
Available online at www.sciencedirect.com
Information Processing and Management 44 (2008) 1611–1623

www.elsevier.com/locate/infoproman
A new variant of the Pathfinder algorithm to generate
large visual science maps in cubic time

A. Quirin a,*, O. Cordón a, J. Santamarı́a b, B. Vargas-Quesada c,
F. Moya-Anegón c

a European Centre for Soft Computing, Edificio Cientı́fico Tecnológico, 33600 Mieres, Spain
b Department of Software Engineering, University of Cádiz, Cádiz, Spain

c SCImago Group, Library and Information Science Faculty, University of Granada, 18071 Granada, Spain

Received 16 April 2007; received in revised form 3 September 2007; accepted 8 September 2007
Available online 24 October 2007
Abstract

In the last few years, there is an increasing interest to generate visual representations of very large scientific domains.
A methodology based on the combined use of ISI–JCR category cocitation and social networks analysis through the use of
the Pathfinder algorithm has demonstrated its ability to achieve high quality, schematic visualizations for these kinds of
domains. Now, the next step would be to generate these scientograms in an on-line fashion. To do so, there is a need
to significantly decrease the run time of the latter pruning technique when working with category cocitation matrices of
a large dimension like the ones handled in these large domains (Pathfinder has a time complexity order of O(n4), with n

being the number of categories in the cocitation matrix, i.e., the number of nodes in the network).
Although a previous improvement called Binary Pathfinder has already been proposed to speed up the original

algorithm, its significant time complexity reduction is not enough for that aim. In this paper, we make use of a different
shortest path computation from classical approaches in computer science graph theory to propose a new variant of the
Pathfinder algorithm which allows us to reduce its time complexity in one order of magnitude, O(n3), and thus to signif-
icantly decrease the run time of the implementation when applied to large scientific domains considering the parameter

q = n � 1. Besides, the new algorithm has a much simpler structure than the Binary Pathfinder as well as it saves a signif-
icant amount of memory with respect to the original Pathfinder by reducing the space complexity to the need of just storing
two matrices. An experimental comparison will be developed using large networks from real-world domains to show the
good performance of the new proposal.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: PFNETs; Pathfinder algorithms; Cocitation analysis; Information visualization; Large scientific domain visual maps; Graph
shortest path algorithms
0306-4573/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ipm.2007.09.005

* Corresponding author. Tel.: +34 985456545; fax: +34 985456699.
E-mail addresses: arnaud.quirin@softcomputing.es (A. Quirin), oscar.cordon@softcomputing.es (O. Cordón), jsantam@uca.es

(J. Santamarı́a), benjamin@ugr.es (B. Vargas-Quesada), felix@ugr.es (F. Moya-Anegón).

mailto:arnaud.quirin@softcomputing.es
mailto:oscar.cordon@softcomputing.es
mailto:jsantam@uca.es
mailto:benjamin@ugr.es
mailto:felix@ugr.es

1612 A. Quirin et al. / Information Processing and Management 44 (2008) 1611–1623
1. Introduction

The goal of generating schematic visualizations for scientific domain analysis has been pursued since several
decades ago and different approaches have been used to put it into effect (Borner, Chen, & Boyack, 2003; Buz-
ydlowski, 2002; Chen, 1999; Lin, White, & Buzydlowski, 2003; White, 2003). Their good performance have
made the size of the tackled domain progressively increase, with the final aim of being able to represent the
largest possible one, the World (Boyack, Klavans, & Borner, 2005; Leydesdorff, 2004b; Leydesdorff, 2004a;
Samoylenko, Chao, Liu, & Chen, 2006).

In 1998, Chen (1998a, 1998b) was the first researcher to bring forth the use of Pathfinder Networks
(PFNETs) in citation analysis. Since then, it has been used for the study and representation of minor domains
or scientific community. In 2004, Moya-Anegón et al. (2004) proposed the combination of PFNET and ISI
categories cocitation, making possible the depicting and analysis of large scientific domains in an easy way.
The scientific community is understood in the terms put forth by Hjorland and Albrechtsen (1995), as the
reflection of interactions between authors, and their role in science, through citation (i.e., classical author coci-
tation analysis). The new technique is based on the use of thematic classification since categories taken from
the ISI–JCR are considered as entities of cocitation and units of measure (Moya-Anegón et al., 2005; Moya-
Anegón et al., 2006; Vargas-Quesada & Moya-Anegón, 2007). The cocitation matrix is then treated as a graph
which represents a social network of the existing relations and processed through social network analysis: the
graph is pruned by means of the Pathfinder algorithm (Dearholt & Schvaneveldt, 1990) to get a PFNET, keep-
ing just the most salient relations, and the resulting graph is graphically represented using a graph drawing
algorithm, Kamada–Kawai (Kamada & Kawai, 1989).

So, once an appropriate methodology has been designed to graphically represent very large scientific
domains, the next challenge is to build them in a very small amount of time, allowing us to generate the sci-
entograms on line. If this goal is finally achieved, these kinds of visual science maps could be used to design an
information retrieval system, composing an Atlas of Science as the one that is being implemented by Felix de
Moya’s Scimago research group for the IberoAmerican scientific production1.

The key problem to generate scientograms of large scientific domains by means of the Pathfinder algorithm
is the great time and space complexity it requires. As we will see later, the pruning it applies is based on elim-
inating those links which violate the triangle inequality (Schvaneveldt, 1990). To do so, there is a need to com-
pute a progressive series of q matrices Di of dimension n2 which store the shortest paths between each pair of
entities (graph nodes) considering paths comprised by as much q links. Moreover, their computation requires
the use of an additional series of q auxiliary matrices Wi. This way, as a value of q equal to n � 1 is required in
order to achieve an appropriate pruning in large scientific domains keeping only the most salient links, the
resulting time and space complexity of the Pathfinder algorithm are O(n4) and O(n3) (in fact, 2 Æ (n � 1) matri-
ces of dimension n2 are stored), respectively. Since the value of n is high in the large scientific domains handled,
we come up to the undesired conclusion that the run time of the algorithm is prohibitive to generate the maps
on-line.

We should note that a previous attempt was made in this aim by Guerrero-Bote et al., which recently pro-
posed an improved variant of the original Pathfinder algorithm, called Binary Pathfinder (Guerrero-Bote,
Zapico-Alonso, Espinosa-Calvo, Gómez-Crisóstomo, & Moya-Anegón, 2006), that reduced its time complex-
ity for the current case to O(logn Æ n3). However, although the reduction is very significant, it is not enough to
allow us to generate the maps ‘‘on the fly’’ since, for values of n around 250, as those handled in our very large
domains, the run of the Binary Pathfinder takes several seconds, and this amount of time is then increased by
that corresponding to Kamada–Kawai’s layout algorithm.

In this contribution, we introduce Fast Pathfinder, a new Pathfinder variant taking as a base a classical
algorithm in graph theory, Floyd–Warshall’s (Cormen, Leiserson, Rivest, & Stein, 2001), to compute the
shortest paths in the graph in a different way. Thanks to that and to the fact that we fix the value of q to
n � 1, we are able to reduce the time complexity of the original algorithm in one order of magnitude,
O(n3), which is a killer advantage when applied to the generation of scientograms for large scientific domains.
1 http://www.atlasofscience.net/.

http://www.atlasofscience.net/

A. Quirin et al. / Information Processing and Management 44 (2008) 1611–1623 1613
Moreover, the new algorithm has a much simpler structure than Binary Pathfinder, since it only requires three
loops wrapping two simple operations, as well as it only requires two squared matrices to operate. An exper-
imental comparison will be developed using large networks from real-world domains corresponding to the sci-
entific production of different countries to show the good performance of the new proposal in comparison with
both the original and the Binary Pathfinder.

To do so, the paper is structured as follows. Section 2 briefly reviews the original Pathfinder and the Binary
Pathfinder algorithms. The new proposal is introduced in Section 3, together with a detailed analysis of its
advantages in terms of speed, memory saving and simplicity. Section 4 collects the experiments developed
to test Fast Pathfinder. Finally, some concluding remarks are pointed out in Section 5.
2. Preliminaries

This section is devoted to introduce the preliminaries needed to achieve a good understanding of our pro-
posal. With this aim, the next two subsections respectively describe the original Pathfinder and the Binary
Pathfinder algorithms.
2.1. The Pathfinder algorithm

Pathfinder was introduced by Dearholt and Schvaneveldt as a technique to choose the shortest links in a
network in the field of social networks (Dearholt & Schvaneveldt, 1990). The result of the Pathfinder proce-
dure is a pruned network called PFNET – which is either a directed or undirected graph depending on the fact
that the original similarity matrix is symmetrical or not – that only keeps those links which do not violate the
triangle inequality stating that the direct distance between two nodes must be lesser than or equal to the dis-
tance between them passing through any group of intermediate nodes. As said by its creators, PFNETs pro-
vide unique representations of the underlying structure for domains in which objective measures of distance
are available (Schvaneveldt, 1990).

The Pathfinder algorithm is based on two main parameters:

1. r 2 [1, 1], which defines the adaptive metric, the Minkowski r-metric, considered to measure the distance
between two network nodes not directly connected:
D ¼
X

i

dr
i

()1
r

ð1Þ
When r takes value 1, the Minkowski metric results in the sum of the link weights; when it takes value 2, it
becomes the usual Euclidean metric; and when r tends to 1, the path weight is the same as the maximum
weight associated with any link along the path.

2. q 2 [2, n � 1] (with n being the number of nodes in the network), which limits the number of links in the
paths for which the triangle inequality is ensured in the final PFNET. Hence, every path connecting two
nodes that violate the triangle inequality, having an associated Minkowski distance greater than any other
path between the same two nodes composed of up to q links, will be removed.

Note that r =1 and q = n � 1 are the common parameter values when Pathfinder is used for large
domains scientogram generation. These values are very advantageous for large network pruning (Chen, 2004).

To build a PFNET, two different kinds of auxiliary matrices are used:

– W i
jk, which stores the minimum cost to go from node j to node k by following exactly i links. This matrix is

computed recursively using matrix W i�1
jk , with W1 being the original weight matrix.

– Di
jk, which stores the minimum cost to go from node j to node k by following any path in the network com-

posed of i or less links. This matrix is computed recursively using matrices W 1
jk; . . . ;W i

jk.

Fig. 1. The original Pathfinder algorithm.

1614 A. Quirin et al. / Information Processing and Management 44 (2008) 1611–1623
The original Pathfinder algorithm pseudocode is shown in Fig. 1.
Notice that the algorithm has a time complexity order O(q Æ n3) as q steps have to be done to build the q

matrices Wi and Di. Each of the latter matrices stores n2 weights, so a loop of this order is needed to compute
them in each step. Finally, an additional loop of n steps is needed to compute each component of Wi+1, as seen
in line 1 of the algorithm. As the maximum possible value for q is n � 1, Pathfinder has a time complexity of
O(n4) in that case.

On the other hand, the resulting space is thus of complexity O(q Æ n2) (O(n3) when q = n � 1), since there is a
need to build q matrices Wi and other q matrices Di, as seen above.
2.2. The Binary Pathfinder algorithm

Guerrero-Bote et al. (2006) recently proposed the Binary Pathfinder algorithm, an improved variant of the
original Pathfinder aiming at reducing its time and space complexity. Binary Pathfinder takes the following
two aspects as a base to put this improvement into effect:

1. The only matrix in the series of Di that is actually needed for the algorithm to operate is the last one, Dq, to
be compared with the initial weight matrix W1. The remainder are not necessary.

2. The matrices Di can be directly generated from two previous ones in the same way as done for the consec-
utive Wi matrices: Di+j = Di

x Dj.

Hence, the authors demonstrated that the distance matrix Di+j storing the minimum distances between each
couple of nodes can be calculated from Di and Dj as follows:
diþj
kl ¼MINfdi

kl; d
j
kl; ððdi

kmÞ
r þ ðdj

mlÞ
rÞ1=rg ð2Þ
where d1
kl ¼ wkl, obtaining the same result as with the original Pathfinder algorithm described in the previous

subsection.
Thanks to the latter, a new Pathfinder algorithm was designed which does not need to compute every Di

matrix, i ¼ 1; . . . ; q, but can make larger steps. Taking the procedure to transform an integer number to bin-
ary as a base (that is the inspiration for the algorithm’s name), Guerrero-Bote et al.’s Binary Pathfinder
reduces the task to calculating just log (q) matrices, those corresponding to indices being powers of 2: D1,
D2, D4, D8, . . .

The Binary Pathfinder algorithm pseudocode is shown in Fig. 2. Notice that the principle loop reduces the
number of steps of the original Pathfinder from q to logq. Therefore, the time complexity of the new Binary
Pathfinder variant becomes O(logq Æ n3) instead of O(q Æ n3), which in the maximum case becomes O(log n Æ n3)
instead of O(n4), a very significant time difference for large networks. Empirical tests showing these differences
on real cases are shown in Guerrero-Bote et al. (2006) and in Section 4 of the current paper. On the other
hand, the space complexity is even more significantly reduced, as only two squared matrices to compute Di

in each step, another matrix to store the final distance values Dq, and one last matrix W to store the original
weights are required, instead of 2 Æ q matrices Wi and Di, as in the original algorithm.

Fig. 2. The Binary Pathfinder algorithm.

A. Quirin et al. / Information Processing and Management 44 (2008) 1611–1623 1615
3. Fast Pathfinder

As we have seen in the previous section, the Binary Pathfinder approach is able to achieve an important
speed up of the Pathfinder algorithm. Unfortunately, this time complexity reduction, although significant,
is not enough for the aim of generating scientograms of very large scientific domains in an on-line fashion
since, for values of n around 250 and for q = n � 1, the run of the Binary Pathfinder still takes several seconds
(see Section 4).

In this section, we introduce Fast Pathfinder, a new variant of the Pathfinder algorithm which tries to solve
the latter problem. To do so, we first analyze the underlying idea of this approach, which is based on the use of
classical algorithms in graph theory for shortest path computation. In fact, the new variant is based on the
idea that a PFNET can be obtained with a Shortest Path algorithm when q = n � 1. Then, we introduce
the Fast Pathfinder’s pseudocode and analyze its main advantages and its only disadvantage.
3.1. Underlying idea: graph shortest path computation algorithms

As we need to fix the value of q to n � 1, the triangle inequality is verified for the best path between any
couple of nodes in the graph, thus the problem becomes a shortest path problem. This is why we can replace
steps 1–3 in the original Pathfinder algorithm (see Fig. 1) to achieve the same result in less computation time.
When analyzing the operation mode of this algorithm from a computer science point of view, one can recog-
nize that what it does is nothing but computing a distance matrix Dn�1 storing the lengths of all the shortest
paths (regarding the Minkowski r-metric) between any pair of network nodes comprised by up to n � 1 links,
and then comparing the latter values to the original weights in matrix W1 to determine which links will finally
belong to the PFNET.

To do so, it applies the classical dynamic programming approach in algorithm theory (Cormen et al., 2001)
in order to ensure the obtaining of the optimal solution for the graph shortest path problem. Dynamic
programming (Dreyfus, 1965) constitutes the practical embodiment of the Bellman’s principle of optimality
(Bellman & Kalaba, 1965) through a clever (‘‘moon walking’’ type) technique for computing optimal sequen-
tial-decisions by a forward-looking, backward-recursive search. Hence, the Pathfinder algorithm is a direct
instance of the latter algorithmic methodology, that applies the usual bottom-up approach based on a progres-
sively increasing building of the matrices ensuring to take the best decision at each step, taking into account all
the partial decisions made in the previous ones. This results in the Pathfinder algorithm structure where, to
build the matrices Wi and Di of dimension n2 in each of the n � 1 steps, an additional loop of size n is required
to check all the possible choices of crossing a link for the shortest path computation between two nodes. All of
the latter defines the O(n4) time complexity.

Notice that Binary Pathfinder keeps the same algorithmic approach than the original Pathfinder version,
and the improvement introduced is due to the fact that it smartly reduces the number of steps in the outer

1616 A. Quirin et al. / Information Processing and Management 44 (2008) 1611–1623
loop needed to compute the same distance matrix Dn�1 while still satisfying the Bellman’s principle of
optimality.

Hence, as seen in Binary Pathfinder, the only two matrices that are finally needed to obtain the PFNET as a
result of pruning the original network are Dn�1 and W1. As we know that Dn�1 is a shortest path distance
matrix when q = n � 1, we can borrow alternative (and quicker ways) to compute it from the classical algo-
rithms in graph theory (Cormen et al., 2001). In fact, there are at least two classical graph shortest path algo-
rithms, respectively called Floyd–Warshall’s and Dijkstra’s and also based on the dynamic programming
approach, that are able to compute all the shortest paths of length up to n � 1 links (according to an Euclidean
metric) in a cubic time complexity. The adaptation of Floyd–Warshall’s algorithm to the computation of the
Dn�1 matrix for a PFNET using the Minkowski r-metric is thus the base of our new Fast Pathfinder proposal.
3.1.1. Floyd–Warshall’s shortest path algorithm

Floyd–Warshall’s algorithm (Floyd, 1962; Warshall, 1962) is a dynamic programming algorithm giving the
shortest paths between any source node and any destination node in a directed graph in cubic time. The algo-
rithm computes, for each pair of nodes i and j, the minimum weight among all paths between them, storing it
into a distance matrix D = dij. The weight of a path between two nodes is the sum of costs of the links in that
path. Additionally, a predecessor matrix P can be used to retrieve the links composing the shortest paths
themselves, where pij corresponds to the index of the last node included in the optimal path from i to j.

The basic Floyd–Warshall’s algorithm pseudocode is shown in Fig. 3. When the predecessor matrix is to be
computed, it becomes the pseudocode shown in Fig. 4.

It is very simple to check that both variants of the algorithm have a time complexity of O(n3).
3.1.2. Dijkstra’s shortest path algorithm

Dijkstra’s algorithm (Dijkstra, 1959) is both a greedy and a dynamic programming algorithm that solves
the single-source shortest path problem for a directed graph with nonnegative link weights. As in Floyd–War-
shall’s technique, the cost of a path between two nodes is the sum of costs of the links in that path. The algo-
rithm gives the costs of the shortest paths from a single, fixed node s to all the other nodes in the graph in
Fig. 3. Basic Floyd–Warshall’s algorithm.

Fig. 4. Floyd–Warshall’s algorithm using the predecessor matrix.

Fig. 5. Dijkstra’s algorithm.

A. Quirin et al. / Information Processing and Management 44 (2008) 1611–1623 1617
quadratic time. To retrieve the paths, it uses the same kind of predecessor data structure (an array p, in this
case) than Floyd–Wharshall’s algorithm (see the previous subsection). In order to get the all-pairs shortest
paths, there is a need to wrap Dijkstra’s algorithm into a linear loop for all the graph nodes, thus resulting
in a time complexity of O(n3).

Dijkstra’s algorithm pseudocode is shown in Fig. 5, where V[G] is the set of graph nodes, F is a set of unvis-
ited nodes by the algorithm, and u = EXTRACT �MIN(F) returns the node u with the lowest distance value
in F and removes that node from it. On the other hand, E is the set of already visited nodes.

In its simplest implementation, a normal array is used to store the links, and thus operation EXTRACT-
MIN is simply a linear search through all nodes in F. In this case, the time complexity is O(m Æ n), with m being
the number of the s node links. As the maximum number of links for any node in the graph is n � 1, the max-
imum time complexity becomes O(n2).

We should also notice that there are more efficient implementations of Dijkstra’s algorithm for the case of
sparse graphs with a number of links significantly lower than n2. They are based on storing the graph in the
form of an adjacency list and using more advanced data structures than a simple list. With a heap in the
EXTRACT-MIN function, the time complexity becomes O((m + n) Æ logn). When a Fibonacci heap is consid-
ered, it becomes O(m + n Æ logn).
3.2. Structure of Fast Pathfinder

Taking into account what has been explained in the latter subsection, Floyd–Warshall’s algorithm has been
selected to substitute the costly computation of matrix Dn�1 in the original Pathfinder algorithm. Dijkstra’s
algorithm is not as well suited to do so. The reasons are mainly related to the structure of the graphs and
the greater simplicity of the Floyd–Warshall’s algorithm implementation and will be detailed at the end of this
section.

Since working with Floyd–Warshall’s algorithm we are able to build this matrix in cubic time and we avoid
the need to compute the temporary matrices Wi and Di, the substitution is much more effective. To do so, there
is a need to only perform one trivial change to the pseudocode shown in Section 3: the Minkowski r-metric has
to be used to compute the path lengths. In this way, we can directly substitute the three first lines of the Path-
finder algorithm in Fig. 1 by the five lines of the basic Floyd–Warshall’s pseudocode in Fig. 3, with the pre-
vious adaptation. The resulting Fast Pathfinder pseudocode is shown in Fig. 6.

Since the shortest path computation procedure has an O(n3) time complexity and the W–D comparison
takes time O(n2), the algorithm will have a time complexity of O(n3) + O(n2) = max {O(n3),O(n2)} = O(n3).
Besides, notice that the computation of the predecessor matrix is not needed and the algorithm only requires
to store two square matrices to operate (W and D).

On the other hand, there is another alternative for the PFNET link selection (lines 6–8). Actually, by using
Floyd–Warshall’s algorithm for the shortest path computation, there is not a need to compare the distance
matrix D to the original weight matrix W to select the PFNET links, but those links can be directly extracted
from the predecessor matrix P. In this second way, we used this matrix as an adjacency matrix to improve the
speed of the computation. At the start of the algorithm, each link is considered belonging to a possible shortest

Fig. 6. The Fast Pathfinder algorithm.

Fig. 7. The Fast Pathfinder algorithm variant, using a predecessor matrix.

1618 A. Quirin et al. / Information Processing and Management 44 (2008) 1611–1623
path, thus to the PFNET, so the corresponding component in P is set to true. Then, each time the distance dij

of a link (i, j) is greater than the distance of the path (i,k, j), the link (i, j) is discarded from the PFNET and the
corresponding component in the matrix is set to false. The final value of P indicates exactly those links that
must be preserved. Hence, we don’t need to take matrix W into account to select the links for the PFNET. The
pseudocode of this second Fast Pathfinder algorithm variant is shown in Fig. 7.

This second way of selecting the PFNET links has also an O(n2) time complexity, so the time complexity of
the second Fast Pathfinder variant is still O(n3). However, its actual running time would be slightly larger than
the former version because of the computation time needed to generate the predecessor matrix. We will exper-
imentally check this assumption in the next section.

Concerning its space complexity, it is the same than the former, since it also requires to store two square
matrices to operate: D, the same that the other variant, and the predecessor matrix P (in the place of the
weight matrix W).

Finally, we should also note that two new variants could also be designed in case Dijkstra’s algorithm
would have been considered instead of Floyd–Warshall for the shortest path matrix computation. Besides,
at first sight, it could seem that a lower time complexity Fast Pathfinder could be obtained proceeding in that
way by means of the advanced implementation of the former algorithm based on the use of the Fibonacci
heap.

However, we have decided not to consider Dijkstra’s variants due to two main reasons. On the one hand,
it is well known in algorithm theory that Dijkstra’s algorithm is quicker than Floyd–Warshall’s for the case
of sparse graphs, i.e., when the number of links in the graph jAj tends to the number of nodes n, while the
opposite holds for dense graphs, i.e., when jAj ! n2. Since the graphs resulting from cocitation matrices

A. Quirin et al. / Information Processing and Management 44 (2008) 1611–1623 1619
associated to large scientific domains are actually ‘‘small worlds’’ (Watts & Strogatz, 1998; Watts, 2004),
they are very dense and thus Floyd–Warshall’s proposal is the best choice. On the other hand, the use of
the latter variant is also beneficial since it results in a simpler implementation of the Fast Pathfinder
algorithm.
3.3. Main advantages and disadvantage of Fast Pathfinder

In summary, the Fast Pathfinder proposal introduced in the current contribution based on Floyd–War-
shall’s shortest path algorithm has the two following advantages associated:

1. Speed Increase: Thanks to the change in the shortest path distance matrix computation, we are able to
reduce the time complexity of the original algorithm in one order of magnitude when q is fixed to n � 1,
from O(n4) to O(n3), which is a great advantage when applied to large networks and, specifically, for the
generation of scientograms of large scientific domains. In this way, it is also significantly lower than the
quickest Pathfinder variant, Binary Pathfinder (O(log n Æ n3) when q = n � 1).

2. Simplicity: Moreover, the new algorithm has a much simpler structure than the previous approach reducing
the original Pathfinder run time, Binary Pathfinder, since it only requires three loops wrapping two simple
operations. On the other hand, Fast Pathfinder significantly reduces the space complexity since it only
requires two square matrices to operate instead of the 2 Æ n � 1 ones needed by the original algorithm
and the four ones by Binary Pathfinder.

On the other hand, its only disadvantage with respect to Binary Pathfinder is that while in our case the
value of the parameter q is always fixed to n � 1, the latter algorithm allows any possible value for q. Of
course, this restricts the generic applicability of Fast Pathfinder, but we should remind that it has been spe-
cifically proposed for the on-line generation of large scientific domain visual maps. Note also that any valid
value for the second main parameter r can be considered.
4. Experimental results

In the current section, some experiments will be developed to test the actual run time improvement
obtained by our proposal, and to empirically prove that it always achieves the same result as the original
algorithm. To test the run time improvement, we have compared our two Fast Pathfinder proposals, the
one considering the same link selection procedure than Pathfinder, and the other making use of the prede-
cessor matrix for this task (see Section 3.2), with respect to the current state-of-the-art Pathfinder variants,
the original algorithm and Binary Pathfinder. To do so, since the aim to propose this algorithm was to use it
for the design of scientograms of large scientific domains, we have applied the four algorithms to 20 real
networks of this kind, obtained from the JCR category cocitation information available at the Scimago
research group’s Atlas of Science (http://www.atlasofscience.net/). Their sizes range from 212 to 263 nodes,
and from 8485 to 23430 links. Notice that, the link weights in this graph correspond to similarities instead of
distance measurements2.

In order to do a fair comparison, the original and Binary Pathfinder implementations considered are the
same ones used by the Binary Pathfinder’s authors. Our two Fast Pathfinder variants have also been imple-
mented in C. The four algorithms have been compiled with the GNU GCC compiler with the -O3 option,
under the Linux operating system, and run in an Intel dual-core Pentium 3.4 GHz computer with 2 GB of
memory. Pathfinder parameters have been set to q = n � 1 (when considered) and r =1, the typical values
2 According to Moya’s methodology (Moya-Anegón et al., 2004; Vargas-Quesada & Moya-Anegón, 2007), the normalized cocitation
coefficients are used and correspond to similarities. The interested reader can refer to that paper for more details. Actually, using
similarities or distances has no influence at all in our proposal. In case of using similarities, we would only need to replace MIN by MAX,
’>’ by ’<’, and use r = �1 to mimic the MIN function instead of the MAX function in the Fast Pathfinder algorithm (see Figs. 6 and 7).

http://www.atlasofscience.net/

Table 1
Comparison of all the algorithms (computation times are expressed in milliseconds on an Intel dual-core 3.4 GHz CPU with 2 GB of
memory), sorted by the number of nodes then by the number of links

Domain (year) # Nodes # Links Original PF Binary PF Fast PF (predecessor) Fast PF

1 China (2002) 212 8541 37644.78 2544.5 103.8 92.0
2 Japan (2002) 213 9028 27041.28 2288.76 93.6 85.4
3 France (2002) 216 10087 30105.24 2909.78 97.2 93.8
4 Peru (2002) 218 8485 41196.14 2866.12 126.4 102.6
5 Germany (2002) 218 11745 33631.5 2099.06 118.8 105.4
6 UK (2002) 218 13567 50484.46 2147.4 116.4 94.0
7 Europe (2002) 218 17242 53357.56 2169.38 122.2 94.6
8 USA (2002) 218 18132 54046.88 2195.02 110.6 95.2
9 World (2002) 218 20154 37976.02 2178.64 122.4 97.4

10 Cuba (2004) 219 10644 45319.38 2065.04 123.0 97.0
11 Spain (1994) 219 13478 49800.4 3022.02 122.8 101.0
12 Cuba (2006) 221 11286 33784.98 2813.92 107.6 106.6
13 Spain (1998) 223 16226 44860.4 2854.34 130.0 122.2
14 Venezuela (2005) 239 15415 50741.26 4248.92 148.0 135.0
15 Spain (2002) 240 19183 77421.34 4723.66 154.0 145.8
16 Spain (2004) 240 23430 56890.9 4716.78 192.64 142.2
17 Chile (2004) 242 17914 56025.26 2928.4 150.0 132.8
18 Mexico (2005) 250 21264 100131.76 5569.52 181.4 155.0
19 Portugal (2005) 254 22179 79733.1 4767.96 203.2 163.6
20 Argentina (2005) 263 19562 110309.5 5447.66 194.8 166.4

1620 A. Quirin et al. / Information Processing and Management 44 (2008) 1611–1623
in large domain scientogram design. Fifty independent runs have been performed for each algorithm and each
network, and the global run time has been divided by 50 for each, in order to obtain more precise statistics
(notice that, although the algorithms are deterministic, the measurement of the run time values can have small
fluctuations in some cases, so this is a most robust procedure).

The results obtained are shown in Table 1, where the run times are expressed in milliseconds. As expected,
both Fast Pathfinder variants cleary outperform the original Pathfinder algorithm in terms of run time, being
around 450 times quicker, and what is more important, they are significantly quicker than the Binary Path-
finder, reducing its run time in the order of around 23 times for the predecessor-based variant and around
27 times for the other. In this way, it can be seen how we were right in the assumption that the Fast Pathfinder
variant not making use of the predecessor matrix is slightly faster (approximately a 10%) than the other ver-
sion not requiring the computation of such data structure.

The most important conclusion we can draw from this experimental study is that, using our new Fast Path-
finder proposal, we are able to generate real scientograms of very large scientific domains in around 166 ms in
the worst case (Argentina (2005) domain), while the current state-of-the-art approach, Binary Pathfinder,
required more than 2 s in the best case (Cuba (2004)) and more than 5.5 s in the worst one (Mexico
(2005)). This constitutes a great step ahead since this time reduction allows us to properly combine this prun-
ing algorithm with the Kamada–Kawai layout technique, thus being able to generate these kinds of sciento-
grams in real time.

Our second experiment concerns the comparison of the visual science maps obtained by the fastest variant
of Fast Pathfinder (without using the predecessor matrix) with those obtained by the Binary Pathfinder algo-
rithm. This is to empirically prove that the two algorithms give exactly the same results. To do so, we have
written a bash script able to generate 1’000’000 random matrices, from size 3 to 500, containing integral or
real numbers (two options selected randomly), and used as the cocitation matrices of virtual social networks.
The goal was to compare edge by edge the results provided by the two considered algorithms. Only symmetric
matrices were considered in this experiment and the parameters were set to q = n � 1 and r =1. In conclu-
sion, during this long empirical experiment, no networks were found where a single edge differs from the Bin-
ary and the Fast Pathfinder algorithm’s results. For instance, the comparison of the results obtained by the
two algorithms on a 500-nodes map is shown in Fig. 8.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

9.989735

23

24

25

26

27

28

29

30

31

32

9.959909

33

34

35

9.952354

36

37

38

39

40

41

42

9.997499

43

44

9.999083

45

46

47

48

49

50

51

52

53

54

55

56

57

58

9.990351

59

60

61

9.998862

9.984401

62

9.944346

63

9.995449

9.980231

64

65

66

67
9.985763

68

69

70

71

9.987279

72

9.977076

73

9.968408

74

9.954424

75

9.967792

76

77

9.982623

78

9.978920

79

80

81

829.996695

83

84

85

86

87

88

89

9.990963

90

9.982572

91

9.993165

9.983674

92

93

94

95

96

97

98

99

100

101

102
9.908939

103

104

9.992921

105

106

107

9.986569

108

9.978276

109

110
9.962085

111

9.933489

112

9.993719

113

114

115

116

117

9.981373

118

9.990124

119

9.941283

120

9.980657

121

9.971889

122

9.967217

9.973881

123

124

125

126

127

128

9.961932

129

130

131

9.988527

132

133

9.971142

134

135

9.996057

136

137

138

139

9.986595

9.979353

140

141

142

9.982901

143

144

9.969024

9.989320

145

9.974630

9.975060

146

147

148
9.974746

149 9.915950

150

151

9.977173

9.994950

152

153

154

9.995922

155

9.977071

156

9.962572

157

158

9.985942

159

9.973286

9.984030

160

161

162
9.989722

163

9.998535

9.990458

164

165

9.999567

166

167

9.972854

168

169

170

171

172

173

174

9.985626

175

9.927210

176

9.998382

177

9.960806

9.960949

178

179

180

9.968849

181

9.996272

9.979272

182

183

184

9.994755

185

9.983260

186
9.980538

9.984321

187

9.976124

188

189

9.987676

190

191

192

193

9.965461

9.964965

194

195

196

9.974457

197

198

199

200

9.967249

201

9.968841

202

9.996684

203

204

205

206

207

9.995957

9.972223

208

9.999998

9.969666

209

9.999148

210

211

9.910605

212

9.970382

213

214

215

216

9.999202

217

9.983739

218

9.967082

219

9.918016

220

221

9.966370

222

223

224

9.993866

225

9.980128

226

9.974703

9.985168

227

9.924360

228

229

230

9.964353

2319.961039

232

9.974084

233

234

9.955529

235

9.974524

236

9.942159

9.998893

237

9.980351

9.974245

2389.948267

239

240

9.967661

241

242

9.997272

243

9.993426

244

9.975356

9.998708

245

9.931861

9.975231

246

9.976517

247

9.992368

9.979173

9.973309

248

9.965391

249

250

251

9.966428

252

9.965167

253

254

255

256

257

9.947014

258

9.971968

259

9.958252

260

9.978909

261

9.994504

262

9.982965

9.996986

263

9.961373

264

9.995844

9.994816

265

266

267

9.975579

268

9.987522

269

9.993012

9.978219

270

9.889384

9.957842

271

272

9.989137

9.974748

273

9.974189

274

275
9.991295

9.973315

276

9.980701

277
9.970250

9.984027

9.964493

278
9.980934

279

9.957106

9.955715

280

281

9.981804

9.999083

9.992527

282

9.967394

9.969400

283

9.977227
9.988663

284

9.981187

285

286

9.993513

287

9.993314

288

289

9.975901

290

9.993998

9.987725

9.955802

291

9.956248

292

293

9.985326

294

9.977580

295

9.985278

9.972029

296

2979.967501

298

299

9.979033

300

9.981444

301

9.976204

302

9.993823

303

304

305

9.968217

9.966545

9.982927

306

307

9.999870

9.973697

9.988282

308

9.988642

309
9.984438

310

311

312
9.976087

313

9.971248

314

315

9.984219

9.979800

316

317

318

9.998405

319

9.993313

320

9.982219

321

322

9.975952

323

9.972313

324

9.961817

325

9.966488

9.981061

326

9.966207

9.977300

327

9.971774

9.986018

328

9.991109

329

330
9.984519

9.970564

331

9.997416

332

9.958961

333

9.999321

334
9.995084

335

9.976169

9.968176

336

9.974234

337

9.981105

9.977936

338

339

9.966823

340
9.957481

341

9.992362

9.973828

9.998081

9.969251

342

9.979137

9.962750

9.983479

9.981348

343

9.996470

344

9.997748

345

9.977651

9.974980

346

9.972357

347

9.979515

348

9.989273

9.990004

349

9.960894

350

9.997064

351

9.978078352

9.980051

353
9.988010

354

355

9.979797

9.982305

9.978240

356

9.971500

9.994955

357

358

9.988360

359

9.938091

360

9.997617

9.988260

361

9.972504

362

9.980757

9.957857

363

9.988079

9.985512

3649.993142
9.977463

365

9.971792

366

9.991204

9.992547

367

9.985359

9.964190

368

9.971478

369

9.938819

370 9.975698

371

9.978014

9.955652

372

9.973293

373
9.993428

9.987975

9.974396

374

9.984487

375

9.950150

376

9.963874

377
9.999916

9.974892

9.999799

9.978548

378

9.977437

379

9.996628

380

9.969056

9.976896

381

9.931953

382

9.960247

383

9.945430

384

9.960871

9.993241

385

9.974816

9.909944

386

9.995373

9.984510

9.982361

387
9.988546

388

9.991893

389

9.963571

390
9.989839

9.981390

391

9.962904

9.977577

392

9.933240

393

9.971805

9.990465

394

9.968779

395

396 9.997935

397 9.966919

398

9.976457

399

9.982907

400

9.994287

9.981382

401

9.987243

9.986171

9.983794

402

9.987107

9.971284

9.991023

403
9.981992

404
9.986258

9.997994

9.970672

9.975151

405

9.998597

406

9.973440

407

9.955357

408

409

9.966318

9.989128

9.999613

9.988216

410

9.974715

9.962057

411

9.975955
9.984780

9.962910

412

9.994072

413

9.970683

9.928045

414

9.973542

9.985833

9.978737

415

9.928855

416

9.994472

417 9.917948

418

9.975372

9.980608

419

9.986598

9.967090

9.995049

9.987186

9.997395

420

9.946054

421

9.976303

9.979049

422

9.909131

423

9.949722

9.940589

424

9.965148

9.958196

425

9.990170

9.991672

426

9.991521

427

9.995096

9.988441

428

9.964423

9.999487
9.991688

9.997640

9.979316

429

9.987708

9.941843

430

9.994754

9.978321

431

9.995296

432

9.992938

433

9.984582

434

9.961421

9.959449
9.958102

435

9.962083

9.957404

436

9.996459

437

9.934037

438

9.972551

9.995719

439

440

9.958442

9.975492

9.999124

441

9.986313

9.968421

442

443

9.975735

444

9.951136

9.980591

445

9.950089

9.962254

446

9.992477

9.968756

9.986103

4479.985644
9.997041

448

9.990501

9.990992 9.997107

9.996301

449

9.940821

450

9.960469

9.960389

451

9.975808

452

9.971261

9.974569

453

9.970225

9.971064

454
9.978046

9.996548

455

9.979685

9.991646

9.982193

456

9.998465

9.977859

457
9.993505

9.956014

458

459

9.944910

9.968796

460

9.977034

9.974794

461

9.988032

9.968265

9.974610

462
9.967914

9.965553

463

9.952186

464

9.987017

9.997884

465

9.966598

466

467

9.980935

9.986940

9.979110

468

9.961688

469

9.997790

9.975229

470

9.998453

9.997116

471

9.973168

9.988012

9.979329

9.985179

472

9.980326

9.998733

473

9.965497

9.960777

474

9.991803

475

9.990335

9.981075

476

9.971318

9.970439

9.973907

477

9.965914

9.993464

9.975619

478

9.966208

9.967957

479

9.963641

480
9.994438

9.972144

481

9.991704

9.999092

482

9.883053

483

9.986176

484

9.994031

9.998789

9.990421

485

9.989701

486

9.997401

9.974278

487

9.998257

488

9.958774

9.962205

489

9.992474

490

9.963675

491

9.989963

9.968785

492

9.993514

9.974664
9.983747

493

9.971854

9.992558

9.905723

9.998348

494

9.931193

9.983013

495

9.997459

9.978098

496

9.975502

9.973591

497
9.993307

9.993354

498

9.956006

9.961534

499

9.969760

9.924802
9.993717

500

9.938860
9.980028

9.959359

9.944675

9.9801889.935092

Fig. 8. Comparison of the results obtained by the Binary Pathfinder algorithm (left) and the Fast Pathfinder algorithm (right) on a 500-
nodes map generated randomly.

A. Quirin et al. / Information Processing and Management 44 (2008) 1611–1623 1621
5. Concluding remarks

In this paper, we have presented a new variant of the Pathfinder algorithm, to be used as a network pruning
algorithm for the generation of visual representations of very large scientific domains, aiming to decrease its
actual run time. Taking the classical Floyd–Warshall’s graph shortest path algorithm as a base, we have been
able to reduce the original Pathfinder time complexity in one order of magnitude, from O(n4) to O(n3), thus
also clearly outperforming the state-of-the-art variant in terms of run time (Binary Pathfinder, O(logn Æ n3)).
The new algorithm has also a much simpler structure than the Binary Pathfinder, while maintaining the ori-
ginal Pathfinder’s r parameterization (q must be fixed to n � 1 in the current application) and saving a great
amount of memory.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

9.989735

23

24

25

26

27

28

29

30

31

32

9.959909

33

34

35

9.952354

36

37

38

39

40

41

42

9.997499

43

44

9.999083

45

46

47

48

49

50

51

52

53

54

55

56

57

58

9.990351

59

60

61

9.998862

9.984401

62

9.944346

63

9.995449

9.980231

64

65

66

67
9.985763

68

69

70

71

9.987279

72

9.977076

73

9.968408

74

9.954424

75

9.967792

76

77

9.982623

78

9.978920

79

80

81

829.996695

83

84

85

86

87

88

89

9.990963

90

9.982572

91

9.993165

9.983674

92

93

94

95

96

97

98

99

100

101

102
9.908939

103

104

9.992921

105

106

107

9.986569

108

9.978276

109

110
9.962085

111

9.933489

112

9.993719

113

114

115

116

117

9.981373

118

9.990124

119

9.941283

120

9.980657

121

9.971889

122

9.967217

9.973881

123

124

125

126

127

128

9.961932

129

130

131

9.988527

132

133

9.971142

134

135

9.996057

136

137

138

139

9.986595

9.979353

140

141

142

9.982901

143

144

9.969024

9.989320

145

9.974630

9.975060

146

147

148
9.974746

149 9.915950

150

151

9.977173

9.994950

152

153

154

9.995922

155

9.977071

156

9.962572

157

158

9.985942

159

9.973286

9.984030

160

161

162
9.989722

163

9.998535

9.990458

164

165

9.999567

166

167

9.972854

168

169

170

171

172

173

174

9.985626

175

9.927210

176

9.998382

177

9.960806

9.960949

178

179

180

9.968849

181

9.996272

9.979272

182

183

184

9.994755

185

9.983260

186
9.980538

9.984321

187

9.976124

188

189

9.987676

190

191

192

193

9.965461

9.964965

194

195

196

9.974457

197

198

199

200

9.967249

201

9.968841

202

9.996684

203

204

205

206

207

9.995957

9.972223

208

9.999998

9.969666

209

9.999148

210

211

9.910605

212

9.970382

213

214

215

216

9.999202

217

9.983739

218

9.967082

219

9.918016

220

221

9.966370

222

223

224

9.993866

225

9.980128

226

9.974703

9.985168

227

9.924360

228

229

230

9.964353

2319.961039

232

9.974084

233

234

9.955529

235

9.974524

236

9.942159

9.998893

237

9.980351

9.974245

2389.948267

239

240

9.967661

241

242

9.997272

243

9.993426

244

9.975356

9.998708

245

9.931861

9.975231

246

9.976517

247

9.992368

9.979173

9.973309

248

9.965391

249

250

251

9.966428

252

9.965167

253

254

255

256

257

9.947014

258

9.971968

259

9.958252

260

9.978909

261

9.994504

262

9.982965

9.996986

263

9.961373

264

9.995844

9.994816

265

266

267

9.975579

268

9.987522

269

9.993012

9.978219

270

9.889384

9.957842

271

272

9.989137

9.974748

273

9.974189

274

275
9.991295

9.973315

276

9.980701

277
9.970250

9.984027

9.964493

278
9.980934

279

9.957106

9.955715

280

281

9.981804

9.999083

9.992527

282

9.967394

9.969400

283

9.977227
9.988663

284

9.981187

285

286

9.993513

287

9.993314

288

289

9.975901

290

9.993998

9.987725

9.955802

291

9.956248

292

293

9.985326

294

9.977580

295

9.985278

9.972029

296

2979.967501

298

299

9.979033

300

9.981444

301

9.976204

302

9.993823

303

304

305

9.968217

9.966545

9.982927

306

307

9.999870

9.973697

9.988282

308

9.988642

309
9.984438

310

311

312
9.976087

313

9.971248

314

315

9.984219

9.979800

316

317

318

9.998405

319

9.993313

320

9.982219

321

322

9.975952

323

9.972313

324

9.961817

325

9.966488

9.981061

326

9.966207

9.977300

327

9.971774

9.986018

328

9.991109

329

330
9.984519

9.970564

331

9.997416

332

9.958961

333

9.999321

334
9.995084

335

9.976169

9.968176

336

9.974234

337

9.981105

9.977936

338

339

9.966823

340
9.957481

341

9.992362

9.973828

9.998081

9.969251

342

9.979137

9.962750

9.983479

9.981348

343

9.996470

344

9.997748

345

9.977651

9.974980

346

9.972357

347

9.979515

348

9.989273

9.990004

349

9.960894

350

9.997064

351

9.978078352

9.980051

353
9.988010

354

355

9.979797

9.982305

9.978240

356

9.971500

9.994955

357

358

9.988360

359

9.938091

360

9.997617

9.988260

361

9.972504

362

9.980757

9.957857

363

9.988079

9.985512

3649.993142
9.977463

365

9.971792

366

9.991204

9.992547

367

9.985359

9.964190

368

9.971478

369

9.938819

370 9.975698

371

9.978014

9.955652

372

9.973293

373
9.993428

9.987975

9.974396

374

9.984487

375

9.950150

376

9.963874

377
9.999916

9.974892

9.999799

9.978548

378

9.977437

379

9.996628

380

9.969056

9.976896

381

9.931953

382

9.960247

383

9.945430

384

9.960871

9.993241

385

9.974816

9.909944

386

9.995373

9.984510

9.982361

387
9.988546

388

9.991893

389

9.963571

390
9.989839

9.981390

391

9.962904

9.977577

392

9.933240

393

9.971805

9.990465

394

9.968779

395

396 9.997935

397 9.966919

398

9.976457

399

9.982907

400

9.994287

9.981382

401

9.987243

9.986171

9.983794

402

9.987107

9.971284

9.991023

403
9.981992

404
9.986258

9.997994

9.970672

9.975151

405

9.998597

406

9.973440

407

9.955357

408

409

9.966318

9.989128

9.999613

9.988216

410

9.974715

9.962057

411

9.975955
9.984780

9.962910

412

9.994072

413

9.970683

9.928045

414

9.973542

9.985833

9.978737

415

9.928855

416

9.994472

417 9.917948

418

9.975372

9.980608

419

9.986598

9.967090

9.995049

9.987186

9.997395

420

9.946054

421

9.976303

9.979049

422

9.909131

423

9.949722

9.940589

424

9.965148

9.958196

425

9.990170

9.991672

426

9.991521

427

9.995096

9.988441

428

9.964423

9.999487
9.991688

9.997640

9.979316

429

9.987708

9.941843

430

9.994754

9.978321

431

9.995296

432

9.992938

433

9.984582

434

9.961421

9.959449
9.958102

435

9.962083

9.957404

436

9.996459

437

9.934037

438

9.972551

9.995719

439

440

9.958442

9.975492

9.999124

441

9.986313

9.968421

442

443

9.975735

444

9.951136

9.980591

445

9.950089

9.962254

446

9.992477

9.968756

9.986103

4479.985644
9.997041

448

9.990501

9.990992 9.997107

9.996301

449

9.940821

450

9.960469

9.960389

451

9.975808

452

9.971261

9.974569

453

9.970225

9.971064

454
9.978046

9.996548

455

9.979685

9.991646

9.982193

456

9.998465

9.977859

457
9.993505

9.956014

458

459

9.944910

9.968796

460

9.977034

9.974794

461

9.988032

9.968265

9.974610

462
9.967914

9.965553

463

9.952186

464

9.987017

9.997884

465

9.966598

466

467

9.980935

9.986940

9.979110

468

9.961688

469

9.997790

9.975229

470

9.998453

9.997116

471

9.973168

9.988012

9.979329

9.985179

472

9.980326

9.998733

473

9.965497

9.960777

474

9.991803

475

9.990335

9.981075

476

9.971318

9.970439

9.973907

477

9.965914

9.993464

9.975619

478

9.966208

9.967957

479

9.963641

480
9.994438

9.972144

481

9.991704

9.999092

482

9.883053

483

9.986176

484

9.994031

9.998789

9.990421

485

9.989701

486

9.997401

9.974278

487

9.998257

488

9.958774

9.962205

489

9.992474

490

9.963675

491

9.989963

9.968785

492

9.993514

9.974664
9.983747

493

9.971854

9.992558

9.905723

9.998348

494

9.931193

9.983013

495

9.997459

9.978098

496

9.975502

9.973591

497
9.993307

9.993354

498

9.956006

9.961534

499

9.969760

9.924802
9.993717

500

9.938860
9.980028

9.959359

9.944675

9.9801889.935092

Fig. 8 (continued)

1622 A. Quirin et al. / Information Processing and Management 44 (2008) 1611–1623
The experimental comparison developed using 20 large networks from real-world domains has demon-
strated the capability of the new proposal to generate scientograms of very large scientific domains in real
time.
Acknowledgements

We would like to thank Dr. Vicente Guerrero-Bote, from the University of Extremadura, Spain, for
providing us with his Binary Pathfinder’s code. We also would like to thank the anonymous reviewers for their
interesting comments and suggestions, which has allowed us to improve the quality of the contribution.

A. Quirin et al. / Information Processing and Management 44 (2008) 1611–1623 1623
References

Bellman, R., & Kalaba, R. (1965). Dynamic programming and modern control theory. New York, USA: Academic Press.
Borner, K., Chen, C., & Boyack, K. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37,

179–255.
Boyack, K., Klavans, R., & Borner, K. (2005). Mapping the backbone of science. Scientometrics, 64, 351–374.
Buzydlowski, J. (2002). A comparison of self-organizing maps and pathfinder networks for the mapping of co-cited authors. PhD thesis,

Drexel University.
Chen, C. (1998a). Bridging the gap: The use of pathfinder networks in visual navigation. Journal of Visual Languages and Computing, 9,

267–286.
Chen, C. (1998b). Generalised similarity analysis and pathfinder network scaling. Interacting with Computers, 10, 107–128.
Chen, C. (1999). Information visualization and virtual environments. Berlin, Germany: Springer.
Chen, C. (2004). Information visualization: Beyond the horizon. Berlin, Germany: Springer.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms (2nd ed.). The MIT Press.
Dearholt, D., & Schvaneveldt, R. (1990). Properties of pathfinder networks. In R. Schvaneveldt (Ed.), Pathfinder associative networks:

Studies in knowledge organization (pp. 1–30). Ablex Publishing Corporation.
Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.
Dreyfus, S. (1965). Dynamic programming and the calculus of variations. New York, USA: Academic Press.
Floyd, R. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5(6), 345.
Guerrero-Bote, V., Zapico-Alonso, F., Espinosa-Calvo, M., Gómez-Crisóstomo, R., & Moya-Anegón, F. (2006). Binary pathfinder: An

improvement to the pathfinder algorithm. Information Processing and Management, 42, 1484–1490.
Hjorland, B., & Albrechtsen, H. (1995). Toward a new horizon in information science: Domain analysis. Journal of the American Society

for Information Science, 46(6), 400–425.
Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1), 7–15.
Leydesdorff, L. (2004a). Clusters and maps of science journals based on bi-connected graphs in the journal citation reports. Journal of

Documentation, 60, 371–427.
Leydesdorff, L. (2004b). Top-down decomposition of the journal citation report of the social science citation index: Graph and factor-

analytical approaches. Scientometrics, 60, 159–180.
Lin, X., White, H. D., & Buzydlowski, J. (2003). Real-time author co-citation mapping for online searching. Information Processing and

Management, 39(5), 689–706.
Moya-Anegón, F., Vargas-Quesada, B., Herrero-Solana, V., Chinchilla-Rodrı́guez, Z., Corera-Álvarez, E., & Muñoz-Fernández, F.

(2004). A new technique for building maps of large scientific domains based on the cocitation of classes and categories. Scientometrics,

61(1), 129–145.
Moya-Anegón, F., Vargas-Quesada, B., Chinchilla-Rodrı́guez, Z., Corera-Álvarez, E., Herrero-Solana, V., & Muñoz-Fernández, F.

(2005). Domain analysis and information retrieval through the construction of heliocentric maps based on ISI–JCR category
cocitation. Information Processing and Management, 41, 1520–1533.

Moya-Anegón, F., Vargas-Quesada, B., Chinchilla-Rodrı́guez, Z., Corera-Álvarez, E., González-Molina, A., Muñoz-Fernández, F., et al.
(2006). Visualización y análisis de la estructura cientı́fica española: ISI web of science 1990-2005 (in Spanish). El Profesional de la

Información, 15(4), 258–269.
Samoylenko, I., Chao, T.-C., Liu, W.-C., & Chen, C.-M. (2006). Visualizing the scientific world and its evolution. Journal of the American

Society for Information Science and Technology, 57, 1461–1469.
Schvaneveldt, R. (1990). Pathfinder associative networks. Ablex Publishing Corporation.
Vargas-Quesada, B., & Moya-Anegón, F. (2007). Visualizing the structure of science. Springer.
Warshall, S. (1962). A theorem on boolean matrices. Journal of the ACM, 9(1), 11–12.
Watts, D. (2004). Small Worlds. The Dynamics of Networks Between Order and Randomness. Princeton University Press.
Watts, D., & Strogatz, S. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.
White, H. (2003). Pathfinder networks and author cocitation analysis: A remapping of paradigmatic information scientists. Journal of the

American Society for Information Science and Technology, 54(5), 423–434.

	A new variant of the Pathfinder algorithm to generate large visual science maps in cubic time
	Introduction
	Preliminaries
	The Pathfinder algorithm
	The Binary Pathfinder algorithm

	Fast Pathfinder
	Underlying idea: graph shortest path computation algorithms
	Floyd-Warshall ' s shortest path algorithm
	Dijkstra ' s shortest path algorithm

	Structure of Fast Pathfinder
	Main advantages and disadvantage of Fast Pathfinder

	Experimental results
	Concluding remarks
	Acknowledgements
	References

