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A B S T R A C T

Classification in imbalanced domains is a recent challenge in data mining. We refer to imbalanced

classification when data presents many examples from one class and few from the other class, and the

less representative class is the one which has more interest from the point of view of the learning task.

One of the most used techniques to tackle this problem consists in preprocessing the data previously to

the learning process. This preprocessing could be done through under-sampling; removing examples,

mainly belonging to the majority class; and over-sampling, by means of replicating or generating new

minority examples. In this paper, we propose an under-sampling procedure guided by evolutionary

algorithms to perform a training set selection for enhancing the decision trees obtained by the C4.5

algorithm and the rule sets obtained by PART rule induction algorithm. The proposal has been compared

with other under-sampling and over-sampling techniques and the results indicate that the new

approach is very competitive in terms of accuracy when comparing with over-sampling and it

outperforms standard under-sampling. Moreover, the obtained models are smaller in terms of number of

leaves or rules generated and they can considered more interpretable. The results have been contrasted

through non-parametric statistical tests over multiple data sets.
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1. Introduction

The data used in a classification task could be not perfect. Data
could present different types of imperfections, such as the
presence of errors or missing values or imbalanced distribution
of classes. In the last years, the class imbalance problem is one of
the emergent challenges in data mining (DM) [45]. The problem
appears when the data presents a class imbalance, which consists
in containing many more examples of one class than the other one
and the less representative class represents the most interesting
concept from the point of view of learning [10]. The imbalance
classification problem is very related with the cost-sensitive
classification problem [9]. Imbalance in class distribution is
pervasive in a variety of real-world applications, including but
not limited to telecommunications [37], WWW, finance, ecology
[29], biology and medicine [21].

Usually, in imbalanced classification problems, the instances
are grouped into two types of classes: the majority or negative
class, and the minority or positive class. The minority or positive
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class has more interest and it is also accompanied with a higher
cost of making errors. A standard classifier might ignore the
importance of the minority class because its representation inside
the data set is not strong enough. As a classical example, if the ratio
of imbalance presented in the data is 1:100 (that is, there is one
positive instance versus one hundred negatives), the error of
ignoring this class is only 1%, so many classifiers could ignore it or
could not make any effort to learn an effective model for it.

Many approaches have been proposed to deal with the class
imbalance problem. They can be divided into algorithmic
approaches and data approaches. The first ones assume modifica-
tions in the operation of the algorithms, making them cost-
sensitive towards the minority class [24,32,47,34]. The data
approaches modify the data distribution, conditioned on an
evaluation function. Re-sampling of data could be done by means
of under-sampling, by removing instances from the data, and over-
sampling, by replicating or generating new minority examples.
There have been numerous papers and case studies exemplifying
their advantages [8,3,19,9,18].

Decision trees and rule induction algorithms are very important
techniques and they are used extensively in DM [26]. They are able
to produce human-readable descriptions of trends in the under-
lying relationships of a data set and can be used for classification
and prediction tasks. In the literature, many techniques of decision
ll rights reserved.
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Table 1
Confusion matrix for a two-class problem.

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)

Negative class False positive (FP) True negative (TN)

S. Garcı́a et al. / Applied Soft Computing 9 (2009) 1304–1314 1305
trees and rule induction algorithms have been proposed
[4,35,19,38]. In their conventional definition, these algorithms
can be applied to imbalanced classification problems, although the
performance that they achieve is not the adequate, unless we use
appropriate algorithms which are adapted to imbalanced perfor-
mance measures [17].

Evolutionary algorithms (EAs) [14] have been used for DM with
promising results [20,11]. In data reduction, they have been
successfully used for feature selection [42,25,40,46] and instance
selection [5,6,22]. EAs also have a good behaviour for training set
selection (TSS) in terms of getting a trade-off between precision
and interpretability with classification rules [7].

In the field of class imbalanced classification, EAs are being
applied recently. In [28], an EA is used to search an optimal tree in a
global manner for cost-sensitive classification. In [13], the authors
propose new heuristics and metrics for improving the performance
of several genetic programming classifiers in imbalanced domains.
EAs have also been applied for under-sampling the data in
imbalanced domains in instance-based learning [23].

In this contribution, we propose the use of EAs for TSS in
imbalanced data sets. Our objective is to increase the effectiveness of
a well-known decision tree classifier, C4.5 [35], and a rule induction
algorithm, PART [19] by means of removing instances guided by an
evolutionary under-sampling algorithm. We compare our approach
with other under-sampling, over-sampling methods and hybridiza-
tion proposals of over-sampling and under-sampling [3] studied in
the literature. The empirical study is contrasted via non-parame-
trical statistical testing in a multiple data set environment.

To achieve this objective, the rest of the contribution is organized
as follows: Section 2 gives an overview about imbalanced
classification. In Section 3, the evolutionary TSS issues are explained,
together with a description of the used model. In Section 4 the
experimentation framework, the results obtained and their analyses
are presented. Section 5, remarks our conclusion. Finally, Appendix A
is included in order to illustrate the comparisons of our proposal
with other techniques through star plots.

2. Imbalanced data sets in classification: evaluation metrics
and preprocessing techniques

In this section we will first introduce the data set imbalance
problem. Then we will present the evaluation metrics for this kind
of classification problem. Finally, we will show some preprocessing
techniques that are commonly applied in order to deal with the
imbalanced data sets.

2.1. The problem of imbalanced data sets

The imbalanced data set problem in classification domains
occurs when the number of instances which represents one class is
much larger than the other classes. Furthermore, the minority class
is usually the one which has more interest from the point of view of
the learning task [10]. This problem is very related with the cost-
sensitive classification problem [21,47,32].

As we have mentioned, the classical machine learning
algorithms may be biased towards the majority class and thus,
may predict poorly the minority class examples.

To solve the imbalance data set problem there are two main
types of solutions:

1. Solutions at the data level [8,3,9]: This kind of solution consists
of balancing the class distribution by over-sampling the
minority class (positive instances) or under-sampling the
majority class (negative instances).

2. Solutions at the algorithmic level: In this case we may fit our
method adjusting the cost per class [24], for example, adjusting
the probability estimation in the leaves of a decision tree bias
the positive class [41].

We focus on the two class imbalanced data sets, where there are
only one positive and one negative class. We consider the positive
class as the one with the lower number of examples and the
negative class the one with the higher number of examples. In
order to deal with the class imbalance problem we analyse the
cooperation of some preprocessing methods of instances.

2.2. Evaluation in imbalanced domains

The most straightforward way to evaluate the performance
of classifiers is based on the confusion matrix analysis. Table 1
illustrates a confusion matrix for a two-class problem having
positive and negative class values. From such a table it is possible
to extract a number of widely used metrics for measuring the
performance of learning systems, such as error rate (1) and
accuracy (2):

Err ¼ FP þ FN

TP þ FN þ FP þ TN
(1)

Acc ¼ TP þ TN

TP þ FN þ FP þ TN
¼ 1� Err (2)

In [41] it is shown that the error rate of the classification of the
rules of the minority class is 2 or 3 times greater than the rules that
identify the examples of the majority class and that the examples
of the minority class are less probable to be predict than the
examples of the majority one. Because of this, instead of using the
error rate (or accuracy), in the ambit of imbalanced problems more
correct metrics are considered. Specifically, from Table 1 it is
possible to derive four performance metrics that directly measure
the classification performance on positive and negative classes
independently:

� True positive rate: TPrate ¼ TP=ðTP þ FNÞ is the percentage of
positive cases correctly classified as belonging to the positive
class.
� True negative rate: TNrate ¼ TN=ðFP þ TNÞ is the percentage of

negative cases correctly classified as belonging to the negative
class.
� False positive rate: FPrate ¼ FP=ðFP þ TNÞ is the percentage of

negative cases misclassified as belonging to the positive class.
� False negative rate: FNrate ¼ FN=ðTP þ FNÞ is the percentage of

positive cases misclassified as belonging to the negative class.

These four performance measures have the advantage of being
independent of class costs and prior probabilities. The aim of a
classifier is to minimize the false positive and negative rates or,
similarly, to maximize the true negative and positive rates.

The metric used in this work is the geometric mean of the true
rates [2], which can be defined as

GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

accþ � acc�
p

(3)

where accþ means the accuracy in the positive examples ðTPrateÞ
and acc� is the accuracy in the negative examples ðTNrateÞ. This
metric tries to maximize the accuracy of each one of the two



Fig. 1. Chromosome binary representation of a solution.
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classes with a good balance. It is a performance metric that links
both objectives.

2.3. Preprocessing imbalanced data sets

In the specialized literature, we may find some papers for re-
sampling techniques from the point of view of the study of the
effect of the class distribution in classification [41,16] and
adaptations of instance selection methods [44,33] to treat with
imbalanced data sets. It has been proved that applying a
preprocessing step in order to balance the class distribution is a
positive solution to the imbalance data set problem [3]. Besides,
the main advantage of these techniques is that they are
independent of the classifier used.

In this work we evaluate different instance selection methods
together with over-sampling and hybrid techniques to adjust the
class distribution in the training data. Specifically, we have used
the methods which offer the best results in [3]. These methods are
classified into three groups:

� Under-sampling methods that create a subset of the original
database by eliminating some of the examples of the majority
class.
� Over-sampling methods that create a superset of the original

database by replicating some of the examples of the minority
class or creating new ones from the original minority class
instances.
� Hybrid methods that combine the two previous methods

eliminating some of the minority class examples expanded by
the over-sampling method in order to get rid of overfitting.

2.3.1. Under-sampling methods

� ‘‘One-sided selection’’ (OSS) [30] is an under-sampling method
resulting from the application of Tomek links followed by the
application of CNN. Tomek links are used as an under-
sampling method and remove noisy and borderline majority
class examples. Borderline examples can be considered
‘‘unsafe’’ since a small amount of noise can make them fall
on the wrong side of the decision border. CNN aims to remove
examples from the majority class that are distant from the
decision border. The remainder examples, i.e., ‘‘safe’’ majority
class examples and all minority class examples are used for
learning.
� ‘‘Neighborhood cleaning rule’’ (NCL) uses the Wilson’s Edited

Nearest Neighbor Rule (ENN) [43,31] to remove majority class
examples. ENN removes any example whose class label differs
from the class of at least two of its three nearest neighbors. NCL
modifies the ENN in order to increase the data cleaning. For a
two-class problem the algorithm can be described in the
following way: for each example ei in the training set, its three
nearest neighbors are found. If ei belongs to the majority class
and the classification given by its three nearest neighbors
contradicts the original class of ei, then ei is removed. If ei belongs
to the minority class and its three nearest neighbors misclassify
ei, then the nearest neighbors that belong to the majority class
are removed.

2.3.2. Over-sampling methods

� ‘‘Synthetic Minority Over-sampling Technique’’ (SMOTE) [8] is
an over-sampling method. Its main idea is to form new minority
class examples by interpolating between several minority class
examples that lie together. Thus, the overfitting problem is
avoided and causes the decision boundaries for the minority
class to spread further into the majority class space.
2.3.3. Hybrid methods: over-sampling + under-sampling

� ‘‘SMOTE + Tomek links (TL)’’: Frequently, class clusters are not
well defined since some majority class examples might be
invading the minority class space. The opposite can also be true,
since interpolating minority class examples can expand the
minority class clusters, introducing artificial minority class
examples too deeply in the majority class space. Inducing a
classifier under such a situation can lead to overfitting. In order
to create better-defined class clusters, we propose applying
Tomek links [39] to the over-sampled training set as a data
cleaning method. Thus, instead of removing only the majority
class examples that form Tomek links, examples from both
classes are removed.
� ‘‘SMOTE + ENN’’: The motivation behind this method is similar

to SMOTE + Tomek links. ENN [43] tends to remove more
examples than the Tomek links does, so it is expected that it will
provide a more in depth data cleaning. Differently from NCL
which is an under-sampling method, ENN is used to remove
examples from both classes. Thus, any example that is
misclassified by its three nearest neighbors is removed from
the training set.

3. Evolutionary training set selection in imbalanced
classification

Let us assume that there is a training set TR with N instances
which consists of pairs ðxi; yiÞ; i ¼ 1; . . . ;N, where xi defines an
input vector of attributes and yi defines the corresponding class
label. Each of the N instances has M input attributes and they
should belong to positive or negative class. Let S� TR be the subset
of selected instances resulted in the execution of an algorithm.

TSS can be considered as a search problem in which EAs can be
applied. Our approach will be denoted by Evolutionary Under-
Sampling for Training Set Selection (EUSTSS). We take into account
two important issues: the specification of the representation of the
solutions and the definition of the fitness function:

� Representation: The search space associated is constituted by all
the subsets of TR. This is accomplished by using a binary
representation. A chromosome consists of N genes (one for each
instance in TR) with two possible states: 0 and 1. If the gene is 1,
its associated instance is included in the subset of TR represented
by the chromosome. If it is 0, this does not occur (see Fig. 1).
� Fitness function: Let S be a subset of instances of TR and be coded

by a chromosome. We define a fitness function based on the GM
measure evaluated over TR:

fitnessðSÞ ¼ GM (4)

This fitness function is related with the proposal of Evolu-

tionary Under-Sampling for nearest neighbors classifier guided

by Classification Measures (EUSCM) proposed in [23]. A

decision tree or a rule induction algorithm can be used for

measuring the accuracy associated with the model induced by

using the instances selected in S. Obviously, the choice of the



Fig. 2. Evolutionary under-sampling process.
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classifier is conditioned to the final evaluator classifier,

following a wrapper scheme. The accuracy independently

computed in each class is useful to obtain GM value associated

to the chromosome. The objective of the EAs is to maximize

the fitness function defined: maximize the GMrate.

A mechanism to avoid overlearning in training data is
needed in the fitness function. Although most of the tree or
rule induction algorithms, in their definition, usually incorpo-
rate a pruning mechanism to avoid overfitting, the inclusion of
the induction process within an evolutionary cycle can guide
the resulting model to be optimal for only known data, loosing
the generalization ability. We incorporate a simple and
effective mechanism which consists of providing to the
classification costs a higher weight (W) to the instances that
are no included in S than to the instances included in S. An
instance of TR well classified scores a value W if it is not
included in S and a value of 1 if it is included in S. This
procedure encourages the reduction ability of the selected
subset, due to the fact that it is more beneficial to evaluate
chromosomes with a higher number of examples out of the
selected ones. Obviously, the instance causes a substraction on
accuracy of the same magnitude in case of misclassification.
Our empirical studies have determined that a value of W equal
to 3 works appropriately.

Fig. 2 represents the evolutionary under-sampling process
followed by our proposal:

Algorithm 1. Pseudocode of CHC algorithm.

� As the evolutionary computation method, we have used the
CHC model [15,7]. CHC is a classical evolutionary model that
introduces different features to obtain a trade-off between
exploration and exploitation; such as incest prevention,
reinitialization of the search process when it becomes blocked
and the competition among parents and offspring into the
replacement process.

During each generation the CHC develops the following
steps:

� It uses a parent population of size N to generate an
intermediate population of N individuals, which are ran-
domly paired and used to generate N potential offspring.
� Then, a survival competition is held where the best N

chromosomes from the parent and offspring populations are
selected to form the next generation.

CHC also implements a form of heterogeneous recombination
using HUX, a special recombination operator. HUX exchanges half
of the bits that differ between parents, where the bit position to be
exchanged is randomly determined. CHC also employs a method of
incest prevention. Before applying HUX to the two parents, the
Hamming distance between them is measured. Only those parents
who differ from each other by some number of bits (mating
threshold) are mated. The initial threshold is set at L=4, where L is
the length of the chromosomes. If no offspring are inserted into the
new population then the threshold is reduced by one.

No mutation is applied during the recombination phase.
Instead, when the population converges or the search stops
making progress (i.e., the difference threshold has dropped to
zero and no new offspring is being generated which are better
than any member of the parent population) the population is
reinitialized to introduce new diversity to the search. The
chromosome representing the best solution found over the
course of the search is used as a template to reseed the
population. Reseeding of the population is accomplished by
randomly changing 35% of the bits in the template chromosome
to form each of the other N � 1 new chromosomes in the
population. The search is then resumed.

The pseudocode of CHC appears in Algorithm 1.
� Crossover operator for data reduction: In order to achieve a

good reduction rate, Heuristic Uniform Crossover (HUX)
implemented for CHC undergoes a change that makes more
difficult the inclusion of instances inside the selected subset.
Therefore, if a HUX switches a bit on in a gene, then the bit could
be switched off depending on a certain probability (its value will
be specified in Section 4.1 and Table 3).

4. Experimental framework and results

This section describes the methodology followed in the
experimental study of the re-sampling compared techniques.
We will explain the configuration of the experiment: used data sets
and parameters for the algorithms. The algorithms used in the
comparison are the same described in Section 2.3.

4.1. Experimental framework

Performance of the algorithms is analysed by using 25 data sets
taken from the UCI Machine Learning Database Repository [1].
Multi-class data sets are modified to obtain two-class non-



Table 2
Imbalanced data sets.

Data set # Examples # Attributes Class (min., maj.) %Class (min., maj.)

Abalone9-18 731 9 (18, 9) (5.75, 94.25)

Dermatology2 366 34 (2, remainder) (16.67, 83.33)

EcoliCP-IM 220 7 (im, cp) (35.00, 65.00)

EcoliIM 336 7 (im, remainder) (22.92, 77.08)

EcoliIMU 336 7 (iMU, remainder) (10.42, 89.58)

EcoliOM 336 7 (om, remainder) (6.74, 93.26)

German 1000 20 (1, 0) (30.00, 70.00)

GlassBWFP 214 9 (build-window-float-proc, (32.71, 67.29)

remainder)

GlassBWNFP 214 9 (build-window-non_float-proc, remainder) (35.51, 64.49)

GlassNW 214 9 (non-windows glass, remainder) (23.93, 76.17)

GlassVWFP 214 9 (Ve-win-float-proc, remainder) (7.94, 92.06)

Haberman 306 3 (Die, Survive) (26.47, 73.53)

New-thyroid 215 5 (hypo, remainder) (16.28, 83.72)

PageBlocks(2,4,5)-3 559 10 (3, 2+4+5) (5.01, 94.99)

Pima 768 8 (1,0) (34.77, 66.23)

Segment1 2310 19 (1, remainder) (14.29, 85.71)

VehicleVAN 846 18 (van, remainder) (23.52, 76.48)

Vowel0 990 13 (0, remainder) (9.01, 90.99)

Yeast(1) 467 8 (POX, MIT+ME3+EXC+ERL) (4.28, 95.72)

Yeast(2) 1240 8 (POX+ERL, MIT+NUC+CYT+ME1+EXC) (2.02, 97.98)

Yeast(3) 1334 8 (EXC, MIT+NUC+CYT+ME3) (2.62, 97.38)

Yeast(4) 1120 8 (VAC, NUC+CYT+ME3+EXC) (2.68, 97.32)

YeastCYT-POX 483 8 (POX, CYT) (4.14, 95.86)

YeastNUC-POX 449 8 (POX, NUC) (4.45, 95.55)

YeastPOX 1484 8 (POX, remainder) (1.35, 98.65)

Table 3
Parameters considered for the algorithms.

Algorithm Parameters

SMOTE k ¼ 5, balancing ratio = 1:1

EUSTSS Po p ¼ 50, Eval = 10,000

Prob. inclusion HUX = 0.25, W ¼ 3
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balanced problems, defining the joint of one or more classes as
positive and the joint of one or more classes as negative.

The main characteristics of these data sets are summarized in
Table 2. For each data set, it shows the number of examples
Table 4
Results obtained by C4.5 using GM evaluation measure over training data.

Data set None NCL OSS

abalone9-18 0.6611 0.7206 0.7218

dermatology2 0.9563 0.9240 0.9437

ecoliCP-IM 0.9869 0.9526 0.9869

ecoliIM 0.8602 0.9184 0.9275

ecoliMU 0.8794 0.8799 0.9234

ecoliOM 0.9416 0.9197 0.9576

german 0.7779 0.6881 0.7790

glassBWFP 0.9391 0.7557 0.8528

glassBWNFP 0.8684 0.6501 0.8766

glassNW 0.9770 0.8456 0.9670

glassVWFP 0.8476 0.8828 0.9691

haberman 0.4660 0.4856 0.7215

new-thyroid 0.9678 0.9507 0.9787

pageblocks(2,4,5)-3 0.9919 0.9542 0.9918

pima 0.8151 0.7115 0.8115

segment1 0.9908 0.9827 0.9957

vehicle 0.9856 0.8965 0.9696

vowel0 0.9973 0.9531 0.9973

yeast(1) 0.6699 0.7491 0.6171

yeast(2) 0.3938 0.7902 0.4203

yeast(3) 0.8862 0.9053 0.8973

yeast(4) 0.1086 0.1460 0.4341

yeastCYT-POX 0.2568 0.8052 0.3438

yeastNUC-POX 0.6742 0.8265 0.6742

yeastPOX 0.0000 0.7362 0.0000

Average 0.7560 0.8012 0.7903
(#Examples), number of attributes (#Attributes) and class name
(minority and majority). The data sets considered are partitioned
using the tenfold cross-validation (10-fcv) procedure. The para-
meters of the used algorithms are presented in Table 3.

4.2. Results and analysis for C4.5

Tables 4 and 5 show the results in training and test data
obtained by the re-sampling approaches compared by means of
GM evaluation measure. The column denoted by none corresponds
to the case in which no re-sampling is performed previous to C4.5.
The best case in each data set is remarked in bold.
SMOTE SMOTE + ENN SMOTE + TL EUSTSS

0.9348 0.9337 0.8543 0.8449

0.9894 0.9853 0.9845 0.9820

0.9906 0.9860 0.9862 0.9869

0.9502 0.9483 0.9341 0.9428

0.9722 0.9625 0.9331 0.9374

0.9782 0.9891 0.9566 0.9914
0.8676 0.8136 0.7773 0.7474

0.9553 0.8915 0.8906 0.9157

0.9450 0.8964 0.8720 0.8856

0.9899 0.9679 0.9704 0.9783

0.9779 0.9611 0.8968 0.9608

0.7733 0.7519 0.7520 0.7141

0.9869 0.9873 0.9854 0.9963
1.0000 1.0000 0.9980 1.0000
0.8631 0.8387 0.8210 0.8084

0.9991 0.9988 0.9972 0.9969

0.9889 0.9784 0.9713 0.9666

0.9941 0.9949 0.9947 0.9979
0.9467 0.9460 0.8769 0.9357

0.8888 0.8918 0.8668 0.8936
0.9642 0.9675 0.9334 0.9554

0.7927 0.8241 0.6912 0.7793

0.9072 0.9205 0.8793 0.9377
0.9215 0.9379 0.8970 0.9745
0.8279 0.8502 0.8220 0.8473

0.9362 0.9289 0.9017 0.9191



Table 5
Results obtained by C4.5 using GM evaluation measure over test data.

Data set None NCL OSS SMOTE SMOTE + ENN SMOTE + TL EUSTSS

abalone9-18 0.3763 0.4761 0.4963 0.6023 0.6724 0.6724 0.6697

dermatology2 0.8623 0.8988 0.8928 0.9194 0.9181 0.9098 0.9505
ecoliCP-IM 0.9787 0.9486 0.9787 0.9751 0.9748 0.9787 0.9787
ecoliIM 0.8167 0.8882 0.8860 0.8795 0.9060 0.8811 0.8809

ecoliMU 0.7709 0.7600 0.8092 0.8661 0.8137 0.8671 0.8579

ecoliOM 0.8073 0.8220 0.8749 0.8412 0.8010 0.8725 0.9291
german 0.5759 0.6437 0.6753 0.6410 0.6636 0.6658 0.6419

glassBWFP 0.8138 0.6652 0.7551 0.8216 0.7599 0.7971 0.8425
glassBWNFP 0.6934 0.5648 0.7353 0.7511 0.7631 0.7427 0.7235

glassNW 0.8942 0.8101 0.9505 0.9239 0.9373 0.9344 0.9321

glassVWFP 0.5286 0.6755 0.6884 0.6994 0.7572 0.4930 0.7816
haberman 0.4280 0.4329 0.6089 0.6832 0.6292 0.6022 0.6206

new-thyroid 0.9048 0.9132 0.8810 0.9193 0.9492 0.9414 0.9463

pageblocks(2,4,5)-3 0.9270 0.9327 0.9260 0.9991 0.9991 0.9807 0.9991
pima 0.6908 0.6457 0.7161 0.7155 0.6990 0.7181 0.7179

segment1 0.9852 0.9728 0.9849 0.9918 0.9947 0.9965 0.9891

vehicle 0.9172 0.8737 0.9118 0.9202 0.9216 0.9241 0.9239

vowel0 0.9808 0.9360 0.9808 0.9657 0.9764 0.9671 0.9734

yeast(1) 0.4121 0.5979 0.3414 0.5399 0.6073 0.6883 0.6271

yeast(2) 0.1155 0.7038 0.2151 0.6783 0.6940 0.7477 0.6846

yeast(3) 0.7343 0.8653 0.8313 0.7983 0.8890 0.8649 0.8759

yeast(4) 0.0000 0.0000 0.1144 0.3737 0.4509 0.3044 0.3749

yeastCYT-POX 0.0699 0.7245 0.1000 0.5585 0.6156 0.6176 0.6489

yeastNUC-POX 0.5828 0.6151 0.5536 0.6974 0.6630 0.5647 0.6819

yeastPOX 0.0000 0.6238 0.0000 0.5718 0.5408 0.6410 0.6154

Average 0.6347 0.7196 0.6763 0.7733 0.7839 0.7749 0.7947
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Fig. 3 in Appendix A illustrates the comparison of EUSTSS with
the remaining techniques considered in this study in terms of GM

accuracy over test data and using C4.5 as classifier.
Table 6 shows the average number of leaves obtained by C4.5 in

each data set.
Observing Tables 4–6, we can make the following analysis:

� In training data, the results are mainly favourable to the SMOTE
and SMOTE + ENN algorithms. Nevertheless, when we take into
account the results obtained in test data, we see that SMOTE, in
average, loses performance with respect to the hybrid techniques
and EUSTSS. This points out that, in spite of the fact that all the
Table 6
Average number of leaves obtained by C4.5 decision tree.

Data set None NCL OSS

abalone9-18 8.10 6.50 7.30

dermatology2 10.6 5.4 8.9

ecoliCP-IM 2.00 2.50 2.00

ecoliIM 5.30 5.10 6.20

ecoliMU 10.00 5.80 6.50

ecoliOM 3.90 3.40 4.40

german 91.00 35.30 57.60

glassBWFP 12.20 5.80 6.70

glassBWNFP 12.40 5.50 11.60

glassNW 6.70 4.10 4.40

glassVWFP 7.50 6.10 8.40

haberman 2.60 3.90 8.70

new-thyroid 4.10 2.60 4.30

pageblocks(2,4,5)-3 4.7 3.1 4.7

pima 22.40 16.10 24.60

segment1 10 8.9 12.4

vehicle 20.60 12.50 16.30

vowel0 7.80 5.00 7.80

yeast(1) 3 2.2 3.2

yeast(2) 3 3.9 3.1

yeast(3) 5 4.2 3.3

yeast(4) 1.4 1.3 5

yeastCYT-POX 1.70 3.70 2.30

yeastNUC-POX 2.9 4.2 3

yeastPOX 0 2 0

Average 10.36 6.36 8.91
techniques used produce overlearning, the one produced by
SMOTE is more remarkable.
� EUSTSS proposal obtains the best average result in GM evaluation

measure. It clearly outperforms the other under-sampling
methods (OSS and NCL) and it improves the accuracy even
when comparing with over-sampling approaches.
� Over-sampling techniques obtain better accuracy than under-

sampling procedures in combination with C4.5 (see [3]), but they
cannot outperform EUSTSS proposal.
� Except for NCL, EUSTSS produces decision trees with lower

number of leaves than the remaining methods. Although the
combination NCL + C4.5 yields smaller trees, its accuracy in GM is
SMOTE SMOTE + ENN SMOTE + TL EUSTSS

57.50 57.30 52.60 6.30

15.5 14.3 14.5 7.2

2.90 3.10 2.00 2.00

10.40 10.10 10.40 6.00

16.70 13.10 14.00 5.40

7.80 6.60 6.80 5.40

159.90 121.00 82.40 33.60

15.70 10.40 10.40 7.00

19.90 15.90 15.90 9.60

9.70 6.90 7.10 5.60

13.40 13.10 13.50 6.90

16.10 18.20 18.00 5.70

4.90 4.90 5.00 4.30

4.2 4.2 4.2 4

39.50 38.90 34.90 14.50

12.5 12.3 12.6 7.5

28.40 23.40 22.50 11.10

10.70 11.40 10.50 7.90

21.2 21.9 19.2 8.2

38.9 39 36.7 7

32.6 29.5 28.8 5

58.2 61.7 54.2 7.4

23.30 19.70 21.20 7.60

15.1 15.9 18.5 8

34.7 36.2 36.8 5

26.79 24.36 22.11 7.93
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worse than the one obtained by EUSTSS and over-sampling
approaches.
� Over-sampling techniques force C4.5 to produce big trees. This

fact is not desirable when our interest lies in interpretable
models.

We have included a second type of table accomplishing a
statistical comparison of methods over multiple data sets.
Demšar [12] recommends a set of simple, safe and robust non-
parametric tests for statistical comparisons of classifiers. We will
use two non-parametric procedures for conducting the compar-
isons. One of them is Wilcoxon Signed-Ranks Test [36]. It is a
pairwise test which can be used for comparing two algorithms.
The second one is the Holm’s procedure [27], which is a multiple
comparison procedure used for contrasting the results obtained
by a control algorithm against a set of algorithms. It is a 1� n

comparison procedure which controls the family wise error rate
[36] and it should be used when we want to compare a proposal
that obtains the best results in a certain performance measure.
Table 7 collects the results of applying Wilcoxon’s and Holm’s
tests between our proposed methods and the rest of re-sampling
algorithms studied in this paper over the 25 data sets considered.
This table is divided into three parts: In the first part, the measure
of performance used is the accuracy classification in test set
through GM and the Wilcoxon’s test is conducted. In the second
Table 8
Results obtained by PART using GM evaluation measure over training data.

Data set None NCL OSS

abalone9-18 0.6828 0.8077 0.6243

dermatology2 0.9761 0.9750 0.9363

ecoliCP-IM 0.9948 0.9864 0.9302

ecoliIM 0.9061 0.9232 0.9079

ecoliMU 0.7950 0.9149 0.8477

ecoliOM 0.9775 0.9873 0.9294

german 0.9368 0.8525 0.7730

glassBWFP 0.9475 0.8661 0.7860

glassBWNFP 0.8154 0.8674 0.6698

glassNW 0.9793 0.9672 0.7973

glassVWFP 0.9062 0.9560 0.7902

haberman 0.5842 0.6973 0.5209

new-thyroid 0.9923 0.9909 0.9610

pageblocks(2,4,5)-3 0.9960 0.9956 0.9542

pima 0.7262 0.7937 0.7180

segment1 0.9983 0.9986 0.9835

vehicle 0.9899 0.9767 0.9477

vowel0 0.9963 0.9962 0.9692

yeast(1) 0.4147 0.6033 0.7491

yeast(2) 0.4637 0.4655 0.7929

yeast(3) 0.8947 0.9094 0.9127

yeast(4) 0.3732 0.4846 0.1601

yeastCYT-POX 0.3318 0.2663 0.8208

yeastNUC-POX 0.3556 0.4376 0.8102

yeastPOX 0.0000 0.0000 0.7362

Average 0.7614 0.7888 0.8011

Table 7
Non-parametric statistical tests results over GM and number of rules using C4.5.

Algorithm EUSTSS

Wilcoxon Holm

GM Num.

leaves

GM

None + (.000) = (.447) + (.000)

NCL + (.000) � (.001) + (.000)

OSS + (.001) = (.316) + (.005)

SMOTE + (.011) + (.000) = (.248)

SMOTE + ENN = (.391) + (.000) = (1.000)

SMOTE + TL = (.317) + (.000) = (1.000)
part, we accomplish Wilcoxon’s test by using as performance
measure the number of leaves yielded by C4.5. Finally, the third
part contains the results of Holm’s test over GM evaluation
measure. Note that Holm’s test cannot be applied when
comparing the number of leaves yielded by the trees, because
by considering this performance measure, the NCL algorithm
outperforms our proposal and a 1� n comparison has no sense.
Each part of this table contains one column, representing our
proposed methods, and Na rows where Na is the number of
algorithms considered in this study. In each one of the cells, three
symbols can appear: +, = or �. They represent that the proposal
outperforms (+), is similar (=) or is worse (�) in performance than
the algorithm which appears in the column (Table 7). The value
in parentheses is the p-value obtained in the comparison and the
level of significance considered is a ¼ 0:05.

We make a brief analysis of results summarized in Table 7:

� The use of Wilcoxon’s and Holm’s tests confirms the improve-
ment caused by EUSTSS over OSS and NCL under-sampling
methods. Curiously, it statistically outperforms SMOTE con-
sidering a pairwise comparison. We have seen in Table 5 that
SMOTE obtains a similar average GM to SMOTE + TL, but
Wilcoxon’s test indicates us that SMOTE has an irregular
behaviour depending on the data sets.
� In the case of interpretability, Wilcoxon’s test confirms the

results observed in Table 6. The combination EUSTSS + C4.5
yields a low number of rules.
� EUSTSS outperforms OSS, NCL and SMOTE in GM measure and

behaves similarly to SMOTE + TL and SMOTE + ENN. However,
the number of leaves produced by C4.5 when it is applied after
EUSTSS is much lower than the produced by SMOTE and its
hybridizations. EUSTSS allows C4.5 to induce very precise trees
with small size.

4.3. Results and analysis for PART

Tables 8 and 9 show the results in training and test data
obtained by the re-sampling approaches compared by means
of GM evaluation measure. The column denoted by none

corresponds to the case in which no re-sampling is performed
SMOTE SMOTE + ENN SMOTE + TL EUSTSS

0.9316 0.8634 0.9236 0.8345

0.9892 0.9855 0.9841 0.9830

0.9935 0.9865 0.9804 0.8920

0.9418 0.9254 0.9307 0.9116

0.9641 0.9235 0.9563 0.9250

0.9879 0.9664 0.9773 0.9787

0.9522 0.8131 0.8818 0.7406

0.9246 0.8927 0.9035 0.9251
0.9145 0.8535 0.8939 0.8747

0.9862 0.9678 0.9631 0.9778

0.9701 0.9062 0.9624 0.9358

0.7321 0.7212 0.7050 0.6389

0.9907 0.9828 0.9871 0.9689

0.9998 0.9980 1.0000 0.9945

0.7964 0.7910 0.7789 0.6963

0.9993 0.9977 0.9987 0.9856

0.9950 0.9820 0.9852 0.9699

0.9970 0.9994 0.9972 0.9725

0.9165 0.8762 0.9556 0.9313

0.8851 0.8695 0.9044 0.8974

0.9496 0.9303 0.9618 0.9502

0.7812 0.6616 0.7856 0.7839

0.9387 0.8885 0.9425 0.9277

0.9162 0.8861 0.9259 0.9605
0.8755 0.8201 0.8602 0.8590

0.9332 0.8995 0.9258 0.9006



Table 9
Results obtained by PART using GM evaluation measure over test data.

Data set None NCL OSS SMOTE SMOTE + ENN SMOTE + TL EUSTSS

abalone9-18 0.4305 0.3741 0.4668 0.6047 0.5401 0.6355 0.5862

dermatology2 0.8776 0.8791 0.8882 0.9409 0.8855 0.9199 0.9672
ecoliCP-IM 0.9717 0.9787 0.9201 0.9751 0.9787 0.9606 0.8827

ecoliIM 0.8335 0.8687 0.8740 0.8651 0.8698 0.8805 0.8806
ecoliMU 0.6607 0.7921 0.7652 0.8436 0.8648 0.8447 0.8073

ecoliOM 0.7193 0.8144 0.8311 0.9014 0.7979 0.9535 0.8710

german 0.6305 0.6439 0.6137 0.6319 0.6148 0.6453 0.6126

glassBWFP 0.8136 0.7957 0.6973 0.8046 0.8102 0.7985 0.8302
glassBWNFP 0.6105 0.7560 0.5750 0.7371 0.6884 0.7136 0.7400

glassNW 0.8963 0.9446 0.7370 0.9131 0.9273 0.9088 0.9213

glassVWFP 0.6019 0.6928 0.4838 0.7019 0.7638 0.5089 0.7360

haberman 0.5161 0.6111 0.4754 0.6417 0.6513 0.5765 0.5478

new-thyroid 0.8891 0.9224 0.9393 0.9252 0.9204 0.9261 0.9231

pageblocks(2,4,5)-3 0.9553 0.9525 0.9327 0.9807 0.9624 0.9807 0.9914
pima 0.6867 0.6967 0.6651 0.7145 0.7251 0.7134 0.6373

segment1 0.9890 0.9810 0.9774 0.9911 0.9921 0.9893 0.9838

vehicle 0.9344 0.9271 0.9059 0.9308 0.9388 0.9530 0.9329

vowel0 0.9557 0.9557 0.9040 0.9706 0.9665 0.9557 0.9232

yeast(1) 0.2113 0.3105 0.5734 0.6219 0.6774 0.6061 0.5967

yeast(2) 0.1155 0.2151 0.6266 0.6787 0.7248 0.6418 0.6871

yeast(3) 0.8156 0.8700 0.8658 0.8484 0.8926 0.8651 0.8492

yeast(4) 0.0000 0.1147 0.0553 0.3950 0.1122 0.1845 0.2934

yeastCYT-POX 0.0000 0.0000 0.8097 0.4960 0.7181 0.7451 0.7502

yeastNUC-POX 0.2121 0.2414 0.5879 0.6928 0.6642 0.6239 0.7254
yeastPOX 0.0000 0.0000 0.6238 0.5709 0.6387 0.5439 0.7016

Average 0.6131 0.6535 0.7118 0.7751 0.7731 0.7630 0.7751
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previous to PART. The best case in each data set is remarked
in bold.

Fig. 4 in Appendix A illustrates the comparison of EUSTSS with
the remaining techniques considered in this study in terms of GM

accuracy over test data and using PART as classifier.
Table 10 shows the average number of leaves obtained by C4.5

in each data set.
Observing Tables 8–10, we can make the following analysis:

� In training data, the results are mainly favourable to the
SMOTE and SMOTE + TL algorithms. In the case of PART, the
Table 10
Average number of rules obtained by PART.

Data set None NCL OSS

abalone9-18 8.30 9.10 5.70

dermatology2 7.10 5.80 3.40

ecoliCP-IM 4.10 3.60 2.60

ecoliIM 5.90 5.30 2.80

ecoliMU 6.00 5.50 4.20

ecoliOM 4.50 3.90 3.20

german 108.00 66.40 56.50

glassBWFP 7.50 5.00 3.90

glassBWNFP 5.20 6.50 4.80

glassNW 5.50 3.90 3.00

glassVWFP 6.50 6.30 4.50

haberman 3.40 6.10 3.20

new-thyroid 4.10 3.60 2.10

pageblocks(2,4,5)-3 4.00 4.00 2.00

pima 7.40 10.70 7.10

segment1 7.90 7.80 6.20

vehicle 13.70 11.50 9.50

vowel0 5.80 5.80 5.00

yeast(1) 4.00 4.60 2.10

yeast(2) 4.80 4.40 4.00

yeast(3) 5.00 3.50 4.20

yeast(4) 4.60 5.10 2.00

yeastCYT-POX 3.30 2.80 3.10

yeastNUC-POX 3.40 3.60 3.40

yeastPOX 1.00 1.00 2.00

Average 9.64 7.83 6.02
overlearning in training data is less notorious than in the case
of C4.5.
� EUSTSS proposal obtains the best average result in GM

measure together with SMOTE. It again outperforms the other
under-sampling methods (OSS and NCL) and it achieves
similar rates of accuracy when comparing with over-sampling
approaches.
� Except for OSS, EUSTSS produces smaller rule bases than the

remaining methods. Although the combination OSS + PART
yields the lowest number of rules, the accuracy in GM is lower
than the achieved by EUSTSS.
SMOTE SMOTE + ENN SMOTE + TL EUSTSS

29.10 28.00 27.00 4.90

9.60 8.10 9.90 3.10

4.80 2.60 4.10 3.50

7.40 6.20 6.30 4.30

9.30 8.10 6.90 4.60

4.40 4.40 4.30 3.70

128.50 76.40 100.70 40.10

7.90 6.60 7.10 5.20

9.00 7.40 8.30 5.50

6.00 5.20 5.00 4.40

9.20 8.90 8.00 6.10

7.30 8.20 9.90 4.20

4.20 4.10 4.40 3.20

2.50 2.60 2.60 2.90

11.50 12.70 12.80 5.10

7.50 7.10 7.60 6.50

16.40 14.10 13.70 8.70

7.40 7.50 7.80 4.70

12.10 11.70 13.90 5.60

20.10 21.50 18.20 5.30

14.30 14.70 14.70 4.50

29.80 29.90 28.50 4.80

13.50 12.00 12.50 5.00

9.30 10.20 11.30 6.20

24.10 19.90 21.30 4.60

16.21 13.52 14.67 6.27



Table 11
Non-parametric statistical tests results over GM and number of rules using PART.

Algorithm EUSTSS

Wilcoxon Holm

GM Num.

rules

GM

None + (.001) = (.174) + (.000)

NCL + (.048) = (.339) + (.000)

OSS + (.001) � (.001) + (.020)

SMOTE = (.667) + (.000) = (1.000)

SMOTE + ENN = (.989) + (.000) = (1.000)

SMOTE + TL = (.925) + (.000) = (1.000)
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� Over-sampling techniques force PART to produce many rules as
the previous case.

Table 11 includes the results of applying the non-parametric
statistical test between our proposed methods and the rest of
re-sampling algorithms studied in this paper over the 25 data sets
considered. It follows the same structure as Table 7.

We make a brief analysis of results summarized in Table 11:

� The use of Wilcoxon’s test confirms the improvement caused by
EUSTSS over OSS and NCL under-sampling methods. In the case
of PART, SMOTE is more robust than in the C4.5 case and it lets to
obtain accurate sets of rules without the requirement of
hybridization with noise filters (ENN) or under-sampling
techniques (TL).
� When we refer to interpretability, Wilcoxon’s test again confirms

the results observed in Table 10. The combination EUSTSS +
PART yields a low number of rules.
Fig. 3. Results obtained for C4.5
� EUSTSS outperforms OSS and NCL in GM measure and behaves
similarly to SMOTE and hybridizations. However, the number
of rules produced by PART when it is applied after EUSTSS is
much lower than the produced by SMOTE. As in the C4.5 case,
EUSTSS allows PART to obtain very accurate sets of rules with
small size.

5. Concluding remarks

The purpose of this paper is to present a proposal of
evolutionary training set selection algorithm for being applied
over imbalanced data sets to improve the performance of decision
tree or rule based induction classifiers. The study has been
performed by using the C4.5 decision tree classifier and PART rule
induction classifier. The results shows that our proposal allows to
each one of the classifiers used to obtain very accurate models
(trees or rule bases) with a low number of leaves or rules. The
effectiveness of the models obtained is very competitive with
respect to advanced hybrids of over-sampling. The proposal offers
more accurate models than the offered by other under-sampling
techniques, and the interpretability of the models obtained is
increased due to the fact that the tree or rule bases yielded are
made up by a lower number of leaves/rules.
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Appendix A. Star plot representations: EUSTSS vs. remaining
methods

See Figs. 3 and 4.
considering GM in test data.



Fig. 4. Results obtained for PART considering GM in test data.
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