(100%) 57(100%) 54(100%) 2650(100%) 224(100%) 147(100%)
f10 2.026702e+01 7.452133e+00 8.045320e�05 2.545513e�05 3.445431e+01 1029(100%) 1963(100%)
f11 172442(44%) 215241(42%) 5420(100%) 292(100%) 6575(100%) 13948(100%) 23847(100%)
f12 28869(100%) 38814(100%) 176(100%) 59(100%) 3709(100%) 1068(100%) 118(100%)
f13 3.105499e+03 204405(88%) 37396(98%) 8240(100%) 24053(100%) 9039(100%) 13912(100%)
f14 4.120241e�04 3.772719e�05 3.772719e�05 3.772719e�05 5(100%) 5(100%) 6(100%)
f15 1.015280e+00 2.069866e�01 64765(16%) 23421(100%) 243034(12%) 54838(100%) 81442(98%)
f16 �7.117034e+00 266591(52%) 36539(100%) 1197(100%) 10808(100%) 8316(100%) 568(100%)
f17 21395(4%) 237569(42%) 35922(100%) 1837(100%) 11027(100%) 8384(100%) 637(100%)
f18 �7.366983e+00 194067(32%) 34130(98%) 2264(100%) 11490(100%) 8693(100%) 762(100%)
f19 8.644641e+00 3.632883e�02 21106(2%) 125481(54%) 4.000520e�03 3.439866e�03 92017(4%)
f20 3.367218e�01 2.030285e�02 23267(2%) 60758(84%) 5.632660e�04 41513(26%) 76485(26%)
f21 5.371200e�03 1.474589e�02 23321(2%) 160890(94%) 161355(4%) 62426(6%) 89931(16%)
f22 214626(18%) 1479(100%) 401(100%) 462(100%) 5(100%) 5(100%) 5(100%)
f23 5.240975e+02 4.820599e+02 3.728691e+02 3.838424e+02 6.069172e+02 28846(100%) 18858(100%)
f24 �3.974014e+01 105151(10%) 38258(100%) 10951(100%) 7642(100%) 10073(100%) 14903(100%)
f25 �8.672579e+01 �1.727134e+02 �2.096286e+02 34730(100%) 58316(100%) 49406(100%) 37957(100%)
f26 2.193829e+01 1.477353e+01 8.434255e+00 6.441310e+00 3.983499e+00 138259(92%) 95044(100%)
f27 6.494275e+00 2.574371e+00 6.524438e�01 1.398736e�01 8.563326e�01 291103(66%) 68394(100%)
f28 2.787670e+01 9.041870e+00 1.166383e�01 7.479607e�04 1.404143e�04 25327(100%) 30638(100%)
f29 7.892050e+00 1.987869e+01 1.098607e+01 4.367944e+00 5.073874e+00 5.710367e�01 67637(4%)
f30 3.640012e+02 7.396698e+01 1.233121e+00 2.601381e�03 1.089015e�03 34260(100%) 41894(100%)
f31 8.433245e+01 5.327865e+01 3.399461e+01 2.913180e+01 1.514659e+01 1.054794e+01 305340(4%)
f32 2.837300e+01 3.118862e+01 4.799978e+00 1.483711e+00 2.260587e�02 89477(82%) 73504(100%)
f33 2.632084e+02 1.877932e+02 8.889259e+01 2.335212e+01 3.560631e�02 135287(100%) 78992(100%)
f34 1.831513e+01 1.435899e+02 4.245554e+01 2.703436e+01 1.802527e+01 1.257766e+01 1.190176e+01
f35 4.779434e+04 1.790616e+04 3.833737e+03 6.915808e+02 4.780645e�01 432944(12%) 273035(100%)
f36 1.112771e+00 1.261270e+01 4.420976e+00 1.468090e+00 1.271519e�01 4.356530e�03 2.682036e�03
f37 5.852255e�01 2.841096e+01 1.090247e+01 2.980476e+00 8.092004e�01 3.199151e�02 150005(10%)
f38 109962(100%) 132754(72%) 19490(100%) 26012(100%) 7539(100%) 28052(100%) 47761(100%)
f39 1.588427e+01 2.023542e+01 1.133478e+01 2.087626e+00 3.740352e�03 46784(100%) 52915(100%)
f40 1.338863e+01 1.345532e+01 1.197801e+01 1.114582e+01 1.819238e�01 8.530485e�06 200147(100%)
f41 6.187255e�02 1.976001e+00 4.727145e�01 2.163397e�01 8.060558e�04 41006(100%) 47381(100%)
f42 2.343620e+01 9.885612e+01 5.489042e+01 3.571926e+01 2.365104e+01 1.848068e+01 1.760120e+01
f43 9.872505e+03 9.885524e+03 9.862976e+03 9.850451e+03 9.885467e+03 8.001402e+03 7.619732e+03
f44 2.951759e+02 5.171998e+00 5.570075e+00 2.785676e+00 1.158147e+02 6.385549e+01 2.623548e+01
f45 4.944554e+02 5.070043e+02 3.926773e+02 8.654872e+00 7.932752e�03 108138(94%) 91500(96%)
f46 1.006135e+01 5.484565e+01 4.641350e+01 1.302818e+01 3.356234e+01 1.861917e+01 1.626374e+01
f47 2.171988e+01 1.889923e+01 1.559996e+01 1.414010e+01 1.192708e+01 198470(8%) 206512(2%)
f48 1.975890e+02 2.683699e+03 1.130521e+03 4.313629e+02 3.174916e+02 3.544777e+02 2.462716e+02
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Table 24
Results of CSS instances with BLX-a and nev = 25,000

Functions B B-S 10 B-S 50 B-S 100 B-SW 10 B-SW 50 B-SW 100

f1 2293(98%) 4473(82%) 59(100%) 65(100%) 3097(100%) 232(100%) 106(100%)
f2 1445(100%) 7085(90%) 10317(100%) 108(100%) 7013(98%) 8017(100%) 872(100%)
f3 1915(100%) 5637(96%) 4062(100%) 2688(100%) 4928(100%) 12455(100%) 15826(94%)
f4 4597(94%) 8018(58%) 9217(100%) 190(100%) 6403(98%) 8208(100%) 4583(100%)
f5 1820(100%) 5448(70%) 485(100%) 762(100%) 4918(100%) 2051(100%) 2748(100%)
f6 5491(80%) 5782(68%) 391(100%) 132(100%) 6295(100%) 7060(100%) 3975(100%)
f7 3644(94%) 5653(74%) 325(100%) 62(100%) 5063(98%) 4205(100%) 138(100%)
f8 5024(90%) 4535(80%) 94(100%) 54(100%) 3427(100%) 960(100%) 165(100%)
f9 718(100%) 3437(98%) 57(100%) 54(100%) 2777(100%) 224(100%) 147(100%)
f10 2.545513e�05 4.777974e+00 9.475095e+00 4.737560e+00 4.737561e+00 1029(100%) 1963(100%)
f11 17101(16%) 1.622358e�02 5008(100%) 292(100%) 12465(60%) 16511(100%) 18742(16%)
f12 1285(100%) 4800(98%) 176(100%) 59(100%) 4184(100%) 1068(100%) 118(100%)
f13 6685(96%) 9802(80%) 17738(96%) 8402(100%) 10014(96%) 9430(100%) 14874(100%)
f14 3.786791e�05 3.772719e�05 3.772719e�05 3.772719e�05 5(100%) 5(100%) 6(100%)
f15 2.457089e+00 6.086349e�01 3.280560e�03 24802(4%) 2.187521e�02 2.233325e�03 17360(2%)
f16 6680(34%) 8432(80%) 15379(100%) 1197(100%) 7677(82%) 8006(100%) 568(100%)
f17 8278(52%) 8660(76%) 15278(100%) 1837(100%) 8332(96%) 8557(100%) 637(100%)
f18 8606(56%) 8453(78%) 15035(100%) 2264(100%) 7936(98%) 8561(100%) 762(100%)
f19 3.342710e+00 1.046414e�01 3.672657e�03 9.296700e�04 4.336613e�02 6.874222e�02 9.100675e�01
f20 1.469844e�01 5.421720e�02 2.450285e�03 1.371945e�05 3.484702e�03 24330(2%) 19428(2%)
f21 7.300102e�02 3.258660e�02 9.595756e�04 3.812891e�05 9.216793e�03 2.738429e�03 6.343321e�03
f22 1595(92%) 1565(100%) 401(100%) 394(100%) 5(100%) 5(100%) 5(100%)
f23 2.346718e+02 2.729822e+02 1.624436e+02 2.165763e+02 3.983645e+02 11977(98%) 13312(80%)
f24 1576(4%) 14642(16%) 20138(82%) 11183(100%) 8641(100%) 11031(100%) 14038(100%)
f25 �1.225651e+02 �1.985907e+02 �2.094358e+02 �2.097701e+02 18919(6%) 21608(32%) 24619(8%)
f26 1.161684e+01 8.662292e+00 5.849073e+00 6.666818e+00 8.942635e+00 4.535482e+00 1.264309e+01
f27 2.456546e�01 3.385878e�01 7.080620e�01 5.284450e�01 2.891846e�01 8.481270e�02 6.673060e�02
f28 18059(8%) 3.565672e�02 3.663151e�02 1.272141e�02 1.059867e�04 7.645537e�06 7.910136e�05
f29 5.963454e+01 1.645030e+01 1.175532e+01 7.453159e+00 8.413052e+00 5.064371e+00 5.078268e+00
f30 16887(4%) 1.477080e�01 6.581604e�02 2.951610e�02 2.724241e�04 3.355618e�04 9.882236e�03
f31 3.246125e+01 6.220850e+01 5.863913e+01 4.664674e+01 2.743526e+01 3.819670e+01 4.887434e+01
f32 1.193513e+00 1.995909e+00 2.356734e+00 3.637511e+00 4.608484e�01 5.756052e�01 8.382299e�01
f33 5.504380e+00 7.054253e+00 9.862809e+00 1.527274e+01 2.202784e�02 9.490364e�02 6.621656e�01
f34 5.340634e+02 2.067080e+02 7.385312e+01 6.501161e+01 2.449958e+01 2.181538e+01 4.577701e+01
f35 3.723582e+03 3.643960e+02 1.356075e+02 3.359131e+02 1.346948e+00 4.400102e+00 4.148140e+01
f36 3.846496e+01 2.207645e+01 1.194325e+01 1.702330e+01 1.999348e+00 3.540454e+00 1.168585e+01
f37 2.962667e+02 2.493520e+02 1.454640e+02 1.648329e+02 8.267463e+00 2.737355e+01 7.555184e+01
f38 21344(40%) 6.486400e+01 7.334841e+02 2.860002e+03 13918(100%) 1.888061e+03 1.208994e+04
f39 6.693894e�01 3.839847e+00 3.764758e+00 8.590582e+00 1.300332e�02 2.770096e�02 6.884185e�02
f40 4.623773e+00 8.336942e+00 1.020364e+01 1.511696e+01 1.489722e+00 1.435313e+01 1.723461e+01
f41 2.155491e�01 9.835393e�01 2.620984e�01 1.354927e�01 4.283268e�03 6.109269e�03 1.320093e�02
f42 2.444142e+02 2.022785e+02 1.124055e+02 1.070844e+02 2.573467e+01 3.245817e+01 5.922239e+01
f43 9.889227e+03 9.882613e+03 9.875219e+03 9.908319e+03 9.884380e+03 8.927113e+03 8.700666e+03
f44 7.613853e+01 1.374972e+02 2.097282e+02 2.430092e+02 5.891044e+01 1.316606e+02 2.188517e+02
f45 7.862178e+00 5.797251e+01 1.544389e+02 2.110298e+02 9.784449e+00 1.588714e+00 1.466347e+00
f46 4.975716e+02 1.288176e+02 8.816791e+01 4.740309e+01 1.770189e+02 9.253211e+01 2.045960e+02
f47 2.072306e+01 1.573367e+01 8.779191e+00 1.175357e+01 1.151704e+01 1.174643e+01 1.681185e+01
f48 2.948807e+04 7.217604e+03 6.928449e+03 9.044918e+03 1.480564e+04 1.517147e+03 1.742993e+03

F. Herrera et al. / European Journal of Operational Research 169 (2006) 450–476 471



Table 25
Results of CSS instances with BLX-a and nev = 50,000

Functions B B-S 10 B-S 50 B-S 100 B-SW 10 B-SW 50 B-SW 100

f1 2547(98%) 4434(84%) 59(100%) 65(100%) 3097(100%) 232(100%) 106(100%)
f2 1445(100%) 7944(98%) 10317(100%) 108(100%) 7057(98%) 8017(100%) 872(100%)
f3 1915(100%) 6554(94%) 4062(100%) 2688(100%) 4928(100%) 12455(100%) 18729(100%)
f4 6019(100%) 12336(70%) 9217(100%) 190(100%) 6575(98%) 8208(100%) 4583(100%)
f5 1820(100%) 11297(74%) 485(100%) 762(100%) 4918(100%) 2051(100%) 2748(100%)
f6 8567(90%) 7064(58%) 391(100%) 132(100%) 6295(100%) 7060(100%) 3975(100%)
f7 6671(90%) 12486(80%) 325(100%) 62(100%) 5852(100%) 4205(100%) 138(100%)
f8 9489(92%) 6989(86%) 94(100%) 54(100%) 3427(100%) 960(100%) 165(100%)
f9 718(100%) 5330(94%) 57(100%) 54(100%) 2777(100%) 224(100%) 147(100%)
f10 2.545513e�05 2.430780e+00 2.547190e�05 7.106328e+00 2.545518e�05 1029(100%) 1963(100%)
f11 32029(16%) 15134(2%) 5008(100%) 292(100%) 17927(88%) 16438(100%) 28147(100%)
f12 1285(100%) 4795(94%) 176(100%) 59(100%) 4184(100%) 1068(100%) 118(100%)
f13 8568(100%) 9575(72%) 17916(98%) 8402(100%) 10441(98%) 9430(100%) 14874(100%)
f14 3.772719e�05 3.772719e�05 3.772719e�05 3.772719e�05 5(100%) 5(100%) 6(100%)
f15 2.212682e+00 3.652419e�01 2.428830e�03 41440(44%) 21620(2%) 38440(96%) 46692(42%)
f16 10240(50%) 9020(72%) 15379(100%) 1197(100%) 8356(90%) 8006(100%) 568(100%)
f17 11916(62%) 8476(78%) 15278(100%) 1837(100%) 9369(100%) 8557(100%) 637(100%)
f18 15142(54%) 9024(88%) 15035(100%) 2264(100%) 7936(98%) 8561(100%) 762(100%)
f19 1.338190e+00 1.503776e�01 3.176410e�03 32673(14%) 2.883842e�02 1.310077e�02 8.314696e�02
f20 8.088661e�02 4.765600e�02 1.585009e�03 46381(22%) 41584(2%) 34124(12%) 43611(4%)
f21 2.357696e�02 2.258411e�02 5.764134e�04 34090(40%) 3.298201e�03 49540(2%) 1.084150e�03
f22 2115(98%) 1565(100%) 401(100%) 394(100%) 5(100%) 5(100%) 5(100%)
f23 1.384582e+02 2.373684e+02 1.417453e+02 1.255596e+02 4.613096e+02 13071(100%) 17571(100%)
f24 22870(10%) 14067(24%) 22185(98%) 11183(100%) 8641(100%) 11031(100%) 14038(100%)
f25 �1.602944e+02 �2.001218e+02 41642(18%) 39534(82%) 40809(80%) 28127(86%) 31600(84%)
f26 7.997657e+00 9.794059e+00 3.044512e+00 1.477578e+00 8.281822e+00 8.985103e�01 2.278524e+00
f27 1.278115e�01 2.436169e�01 4.109635e�01 2.883299e�01 2.893272e�01 48935(4%) 47798(4%)
f28 36658(42%) 1.114861e�02 2.857995e�03 1.031842e�03 32634(14%) 29121(100%) 32474(100%)
f29 4.235336e+01 1.134753e+01 8.107626e+00 5.792662e+00 6.915157e+00 4.208158e+00 3.223078e+00
f30 44102(24%) 50012(2%) 1.133788e�02 2.930693e�03 35891(16%) 38113(100%) 43376(100%)
f31 3.086553e+01 3.822877e+01 3.254971e+01 2.219017e+01 2.571060e+01 1.619689e+01 1.987548e+01
f32 5.319417e�01 1.258666e+00 1.353830e+00 1.468641e+00 4.694744e�02 7.134766e�03 6.471753e�03
f33 1.182004e+00 2.617703e+00 1.841598e+00 4.483436e+00 6.473105e�03 6.337170e�05 4.608779e�04
f34 2.415699e+02 6.733808e+01 3.421241e+01 3.366011e+01 2.905296e+01 1.632592e+01 1.543936e+01
f35 2.093212e+02 2.458260e+02 1.967011e+01 2.299215e+01 2.055083e�01 5.500275e�02 1.299461e�01
f36 1.689293e+01 8.168948e+00 2.075922e+00 1.144241e+00 7.721248e�01 1.764139e�01 3.749085e�01
f37 1.137223e+02 1.081968e+02 3.325390e+01 9.754416e+00 3.813655e+00 7.351218e�01 8.385001e�01
f38 32014(68%) 33756(84%) 33518(100%) 41503(100%) 13918(100%) 45817(82%) 1.365349e+03
f39 1.150533e�01 4.762356e�01 1.312062e+00 1.778036e+00 1.994145e�03 4.860482e�05 3.406971e�05
f40 3.981742e+00 4.221655e+00 5.217700e+00 4.851977e+00 6.015057e�02 7.445654e+00 1.385961e+01
f41 7.934347e�02 1.469872e�01 6.009665e�02 1.149928e�02 7.888807e�04 5.513419e�06 48751(6%)
f42 1.589039e+02 8.472387e+01 5.344123e+01 3.876599e+01 2.630669e+01 2.169178e+01 2.134762e+01
f43 9.879616e+03 9.873621e+03 9.866847e+03 9.861138e+03 9.876897e+03 8.679081e+03 8.560682e+03
f44 7.212744e+01 5.231358e+01 8.713166e+01 1.091808e+02 5.475471e+01 5.931018e+01 9.749701e+01
f45 2.902893e+00 8.662253e+00 8.138304e+01 1.163435e+02 5.408724e�01 2.593443e�02 3.637318e�02
f46 3.657421e+02 1.400325e+02 5.412154e+01 3.136098e+01 1.119413e+02 2.159920e+01 4.131190e+01
f47 1.896465e+01 1.326826e+01 7.643055e+00 6.588203e+00 9.596499e+00 49016(2%) 1.200527e+01
f48 1.847459e+04 4.984550e+03 2.068194e+03 1.744923e+03 5.130401e+03 4.373692e+02 3.394011e+02
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Table 26
Results of CSS instances with BLX-a and nev = 100,000

Functions B B-S 10 B-S 50 B-S 100 B-SW 10 B-SW 50 B-SW 100

f1 4952(100%) 6935(98%) 59(100%) 65(100%) 3097(100%) 232(100%) 106(100%)
f2 1445(100%) 10881(100%) 10317(100%) 108(100%) 7975(100%) 8017(100%) 872(100%)
f3 1915(100%) 6774(100%) 4062(100%) 2688(100%) 4928(100%) 12455(100%) 18729(100%)
f4 6019(100%) 30064(90%) 9217(100%) 190(100%) 8855(100%) 8208(100%) 4583(100%)
f5 1820(100%) 23758(92%) 485(100%) 762(100%) 4918(100%) 2051(100%) 2748(100%)
f6 16349(92%) 20366(84%) 391(100%) 132(100%) 6295(100%) 7060(100%) 3975(100%)
f7 6039(100%) 14006(86%) 325(100%) 62(100%) 5852(100%) 4205(100%) 138(100%)
f8 8718(100%) 20170(98%) 94(100%) 54(100%) 3427(100%) 960(100%) 165(100%)
f9 718(100%) 7324(100%) 57(100%) 54(100%) 2777(100%) 224(100%) 147(100%)
f10 2.545513e�05 2.545513e�05 2.549925e�05 2.545513e�05 2.545513e�05 1029(100%) 1963(100%)
f11 60670(42%) 21686(8%) 5008(100%) 292(100%) 21170(94%) 16438(100%) 28147(100%)
f12 1285(100%) 11531(98%) 176(100%) 59(100%) 4184(100%) 1068(100%) 118(100%)
f13 8568(100%) 12763(84%) 18227(98%) 8402(100%) 10973(96%) 9430(100%) 14874(100%)
f14 3.772719e�05 3.772719e�05 3.772719e�05 3.772719e�05 5(100%) 5(100%) 6(100%)
f15 1.326089e+00 3.837476e�01 45954(2%) 48574(60%) 2.972855e�03 39289(100%) 52482(100%)
f16 24999(60%) 14377(88%) 15379(100%) 1197(100%) 13256(86%) 8006(100%) 568(100%)
f17 22435(72%) 10678(96%) 15278(100%) 1837(100%) 9369(100%) 8557(100%) 637(100%)
f18 20874(80%) 14060(80%) 15035(100%) 2264(100%) 7936(98%) 8561(100%) 762(100%)
f19 5.561376e�01 1.027276e�01 5.147861e�03 58015(30%) 9.574073e�03 6.714158e�03 9.638286e�03
f20 6.477510e�03 5.709562e�02 1.182029e�03 52767(46%) 2.530854e�03 48668(28%) 59153(40%)
f21 1.295297e�02 3.052629e�02 4.410605e�04 49273(56%) 1.149368e�03 61731(10%) 80030(2%)
f22 2132(98%) 1565(100%) 401(100%) 394(100%) 5(100%) 5(100%) 5(100%)
f23 1.970229e+01 2.061605e+02 1.184589e+02 1.255450e+02 3.022828e+02 13071(100%) 17571(100%)
f24 71453(34%) 14660(20%) 24369(96%) 11183(100%) 8641(100%) 11031(100%) 14038(100%)
f25 �1.714841e+02 �2.008693e+02 48558(24%) 43379(96%) 42606(100%) 34875(100%) 33729(100%)
f26 5.242147e+00 9.972331e+00 3.110180e+00 1.076668e+00 8.392984e+00 61270(36%) 79800(68%)
f27 8.137247e�02 2.472601e�01 3.066972e�01 8.542978e�02 2.507939e�01 61546(8%) 67016(86%)
f28 54713(96%) 47305(6%) 88161(8%) 1.739159e�04 35379(22%) 29121(100%) 32474(100%)
f29 2.934686e+01 1.488492e+01 7.820399e+00 4.702401e+00 6.832698e+00 2.837759e+00 87969(2%)
f30 58271(84%) 37214(2%) 2.091396e�03 1.950175e�04 34530(16%) 38113(100%) 43021(100%)
f31 2.245039e+01 3.256705e+01 2.935356e+01 1.178435e+01 2.698341e+01 1.427011e+01 5.959259e+00
f32 1.477319e�01 1.109466e+00 1.055155e+00 9.876177e�01 3.060543e�02 69892(62%) 75704(76%)
f33 4.306086e�02 1.524806e+00 7.352012e�01 1.499948e+00 4.759698e�03 71546(100%) 74746(100%)
f34 1.043566e+02 4.901324e+01 2.626218e+01 2.067024e+01 2.513066e+01 1.559208e+01 1.449583e+01
f35 1.990939e+00 2.859664e+02 6.051900e+00 2.507429e+00 1.886134e�01 94998(10%) 1.476643e�03
f36 7.386955e+00 5.459242e+00 8.068311e�01 4.111370e�01 4.483009e�01 1.852903e�02 1.416934e�02
f37 5.018072e+01 1.260643e+02 2.357852e+01 4.736835e+00 3.410520e+00 2.346295e�01 9.396018e�02
f38 39482(96%) 34678(88%) 33518(100%) 41503(100%) 13918(100%) 48338(100%) 85587(92%)
f39 3.827744e�02 1.800048e�01 3.017486e�01 4.721999e�01 1.458007e�03 73125(100%) 64445(100%)
f40 2.861456e+00 2.711173e+00 3.497689e+00 3.191682e+00 3.254885e�02 1.972347e�01 7.153613e+00
f41 5.564298e�03 1.085397e�01 2.363329e�02 4.943316e�03 6.753101e�04 59636(100%) 55160(100%)
f42 1.008835e+02 6.329263e+01 3.628763e+01 2.834539e+01 2.535653e+01 2.103455e+01 2.014444e+01
f43 9.873392e+03 9.871759e+03 9.866811e+03 9.858188e+03 9.873655e+03 8.653460e+03 8.325625e+03
f44 5.940600e+01 2.093625e+01 3.026747e+01 4.169214e+01 5.319985e+01 4.529451e+01 3.497023e+01
f45 6.626323e�01 3.844955e+00 2.321214e+01 2.000707e+01 3.134460e�02 91653(66%) 92324(74%)
f46 2.852014e+02 1.188399e+02 4.426497e+01 2.397967e+01 5.772311e+01 8.464340e+00 8.680244e+00
f47 1.543579e+01 1.386189e+01 6.110089e+00 91334(2%) 1.081318e+01 69344(20%) 90617(14%)
f48 1.128482e+04 6.195752e+03 1.667574e+03 8.631561e+02 1.612488e+03 3.887660e+02 1.358254e+02
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Table 27
Results of CSS instances with BLX-a and nev = 500,000

Functions B B-S 10 B-S 50 B-S 100 B-SW 10 B-SW 50 B-SW 100

f1 4952(100%) 22746(100%) 59(100%) 65(100%) 3097(100%) 232(100%) 106(100%)
f2 1445(100%) 10881(100%) 10317(100%) 108(100%) 7975(100%) 8017(100%) 872(100%)
f3 1915(100%) 6774(100%) 4062(100%) 2688(100%) 4928(100%) 12455(100%) 18729(100%)
f4 6019(100%) 49943(98%) 9217(100%) 190(100%) 8855(100%) 8208(100%) 4583(100%)
f5 1820(100%) 27670(100%) 485(100%) 762(100%) 4918(100%) 2051(100%) 2748(100%)
f6 22932(100%) 63059(90%) 391(100%) 132(100%) 6295(100%) 7060(100%) 3975(100%)
f7 6039(100%) 33744(98%) 325(100%) 62(100%) 5852(100%) 4205(100%) 138(100%)
f8 8718(100%) 19448(100%) 94(100%) 54(100%) 3427(100%) 960(100%) 165(100%)
f9 718(100%) 7324(100%) 57(100%) 54(100%) 2777(100%) 224(100%) 147(100%)
f10 2.545513e�05 2.545513e�05 2.545513e�05 2.545513e�05 2.545513e�05 1029(100%) 1963(100%)
f11 137848(100%) 190447(38%) 5008(100%) 292(100%) 27053(100%) 16438(100%) 28147(100%)
f12 1285(100%) 9960(100%) 176(100%) 59(100%) 4184(100%) 1068(100%) 118(100%)
f13 8568(100%) 37423(100%) 30266(100%) 8247(100%) 14591(100%) 9430(100%) 14874(100%)
f14 3.772719e�05 3.772719e�05 3.772719e�05 3.772719e�05 5(100%) 5(100%) 6(100%)
f15 4.145411e�02 177943(2%) 1.552446e�03 50064(66%) 3.797791e�04 39289(100%) 52482(100%)
f16 73882(76%) 22949(100%) 15379(100%) 1197(100%) 27557(100%) 8006(100%) 568(100%)
f17 52842(98%) 32222(100%) 15278(100%) 1837(100%) 9369(100%) 8557(100%) 637(100%)
f18 41735(100%) 35124(100%) 15035(100%) 2264(100%) 15184(100%) 8561(100%) 762(100%)
f19 4.812189e�02 3.669399e�02 2.021548e�03 142532(50%) 5.320622e�03 3.085972e�03 198659(6%)
f20 155431(2%) 1.237235e�02 1.252107e�03 81805(56%) 1.736180e�03 138328(44%) 129415(40%)
f21 283722(8%) 8.527320e�03 3.225175e�04 108733(96%) 2.528219e�04 97741(10%) 137484(10%)
f22 4510(100%) 1565(100%) 401(100%) 462(100%) 5(100%) 5(100%) 5(100%)
f23 7.636540e�05 1.211924e+02 1.046893e+02 1.184465e+02 5.921935e+01 13071(100%) 17571(100%)
f24 101485(100%) 157582(50%) 32150(98%) 11183(100%) 8641(100%) 11031(100%) 14038(100%)
f25 380833(12%) �2.038806e+02 47204(26%) 44869(94%) 42606(100%) 34875(100%) 33729(100%)
f26 313941(100%) 7.704960e+00 2.895993e+00 1.015286e+00 6.992524e+00 181006(70%) 121146(100%)
f27 212651(2%) 1.096986e�01 2.753277e�01 182274(2%) 1.734481e�01 236862(32%) 96604(100%)
f28 59562(100%) 381575(16%) 89899(4%) 160026(16%) 241509(64%) 29121(100%) 32474(100%)
f29 4.203800e+00 1.008406e+01 7.332850e+00 4.373326e+00 5.431421e+00 2.739320e�01 2.677649e�01
f30 70416(100%) 389845(10%) 102438(6%) 143603(22%) 270774(46%) 38113(100%) 43021(100%)
f31 8.445748e+00 3.144159e+01 3.285269e+01 1.240396e+01 2.331991e+01 1.438023e+01 390153(6%)
f32 173371(10%) 1.090352e+00 8.884628e�01 7.140964e�01 389571(8%) 72411(50%) 118694(96%)
f33 159645(100%) 2.126277e+00 1.980196e�01 4.423011e�01 9.868205e�04 71546(100%) 74746(100%)
f34 4.368443e+01 5.581233e+01 2.216605e+01 1.722984e+01 2.257543e+01 1.151256e+01 1.073733e+01
f35 224617(100%) 1.459182e+02 5.711055e+00 1.835935e+00 6.038044e�02 145442(100%) 135935(100%)
f36 2.562271e�02 7.117902e+00 6.160489e�01 2.575956e�01 2.447435e�01 7.693346e�04 2.567366e�04
f37 3.426064e�01 1.030321e+02 1.295681e+01 2.653539e+00 2.200404e+00 336110(2%) 244193(36%)
f38 47337(100%) 37688(90%) 33518(100%) 41408(100%) 13918(100%) 48338(100%) 89333(100%)
f39 218831(100%) 1.659817e�01 7.196468e�02 7.404395e�02 1.056527e�03 73125(100%) 64445(100%)
f40 419236(22%) 2.565244e+00 3.530379e+00 2.680752e+00 1.778486e�02 484087(2%) 280960(92%)
f41 185191(100%) 9.641361e�02 1.198017e�02 8.619657e�04 4.584610e�04 59636(100%) 55160(100%)
f42 4.343522e+01 7.446302e+01 3.012355e+01 2.496727e+01 2.394210e+01 1.782270e+01 1.681939e+01
f43 9.870824e+03 9.871804e+03 9.866692e+03 9.858513e+03 9.850991e+03 8.255704e+03 7.834145e+03
f44 2.831805e+01 1.005868e+01 6.654188e+00 4.288261e+00 5.550178e+01 4.099224e+01 1.776791e+01
f45 308009(8%) 3.088693e+00 1.307391e+00 1.247956e+00 433625(2%) 91030(70%) 114901(92%)
f46 1.983071e+02 1.311071e+02 4.247340e+01 1.827674e+01 6.645950e+01 6.848937e+00 5.137987e+00
f47 330651(38%) 1.105683e+01 110999(2%) 177150(4%) 8.800847e+00 176325(28%) 158527(28%)
f48 1.809713e+03 4.881057e+03 1.551120e+03 5.484911e+02 3.283202e+02 2.093562e+02 3.548137e+01
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Each parameter (coefficient) is in the range
�512 to 512. The objective function value of the
optimum is PChev(C*) = 0.
Appendix B. Results of the experiments

Tables 20–27 show the results of the experi-
ments. The following information appears for each
function and algorithm:

• One number only. This means that the algo-
rithm does not achieve a successful solution.
Then, the average of the better objective func-
tion values is outlined.

• Two numbers. The first number represent the
average number of evaluations accomplished
to achieve a successful solution. The second
number (in parentheses) is the percentage of
runs in which the algorithm found a successful
solution.
References
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