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ABSTRACT

The Gene Ontology (GO) vocabulary has been exten-
sively explored to analyze the functions of coex-
pressed genes. However, despite its extended use
in Biology and Medical Sciences, there are still
high levels of uncertainty about which ontology
(i.e. Molecular Process, Cellular Component or
Molecular Function) should be used, and at which
level of specificity. Moreover, the GO database can
contain incomplete information resulting from
human annotations, or highly influenced by the avail-
able knowledge about a specific branch in an ontol-
ogy. In spite of these drawbacks, there is a trend
to ignore these problems and even use GO terms
to conduct searches of gene expression profiles
(i.e. expression + GO) instead of more cautious
approaches that just consider them as an indepen-
dent source of validation (i.e. expression versus GO).
Consequently, propagating the uncertainty and pro-
ducing biased analysis of the required gene grouping
hypotheses. We proposed a web tool, Onto-CC,
as an automatic method specially suited for inde-
pendent explanation/validation of gene grouping
hypotheses (e.g. coexpressed genes) based on
GO clusters (i.e. expression versus GO). Onto-CC
approach reduces the uncertainty of the queries by
identifying optimal conceptual clusters that combine
terms from different ontologies simultaneously, as
well as terms defined at different levels of specificity
in the GO hierarchy. To do so, we implemented the
EMO-CC methodology to find clusters in structural
databases [GO Directed acyclic Graph (DAG) tree],
inspired on Conceptual Clustering algorithms. This
approach allows the management of optimal cluster
sets as potential parallel hypotheses, guided by
multiobjective/multimodal optimization techniques.

Therefore, we can generate alternative and, still,
optimal explanations of queries that can provide
new insights for a given problem. Onto-CC has
been successfully used to test different medical
and biological hypotheses including the explanation
and prediction of gene expression profiles resulting
from the host response to injuries in the inflamma-
tory problem. Onto-CC provides two versions:
Ready2GO, a precalculated EMO-CC for several
genomes and an Advanced Onto-CC for custom
annotation files (http://gps-tools2.wustl.edu/onto-
cc/index.html).

INTRODUCTION

High-throughput experimental techniques, such as micro-
arrays, produce large amounts of data and knowledge
about gene expression levels. Frequently the output of
such analysis consists of a list of significant or ranked dif-
ferentially expressed genes that may lead to clusters of tens
to hundreds of them. These data are of little use if it is not
possible to interpret the results in a biological context (1).
To alleviate this problem, the Gene Ontology Consortium
provides consistent descriptions of gene products. This
biological knowledge is organized as hierarchical, struc-
tured and controlled vocabularies named Gene Ontologies
(GOs) (2), which describe gene products in terms of their
associated molecular functions (MF), biological processes
(BP) and cellular components (CC). Nowadays, the GO
Consortium provides GO annotations for many different
organisms (2).

Several tools have been developed to identify clusters
of GO terms that can explain sets of coexpressed genes
from microarray experiments (3). These approaches often
search for overrepresented GO terms describing a group
of genes using different statistical approaches such as
Fisher’s exact test [FatiGO (4)], �2 or binomial distribution
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[Onto-Express (5)], or calculating z-scores under the hyper-
geometric distribution [MAPPFinder (6)].

One of the principal problems when identifying biolog-
ically meaningful clusters in the GO database is that the
quality of the annotations is based on the available knowl-
edge. For example, some biological processes are studied
in more detail than others, thus generating long branches
with very specific GO terms while other branches remain
almost undescribed. To address this uncertainty, most of
currently available tools ask the user to select a custom
level of specificity (e.g. level 3) for the retrieved terms,
often constraining found GO terms (e.g. all biological
processes) to the same levels, retrieving not only limited
but too general or too specific information. Moreover,
most of the available clustering methods search each
ontology independently, thus, missing relevant relation-
ships among terms from different ontologies.

The crucial drawback shared by these methods is that
their subjacent clustering algorithm is not originally
designed to deal with hierarchically organized informa-
tion (7). This constrains their ability to search through
the complex relationships underlying structural data

contained in the Directed acyclic Graph (DAG) of the
GO database (Appendix A, Figure 1). A structural data-
base can be viewed as a graph containing nodes, which
represent objects; and the relationships among these
objects can be represented by edges. In this case, a sub-
structure corresponds to a subgraph of the GO DAG
(Supplementary Figure 2) (8). Conceptual clustering tech-
niques have been successfully applied to structural data-
bases by searching through a predefined space of potential
hypothesis (i.e. substructures) for those that best fits the
training examples (8,9). However, searching for concep-
tual clusters in a graph-based structure such as the GO
DAG, would result in the generation of many substruc-
tures with small extent, as it is easier to model smaller data
subsets than larger representative ones (10).
The usefulness of existing functional profiling

approaches is impacted by the annotation bias present in
the GO database, as well as by the constraints imposed by
the clustering methods. Therefore, to extract better-
defined concepts, Onto-CC uses the CC methodology
(11) inspired on conceptual clustering techniques, which
obtain sets of optimal clusters based on their specificity,

Figure 1. Ready2GO web interface. (A) Snapshot of the input form. Several genomes are available, along with two multispecies databases.
(B) Snapshot of the output results. In addition to the HTML table, two output files are also available to download the obtained results: .csv
(comma separated version, suitable for MS Excel) and .txt (tab separated).
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diversity and number of retrieved gene product. These are
conflicting criteria that can be approached as an optimiza-
tion problem. The basic challenge is to avoid the potential
bias caused by weighting the objectives (10), which always
derives in the convergence to solutions corresponding to
single or limited regions of the search space (i.e. GO
DAG). This problem is noteworthy because typical data
mining approaches, particularly in computational biology,
tend to emphasize consensus or most frequent patterns (7)
that often conceal rather than reveal novel and useful
knowledge about the problem (12,13).

METHODOLOGY

Onto-CC server searches for explanations and functional
validation of a group of genes, provided by the user,
potentially related (e.g. coexpressed genes). Different sub-
sets from the query are statistically compared with inde-
pendently precalculated clusters from the GO database of
the selected organism. These clusters share common sets
of features (i.e. GO terms) hierarchically organized at dis-
tinct levels of specificity in a structural database (i.e. GO
DAG). Indeed, Onto-CC considers the three different
ontologies simultaneously. The groups resulting from the
former relationships (i.e. conceptual clusters) should be
optimal, avoiding redundancy, but permitting descriptions
of the genes from different points of view. In other words,
one gene can belong to different conceptual clusters char-
acterized by different sets of features (14). Summarizing,
this web tool allows the users to validate their hypothesis
about sets of gene products by establishing relationships
between them and GO clusters, which were identified by a
conceptual clustering inspired algorithm. Onto-CC does
not only retrieve clusters of genes, but also performs a
differential feature selection for each cluster (15).
The precalculated clusters, termed substructures in a

DAG database, are obtained following these steps: (i)
Given a GO annotation file from a specific genome, the
algorithm randomly create potential substructures harbor-
ing distinct features (i.e. GO terms) defined at different
specificity levels and ontologies. Onto-CC does not select
a priori one specificity level in the GO DAG, like most of
the state of the art tools do (e.g. level 3). Yet, it searches
through different specificity levels through the composite
DAG space for potential substructures using an evolution-
ary algorithm (EA) (16). (ii) The initial substructures
evolve guided by a multiobjective/multimodal optimiza-
tion approach based on two objectives: the degree of
matching between the terms contained in the substructure
and the GO terms that characterize a subset of gene pro-
ducts (i.e. specificity) and the number of gene products
described by the substructure (i.e. support) (see Meth-
odology Details in Appendix A). These are contradictory
objectives, since when the specificity increases, the support
usually decreases and vice versa. Particularly, the goal is to
select substructures that satisfy a tradeoff between specifi-
city and support. (iii) The final set of clusters is achieved
when the maximum number of Genetic Algorithm genera-
tions is reached. These results are non-dominated clusters,
which are salient groups of genes/GO terms that are not

worst than any other final solution in both objectives (see
Methodology Details in Appendix A). These groups con-
sist of all possible optimal variations of GO terms defined
at different specificity levels, ontologies and gene products.

Onto-CC server provides two services: Ready2GO and
Advanced Onto-CC version. The Ready2GO service is a
precalculated version of conceptual clusters for over 30
different genomes annotated by the GO Consortium.
The Advanced Onto-CC is thought to be for users work-
ing with not fully described systems, genome custom
annotation or genomes that are still not annotated by
the GO Consortium. In this case, the conceptual clusters
will be calculated on the fly based on the annotation files
provided by the user.

IMPLEMENTATION

The mapping script is written in perl using bioperl mod-
ules and accessing several web services (e.g. biomaRt
resources, genome home pages and UniProt ID mapping
web interface). Onto-CC was developed in Eiffel v6.0
(Eiffel is an ISO standardized, object-oriented programing
language based on the design by contract paradigm).

Execution times vary depending on the number of input
accession numbers combined with the size of the genome
annotation data, for the Ready2GO version. The test file
with default values spends �1min on a 64-bit computer
with 2GHz processors. For the advanced version, Step 1
takes several minutes for a standard file. This time con-
sumption does not only depend on the number of input
accession numbers and annotations, but also on the size of
the EA population and number of evaluations to perform.
We recommend saving the Step 1 output results in order
to reuse them for Step 2 without having to rebuild the
clustering. Test file with default values spends <15 s for
Step 1 and <5 s for Step 2 using the previous machine
specifications.

WEB INTERFACE

The web server is available being implemented using CGI
scripts that communicate with several perl scripts and the
EMO-CC unix executable. Each of the Onto-CC versions,
Ready2GO and Advanced, has a tutorial available along
with example test files. The tutorials explain which para-
meters can be tuned and between which ranges they can
be modified. Default settings should be adopted for begin-
ners. The online tutorials cover the following help topics:
organism, annotation, input, threshold value, EMO-CC
parameters, additional outputs, Email results and output
results. The query starts by clicking the ‘submit’ button.
Results are provided as HTML for visual inspection and
can also be received by Email. In case of error, a human
readable message is displayed.

Databases

Standard protein databases are used to query GO terms
from accession number lists provided by the user.
The database accession numbers that can be used are:
UniProt (accession number or ID) (17), RefSeq (18),
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Ensembl (19), Vega (20), GI (21), Gene name, Dictybase
(22), CGD (16), Flybase (23), GeneDB (24), TIGR (25),
MGD (26), RGD (27), SGD (28), PseudoCAP (29), TAIR
(30), Wormbase (31), ZFIN (32) and/or PDB (33). For
each organism exists a precalculated mapping between
all those databases and the GO project. We update the
annotation files, and recalculate the clusters every 6
months. To do so, we take advantage of the evolutionary
techniques included in the proposed algorithm that allows
us to update the clusters after running few generations by
using the previous clusters as a seed (34). This incremental
learning approach (35) accelerates and reduces the com-
putational complexity of the updating process, leaving the
full recalculus to extreme and unusual cases (R.R.Z,
C.D.V. and I.Z. manuscript in preparation).

Ready2Go version

Input. The input file is a list of accession numbers belong-
ing to one of the organisms for which the GO project
provides annotation (2) (Figure 1, panel A). This input
file consists of sequence identifiers, one per line, from
any of the databases previously mentioned.

Parameters. There are two parameters to be specified:
organism and P-value. The organism can be selected
from any of the different genomes annotated by the GO
Consortium listed in the menu; the menu includes eukary-
otes, microorganisms and multispecies (Figure 1, panel
A). The second parameter is the P-value (36) and repre-
sents the probability of observing by chance a specific
intersection between the gene products given by the user
and the gene products belonging to the precalculated clus-
ters. The threshold can take values between 0 and 1, where
lower values represent greater reliability.

Output. Results are shown as a HTML table containing
each of the clusters found in no particular order. The
clusters can be ordered by the number of genes or by
the cluster P-value using the buttons shown above
the table (Figure 1, panel B). The table contains the fol-
lowing fields: cluster identification number (i.e. Cluster ID
column), BP subontology GO terms and descriptions
belonging to the cluster (i.e. Biological Process and BP
Description column, respectively), MF subontology GO
terms and descriptions belonging to the cluster (i.e.
Molecular Function and MF Description column, respec-
tively), CC subontology GO terms and descriptions
belonging to the cluster (i.e. Cellular Component and
CC Description column, respectively), the list of accession
numbers belonging to the cluster (i.e. ACC column) and
the P-value between the set of the given accession numbers
and the precalculated EMO-CC clusters for the selected
organism (i.e. P-value column). In addition to the HTML
version, the output file can be downloaded as a comma
separated version (.csv, suitable for MS Excel) and as a
tab separated text (.txt).

Advanced version

The Onto-CC advanced version allows obtaining a set of
GO descriptions for a list of user input accession numbers

by using custom GO annotation information. In this case
the substructures (conceptual clusters) will be calculated
on the fly based on the annotation files provided by the
user. For this protocol two steps are needed: Step 1, crea-
tion of custom conceptual clusters and Step 2, creation of
a GO description of a list of accession numbers using the
previous calculated conceptual clusters.

Step 1.
Input. The input file for this step is a custom GO annota-
tion file. This file describes the relationship between a gene
product/protein and GO terms. The annotation file con-
tains a description per line, where the identifier of the
gene/protein is separated from its GO description by a
comma. Each identifier can have multiple GO terms,
which are separated by semicolons and can belong to
any of the ontologies in the GO project.

Parameters. EMO-CC is a multiobjective EA. An EA uses
some mechanisms inspired by biological evolution to opti-
mize the solutions of the problem, such as, reproduction,
mutation, recombination, natural selection and survival of
the fittest. Several parameters can be modified in an EA,
but only two are available to the user: the population size
and the number of evaluations. Changes in these para-
meters modify the algorithm performance and have an
effect in the number and quality of clusters found. EAs
rely on a population of abstract representations, called
chromosomes, of candidate solutions, called individuals,
to an optimization problem, and evolve toward better solu-
tions. Bigger population sizes will result in slower perfor-
mance, but in better results. By increasing the size of the
population, more space is made available to save diverse
solutions, therefore, promoting the evolution to better
areas. As the size of the population increases, the number
of evaluations performed must also increase. The popula-
tion size can be changed by the user in the range [10–1000]
with a default value of 200. This value is appropriate for
a list of 2000 annotated IDs approximately. Usually,
an initial population of randomly generated candidate
solutions comprises the first generation. During each suc-
cessive generation, a proportion of the existing population
is selected to breed a new generation. A cost function is
used to guide the search and it is applied to the candidate
solutions and any subsequent offspring to quantify the
optimality of a solution, also termed chromosome, in an
EA so that a particular chromosome may be ranked
against all the other chromosomes. Each of these cost func-
tion evaluations can be used to determine when to stop an
EA execution. The user can specify the maximal number of
evaluations for the EA, where values range from 100 to
99 999 and the default value is 20 000. As a rule of dumb,
the number of evaluations should be a multiple of the
population size. This multiple number will be approxi-
mately the number of generations to perform.

Output. The HTML table shows each of the clusters
found in no particular order. The table is very similar to
the output table of Ready2GO but without the PI column
and with the addition of specificity and support columns.
Specificity values ranging [0–1] with 1 as the best-case
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scenario meaning that all gene products, described by the
cluster, shared the same GO terms. Support is the second
objective function used by the optimization algorithm and
ranges [0–1] with 1 as the best-case scenario, meaning that
the cluster describe all the gene products in the input file.
Again, the output file can be downloaded as a comma
separated version (.csv, suitable for MS Excel) and as a
tab separated text (.txt), in addition to the HTML version.

Step 2. This step needs two inputs. One is the custom-
clustering file obtained from Step 1 and the second is the
input file containing the IDs that the user wants to ana-
lyze. The output is the same as the one for Ready2GO.

DISCUSSION

The GO vocabulary has been extensively explored to ana-
lyze the functions of coexpressed genes (4,5). However,
despite its extended use, there are still high levels of con-
troversy about its usefulness to validate hypotheses of gene
groupings. We proposed Onto-CC as an automatic method
specially suited for independent explanation/validation
of gene grouping hypotheses (e.g. coexpressed genes)
based on GO clusters (i.e. expression versus GO), instead
of the widespread use of GO terms to conduct searches
of gene expression profiles (i.e. expression+GO) (4)
(see Appendix B). The clustering method used in our
approach is robust enough for reproducing results inde-
pendently of the organism annotation specific levels
(Supplementary Figures 3–5). Experiments on the algo-
rithm performance over GO databases of different com-
plexities showed similar distribution of solutions
(Supplementary Figure 4A and B). The reduced complex-
ity of a database increases the number of highly specific
solutions with a low support found, which indicates the
presence of overlapped clusters (i.e. fuzzy clusters) caused
by more general and condensed GO terms. Although runs
over different complexity GO databases of the same organ-
isms achieve small differences in the cluster’s specificity
evaluations, most of the best-ranked clusters recognized
in the full version and the slimmed one, characterize the
same genes (Supplementary Figure 4C).
Onto-CC approach reduces the uncertainty of the

queries by identifying optimal conceptual clusters that
combine terms from different ontologies simultaneously,
as well as terms defined at different levels of specificity in
the GO hierarchy. Indeed, one gene can belong to more
than one cluster (37), thus, providing alternative but still
optimal explanations that can generate new insights for a
given problem.
The Onto-CC server using the EMO-CC conceptual

clustering methodology has been successfully applied
to a large inflammatory response study carried out par-
tially at the Cell Injury and Adaptation Laboratory,
Washington University School of Medicine. The obtained
results have promoted the identification of novel relation-
ships among gene expression profiles that regulate the
temporal integration of the complex human inmuno-
inflammatory response (6,11) (Appendix B). The obtained
GO substructures were validated using a high-quality
hand-curated database termed Ingenuity Pathways

Knowledge Base (http://www.ingenuity.com), which is,
at the moment, a gold standard for metabolic pathways.
We queried this database with the web-based entry tool
developed by Ingenuity Pathways Analysis (IPA) (http://
www.ingenuity.com). For example, by using a list of genes
sharing a common gene expression behavior, the best
description identified by IPA (score 45, focus genes 21)
functionally corresponds to an inflammatory network
Inflammatory Disease (Appendix B, Figure 5 and
Tables 4 and 5). Moreover, the inflammatory disease is
the prevalent function of this network with P-values
between 1.15� 10�5 and 8.83� 103, suggesting that the
given genes and the Onto-CC substructures obtained con-
stitute a meaningful biological association.

The methodology highlight is its flexibility to integrate
different sources of knowledge based on statistical tests
(11), which facilitates the use of Onto-CC in combination
with other sources of independent annotation such as IPA.
The computational validation of the methodology used by
Onto-CC, as well as its performance in comparison with
other approaches typically used in GO databases is pub-
lished in elsewhere (11), and briefly described in the
Appendix B. The development of the server presented
here has been user driven from the beginning. Its function-
ality is continually being updated and extended in
response to requests and suggestions emerging from our
core users.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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