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This paper introduces a new methodology based on the use of Pathfinder networks (PFNETs)
for the debugging of multi-agent systems (MASs). This methodology is specifically designed
to develop a forensic analysis (i.e. a debugging process performed on previously recorded
data of the MAS run) of MASs showing complex tissues of relationships between agents (i.e.
a high complexity in their social level). Like previous works in the field of forensic analysis
of MASs, our approach is performed by considering displays of the system activity which
aim to be understandable by human beings. These displays allow us to understand the
social behavior of the system, discover emergent behaviors, and debug possible undesir-
able behaviors. However, it is well known that the visualization of information in a
humanly comprehensible way becomes a complex task when large amounts of information
have to be represented, as is the case of the social behavior of large-scale MASs. Our meth-
odology tackles this problem through the use of PFNETs, which are considered to reduce
the data complexity in order to obtain simple representations that show only the most
important global interactions in the system. In addition, the proposed methodology is cus-
tomizable thanks to the use of two thresholds allowing the user to define the desired spec-
ificity level in the display. The proposal is illustrated with a detailed case study considering
a complex customer–seller MAS.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The term ‘‘multi-agent system” (or MAS) is applied to a system that has, among others, the following elements [16]: (1) an
environment En, (2) a set of objects O, (3) an assembly of agents A with A # O, and finally (4) an assembly of relations R which
link objects (and thus agents) to each other. A special case for systems in which A ¼ O and En ¼ ; is a purely communicating
MAS. In this case, the relations R define a network: each agent is directly linked to an assembly of other agents, which are
called its acquaintances. These systems are very common in distributed artificial intelligence and they are characterized
by the fact that the interactions are essentially intentional communications [16]. The interaction among agents is performed
by complex dialogues because the agents are autonomous and therefore they should have the ability to refuse requests from
other agents. For this reason, these interactions are complex and often unexpected [43]. This is also a consequence of the
MAS’ complex system nature, which causes sophisticated behaviors to arise out of a multiplicity of relatively simple inter-
actions among the independent agents composing it (what is usually called emergency [22]).

If debugging traditional software is considerably complex, it is much more complex to debug a MAS in which
intelligent or emergent behaviors may appear. Recent studies indicate the difficulties involved in testing and debugging
. All rights reserved.
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service-oriented applications [56], which are often carried out by agents. Brute force – the most common approach for soft-
ware debugging as stated by Meyers [33] – is not advisable in this context (i.e. it usually consists of scattering statements
throughout a program under test to display the values of variables). This is due to several facts such as the importance of
software in society, the economic cost of the bugs, and the complexity in the process of debugging software, in general,
and MASs, in particular. Therefore, MAS debugging requires the use of the latest technologies with the aim of automating
and facilitate this complex process as much as possible.

Three main MAS debugging approaches have been considered in the specialized literature according to the MAS’ level of
abstraction tackled. All of them are based on recording and analyzing events of the system executions, thus they are cate-
gorized in the forensic analysis field [41]. The first approach [34] works by showing the recorded events to the programmer
through a series of simple displays which must be studied by him in order to discover failures in the software. This operation
mode is harshly criticized by Poutakidis et al. [43]. These researchers mainly argue that the displays present too much infor-
mation to developers, making it difficult to understand what really happened in the system. The second approach [36] is
based on defining the protocols which regulate the interactions between agents, testing such protocols automatically and
debugging through some kind of display. This constitutes a more abstract vision of the MAS, considering it in its group level
(i.e., the study of specific agent groups in the system without covering the whole society). The main problem with this ap-
proach is that it only debugs what has been defined previously, and a MAS usually presents emergent behaviors which will
not be analyzed. The third approach [52] is focused on discovering knowledge in the event log and later displaying the ex-
tracted event insights in some way to give clues about what happened or might have gone wrong in the MAS execution. Note
that, the debugging is no longer developed at the MAS group level in this third approach. Instead, it deals with the MAS soci-
ety level (i.e., the level where the whole system is studied, not individual or group components [17]).

Some preliminary research based on data mining [14] has been carried out to attend to the debugging of a MAS at its
social level [5,52]. The latter proposals present several advantages with respect to other analysis methods, so allowing
the discovery of unexpected bugs. However, they also carry a series of complications and shortcomings. The first and most
important one is that the user must have expertise in the basis of data mining and in the use of data mining tools. This is due
to the fact that knowledge extraction is performed through an iterative process requiring user’s feedback in a closed loop and
that the data mining techniques considered are very sensitive to their parameter values.

The second problem is explained now. The display of the behavior of a complex system using any abstraction mechanism
(which is the base of the latter three MAS debugging approaches) always comes with the problem of the information over-
load for the user [6,7]. In the MAS debugging context, this overload can mean the software developer gets lost in a large
amount of useless information, due to complex representation, thus making him miss the really interesting items leading
to debugging possible undesirable behaviors. In fact, obtaining user comprehensible displays is a key condition in certain
critical systems like air traffic management [42]. Notice that the latter problem specially affects the third debugging ap-
proach since the amount of information handled is significantly larger than in the previous two.

One possible mechanism to reduce such complexity and to obtain proper displays of a MAS behavior could be the use
of techniques based on social networks [50], specifically the Pathfinder algorithm [13]. This algorithm is aimed at gen-
erating a class of networks called Pathfinder networks (PFNETs) whose objective is to reveal the underlying organization
of a system from a data sample. PFNETs are based on distance estimates or accurate measures between pairs of entities.
The network only represents the main global relationships between the entities of the domain, allowing us to generate
smaller and thus more comprehensible displays. PFNETs have already been used successfully in various fields such as
psychology, to represent the cognitive structure of a subject [49,13], or as scientometrics, for the analysis of large sci-
entific domains [7,32].

The contribution of this paper is a new forensic analysis methodology for the debugging of large-scale MASs (systems com-
posed of hundreds of agents) at their social level. Our methodology is based on displays of the system activity which allow us
to understand the social behavior of the system, discover emergent behaviors, and debug the possible undesirable behaviors.
It aims to solve the two problems stated of these kinds of MAS debugging techniques, i.e. the obtaining of complex, non com-
prehensible displays due to the information overload and the need of user’s data mining skills to apply them. To do so, we
consider the use of PFNETs as a more formal and automatic alternative. Therefore, the obtained PFNET is going to reveal the
most important global underlying interactions in the organization of a MAS. Starting from the data generated by the MAS
itself after running a software test, PFNETs are used to reduce the complexity of that data in order to obtain simple displays
which can be more easily understood by human beings. Moreover, the proposed methodology is customizable thanks to the
use of two thresholds allowing the software developer to define the desired specificity level in the display. In this paper we
focus the discussion on the debugging of purely communicating MAS. However, this does not mean that we restrict the work
developed to only this kind of systems. The ideas presented in this paper are always valid for studying interactions between
agents although the studied MAS is not purely communicating. Besides, this work can deal with the agent to environment
interactions provided that they are typified. The taxonomy of the latter type of communications is currently the subject of
some investigations [24].

The paper setup is presented as follows. Section 2 describes related works, explains the research trends in MAS debugging,
and reviews the classic uses of PFNETs. Section 3 reviews the existing methods for debugging MAS at the social level. These
methods are based on data mining techniques, and they present some deficiencies. This section also summarizes the basis of
the proposal presented in this paper to relate it with the state of the art. Section 4 gives a short introduction to PFNETs and to
the Pathfinder algorithm, detailing how the execution time can be optimized and how these nets should be displayed. Section
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5 introduces our novel approach for large-scale MAS debugging based on PFNETs. Section 6 illustrates the operation of our
methodology with a detailed case study. Finally, some conclusions and future work are given in Section 7.
2. Related works

2.1. Forensic analysis

Different approaches to debugging a MAS have often required recording relevant data from system executions. Therefore,
MAS debugging can be categorized as forensic analysis (or postmortem analysis). Forensic analysis is the process of under-
standing, re-creating, and analyzing arbitrary events that have previously occurred [41].

We can find a number of works on forensic analysis applied to the field of intrusion detection. The underlying concept in
these works is the same as for debugging a MAS using forensic analysis: recording the events of an execution, analyzing these
events (sometimes using different tools) and finding evidences of intrusions into the events. The obvious difference is that
instead of looking for intrusions, the developer tries to find bugs in the system. Therefore, there are important ideas and
techniques in these works which can be used to debug MASs. For example, Kumar et al. show an approach that targets intru-
sion detection in computer networks and models intrusion patterns using Colored Petri–Nets [27]. The approach is very
interesting but it still lacks an implementation that shows its efficiency. Dwyer et al. [15] have works where flow graphs
are used to represent potential communication activity between the processes of a distributed system. Meanwhile, proper-
ties are represented using quantified regular expressions. This approach requires deep knowledge of tiny details in the pro-
cesses of the system tested. Finally, a similar approach is used in the GrIDS tool [55]. This system is capable of detecting
large-scale intrusion attacks on network systems. The most interesting part is that it builds activity graphs of the executions
of the various processes in the system by monitoring them individually.

Serrano et al. have detailed specific techniques for the extraction of data needed for forensic analysis of MAS [51]. The
basic problem in forensic analysis applied to MASs is the distributed nature of these systems. Agents can be working on sev-
eral machines. They can even migrate from one computer to another. These authors try to define the infrastructure to record
and sort the events in MASs. The proposal requires modifying the source code of the MAS platform. That is why aspect ori-
ented programming [31] is used to get some genericity in the proposal motivated by the variety of existing MAS platforms.
2.2. Simple displays

The basics of forensic analysis allow the user to have techniques to record relevant data from MAS software tests. Nev-
ertheless, in order to proceed with the analysis, data representation techniques are needed. Usually, such representation is
based on graphical displays [42]. Such graphical displays have been used to represent the activity of single agents and groups
of agents and, lately, of the whole society, as in our approach.

There is abundant research to debug at the agent level which provides interesting displays that could be used for the upper
levels. One of the most illustrative examples is ‘‘micro tool” for MASs developed in the ZEUS platform [35]. It allows the user to
look at the internal processing of an agent to see: (1) the messages being received by the agent, (2) the messages being sent out
by the agent, (3) the actions taken in response to (1), and so on. Another example of debugging at the agent level is the ‘‘Mind
Inspector” Tool [3] in the Jason platform. This tool allows the user to inspect the agents’ internal (i.e., ‘‘mental”) states. Another
interesting work is the Agent Viewing Tool [4] for systems specified in Agent Factory Agent Programming Language. This tool
provides a graphical interface that provides the developer with a number of views of an agents’ internal state. The INGENIAS
platform [40] also includes representations of the single agent’s mental states among its debugging facilities. These displays
represent the information contained within the mental state of any agent following the same notation used to specify the
whole MAS in this platform. This contribution is aimed at the whole agents society. However, these previous works are very
interesting for the early stages of developing a MAS, where agents typically have abundant specific bugs.

Nevertheless, testing single agents is not only limited to monitoring their internals. Single agents may also be tested by
following the unit testing philosophy [21]. In this case, agents are seen as black boxes that should appropriately respond to
specific messages. Mock agents are used [10] for this. A Mock agent does not belong to the MAS under testing. It is specif-
ically designed to test agents in the MAS of interest. These agents are defined by the messages that should be sent to the
agent under test and the messages that should be received from it. Therefore, the user is forced to consider the agent’s inter-
actions with other agents even though he is dealing with an isolated agent. Another way of looking at interactions by using
single agents may be found in the Tracer Tool [28]. It uses recorded elements like beliefs, goals, intentions, messages, as cat-
egories for data and a concept graph is created with them. This graph is used as normative in the test. In consequence, all the
logged data must comply with the relations indicated within the graph. Such data also include messages, so interactions are
debugged at this level.

Displays to study the interactions of agents at the group level typically offer filtering of messages to reduce the shown
data, but nothing more elaborated. An example of this approach is given by Ndumu et al. with the society tool [35] in the
ZEUS platform. This tool allows a user to select a set of agents (it is a tool for the group level despite its name) and views
the organizational relationships and the messaging between them. This allows users to identify bugs, either in the way in
which the agents are organized, or in the manner in which coordination proceeds within the organization.
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These works often omit a discussion about the order in which events that are displayed occur. A MAS is mainly a distrib-
uted system [37] and therefore requires specific techniques (e.g. logical clocks [29]) to know the order in which messages
between agents occur. In previous works [51], Serrano and Botia proposed specific techniques to label events with logical
clocks for subsequent management. The use of order graphs [51], which are based in discrete mathematics, was also intro-
duced to display MAS events in order to debug these systems.

David Poutakidis et al. [43] criticize simple approaches of displays from the recorded data, like all those we have men-
tioned in this section. These researchers argue that in many cases, too much information is presented to developers, making
it difficult to understand what really happens in the system. It is clear that when the system increases complexity and the
data collections size is growing, automated methods are required. In the following paragraph, it is shown how when the
number of agents in the system increases the number of messages exchanged in a MAS increases much more.

Let us consider a MAS with a set of n agents A. Let us also consider that each agent communicates with na agents in the
system and finally that each agent sends ma messages each time it communicates with another agent (including responses to
received messages). Then, the number of elements of the set of messages M is the result of the following expression:
jMj ¼ n � na �ma. If we consider as an example the very simple case in which agents send a single message to another agent
for a consultation and they respond with a single message, then na ¼ ðn� 1Þ and the number of messages sent by each agent
is ma ¼ 2, values corresponding to a MAS with a very poor communication. In this case, jMj ¼ n � ðn� 1Þ � 2 ¼ 2n2 � 2n. This
shows that the number of messages grows rapidly with the number of agents, even in systems with very low exchange of
messages. In consequence, the principal line of investigation that has been followed in the testing and debugging of MAS is
the automation of the test of agent’s interactions. These kinds of approaches usually need three steps: (1) The first step is to
define the protocols which specify the interaction between agents. (2) The second one is to test automatically that these pro-
tocols were correctly performed. The idea is that if the agents do not violate the specifications, the developer can guess that
these agents are right. (3) Finally, the developer has to locate the errors found through some sort of display.

2.3. Protocols analysis

Petri-nets are one of the most popular methods to specify and debug communications between agents [12,36]. They con-
sist of a generalization of automata theory so as to be able to express events occurring simultaneously. Poutakidis et al. [43]
propose specifying protocols with AUML and translating them into Petri-net formalism. These networks will be used by the
debugger to monitor conversations and provide error messages when protocols are not followed correctly. With this ap-
proach, the same authors classify typical mistakes that can be found in MASs [44]: uninitialized agent, failure to send, wrong
recipient, message sent multiple times, and wrong message sent.

Besides the AUML diagrams and Petri-nets, other approaches are the use of extensions to the propositional dynamic logic
[39], statecharts [19], or dooley graphs [38]. Each method has its pros and cons in the definition of protocols, testing and
debugging [39]. We may summarize such pros and cons with the following sentence: the more accurate and complete a
method to define a protocol is, the harder it is to understand the resulting definition and the reasons which originated
failures.

There are works on the use of causality graphs [58,59] to facilitate the task of finding the cause of a failure in the execution
of a protocol. In these graphs, each node corresponds to an agent state and each edge of the graph, or cause, is a message sent
by the agent whose state is represented in the origin node to the agent whose state is represented in the destination node
(the former agent causes the new state in the latter agent). Once again, it is necessary to use logical clocks [29] to determine
the order in which events have happened in a distributed system which is a MAS in this case. We argue that these contri-
butions are within the approaches of definition and verification of protocols because the definition of the protocols is re-
quired to generate causality graphs and to analyze where the problem occurred. In a broader framework than that of
MASs, causality graphs have been a classic tool for debugging distributed systems since their proposal [60].

2.4. Societies analysis

The fundamental problem of analyzing protocols in MASs is that only what has been previously defined can be tested and
debugged. Thus, a model of correct traces is required in order to know if an execution trace is correct. Such models corre-
spond, in general, to protocol specifications. The individual agents within a MAS are autonomous and they can act in com-
plicated and sophisticated ways. For example, (1) these agents may be adaptive in uncertain and unknown environments, (2)
they may also organize themselves autonomously, and (3) they could also exhibit an ‘‘emergent” behavior [48]. Furthermore,
the interactions between agents are complex and often unexpected [43]. A well-known feature of agent technologies is their
ability to generate surprising, complex and emergent behaviors from very simple rules [1]. These behaviors usually imply
interactions between the agents, which is unexpected by the developers of these systems. As a consequence of all these rea-
sons, complex MAS behaviors can not be totally predefined and, in consequence, techniques analysed in Section 2.3 are not
sufficient to debug complex MAS.

In order to do so, it might be of interest to register such unexpected behavior which can appear in a MAS. An example is
the emergent behavior mentioned in the introduction. If these kinds of behaviors are to be detected, the analysis cannot be
limited to a group of agents and its defined interactions. It is necessary to study the artificial society as a whole, i.e. the social
level of the system. Besides, since the approach based on defining and testing protocols is not valid for our purposes (because
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it only deals with the predefined protocols), we must go back to the database with the events recorded from MAS executions
and to the displays from these data. The problem with these two elements was the excessive amount of information which
cannot be processed by humans. It is particularly advisable to obtain representations understandable by humans in the case
of critical systems that should always be supervised, such as air traffic management. Therefore, special techniques are
needed to discover knowledge about the MAS and also to translate this knowledge into representations understandable
by humans. Our work focuses on this difficult task of displaying the social behavior of a MAS, with the aim of understanding,
testing, and debugging it.

One of the most intuitive solutions to this problem is the use of data mining techniques [14]. Data mining is the non-triv-
ial process of identifying valid, novel, potentially useful, and ultimately (but not always) understandable patterns in data
[61]. It is an effective tool for reducing the complexity of the data, discovering knowledge in them, and even for getting sim-
ple representations. With these features, data mining has been widely applied to the visualization of complex data [25] and
to the testing and debugging of software [30]. Serrano et al. have developed this idea in the context of testing and debugging
MAS software [5,52] showing how data mining techniques can be used to obtain displays which clearly reflect groups of
agents which behave in a similar manner as well as the most prominent agents within the society. Such concepts are useful
because if, for example, among the agents under study there is a group of them which behave similarly, only one agent (i.e., a
representative) should be considered for further debugging. In consequence, the results of such single agent debugging may
be extrapolated to the rest of agents represented by it. Besides, the most prominent agents in the society should be carefully
studied in the debugging process because faults in their design are critical for the whole society.

Social Network Analysis (SNA) has emerged as a very active research field in the last few years [50]. SNA depicts and mea-
sures the complex tissue of relationships between individuals, groups, organizations and other information entities. One of
the more extended tools for SNA are PFNETs [13], which allow us to represent the most meaningful social interactions exist-
ing in a specific domain in an easy and human comprehensible way. They are generated by the Pathfinder algorithm, a net-
work scaling algorithm used to prune many different kinds of networks, including citation networks, random networks, and
social networks. The resulting network is graphically represented using a graph drawing algorithm, such as Kamada–Kawai
[23]. PFNETs are used in a large variety of applications, including author co-citation analysis [45], latent knowledge visual-
ization [8], scientific domain visualization [7,32], communication networks [53], animated visualization models of toxins [9],
and mental models [26].

3. Review of previous MAS societies debugging strategies and the new proposal

This section seeks to give a global overview of the existing strategies to debug MAS societies and details the advantages of
our new proposal, based on the use of PFNETs, with respect to the state of the art.

3.1. Existing strategies: collaboration graphs, collapsed collaboration graphs, and collapsed similarity graphs

The debugging approach chosen is the visualization of the MAS behavior. The effectiveness of the displays lies in a simple
assumption: summarizing the data of a MAS execution in a display (without losing relevant information) allows us to iden-
tify undesired behaviors in a better way than by analyzing all the data generated. The visualizations must allow us to under-
stand, and analyze and validate the behavior of the system at its social level in order to debug it (see Section 2). The following
sections show that the proposal presented in this paper achieves these goals.

The first approaches proposed to put this task into effect were based on simple graphs. A simple graph is a pair G ¼ ðV ; EÞ
comprising V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges [47]. It is easy
to get a sort of simple graph to be used to visualize the social level of a MAS. This graph is called collaboration graph and is
defined as follows.

Definition 1. Let us consider a MAS software program P whose execution leads to a purely communicating MAS comprised
by a set of agents A and a set of relations between agents R. Let us also consider a test t for P. The application of t to P allows
us to obtain a set of observations denoted by M. We define a collaboration graph for the pair ðP;MÞ as the graph GðV ; EÞ such
that V is included in or equal to A and ðai; ajÞ 2 E if ai sent some messages to aj as indicated by M.
Fxample 1. Consider a very simple MAS in which there are 4 agents, with 3 of them being sellers (agents s1; s2, and s3) and
the fourth being a customer (agent c). In this MAS a particular test t has been performed. The collaboration graph for this
simple system is the one shown in the left part of Fig. 1. The graph shows that the customer buys from the three sellers
and the sellers do not communicate between themselves.

The main problem associated with using this simple representation of the social level, the collaboration graph, arises
when the system becomes more complex and displays become as large and incomprehensible as the data they came from,
as in the right part of Fig. 1 where more than 100 customers buying from several sellers are represented. Section 2.2 showed
how the number of messages exchanged in a MAS increases quickly when agents are added to the system. The efficient visu-
alization of large information domains is a very complex issue [32]. The reader will notice that MASs can be complex for
many reasons, MASs are complex in nature. In the main, this is due to their autonomy and non-deterministic behavior. More-
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over, there is an extra complexity derived of their size. The representations must deal with general MASs. The common ele-
ment to all MAS is the existence of agents and messages exchanged between them. The exponential growth in the number of
messages with the number of agents is often the common factor which makes the representations useless.

In this framework, where we seek visualizations of a complex and unpredictable system with the aim of debugging it,
data mining arises as a natural solution to simplify data and to discover patterns in them. Cluster analysis has become
one of the most popular forms of unsupervised learning, where no a priori knowledge is needed. It has been used in a wide
variety of applications, such as catalog segmentation, Web document categorization, e-mail overload management, and sales
forecasting [20]. Some previous works which use clustering for MAS debugging at the social level can be found in the liter-
ature [17,52].

Actually, starting from the collaboration graph, as occurs in Fig. 1, a clustering process is equivalent to a transformation of
the graph by collapsing nodes (i.e. agents) into more complex nodes (i.e. groups or clusters). How these nodes are collapsed
and, in consequence, the meaning of the fact that two agents belong to the same group, define two types of graphs: collapsed
similarity graphs and collapsed collaboration graphs.

Definition 2. Let us consider a MAS software program P whose execution leads to a purely communicating MAS comprised
by a set of agents A and a set of relations between agents R. Let us also consider a software test t such that it is applied to the
software and we obtain a set of observations from this test denoted by M. If we obtain a collaboration graph for ðP;MÞ and
denote it with GðV ; EÞ, we may define a collapsed graph from G as a new graph G0 ¼ ðV 0; E0Þ such that V 0 is a particular
partition of V where each node in V 0 is a subset of the nodes/agents belonging to V and an edge ðv ;v 0Þ 2 E0 if some agent in
v 2 V 0 communicated with some agent in v 0 2 V 0.

Now we can explain the collapsed similarity and collaboration graphs.

Definition 3. Let us consider a collaboration graph G ¼ ðV ; EÞ. Suppose now we obtain G0 ¼ ðV 0; E0Þ as a collapsed graph from
G. We call this G0 a collapsed similarity graph if the partition V 0 reflects an arrangement of agents such that agents belonging
to the same element of the partition indicate that they share some degree of similarity.

In a nutshell, two agents are similar if these agents have the same kind of communications with the same agents. Serrano
et al. [52] detailed the algorithm to obtain degrees of similarity between agents.

Definition 4. Let us consider a collaboration graph G ¼ ðV ; EÞ. Suppose now we obtain G0 ¼ ðV 0; E0Þ as a collapsed graph from
G. We call this G0 a collapsed collaboration graph if the partition V 0 reflects an arrangement of agents such that agents
belonging to the same element of the partition indicate that they manifest a high interaction through cooperation.

In a nutshell, two agents have a high interaction (or they form a collaborative core) if the communication between them is
larger (in terms of bytes or number of messages) than that developed by the other pairs of agents. Serrano et al. [52] detailed
the algorithm to obtain degrees of interaction between agents.

In previous contributions [17,52], these methods are used in large-scale MASs. In these works, the implementation, appli-
cation, and usefulness of data mining to obtain the aforementioned graphs are explained in depth.

3.2. Overview of our new proposal: MAS debugging by means of PFNETs

Collaboration graphs have some interesting topological properties which it is often valuable to display graphically, like
the connection between agents which have interacted, the similarity between agents in a vertex of a collapsed similarity
graph, or the high interaction between agents in a vertex of a collapsed collaboration graph. However, the raw graphs cannot
often be visualized easily, especially when the size of the graphs grows proportionally with the number of data to be dealt
with, and thus specific algorithms for simplifying such large graphs have been developed. Graph scaling algorithms, whose
goal is to take proximity data and to obtain structures revealing the underlying organization of those data, use similarities,
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correlations or distances to prune a graph-based on the proximity between a pair of nodes. One of the best known methods
to do this is the Pathfinder algorithm [13]. This is due to the various sound mathematical properties PFNETs (the pruned net-
works graphs obtained as output of the algorithm) present. These properties include [13]: (1) the conservation of the triangle
inequalities (see Section 4.1) in any path of any number of links, (2) the capability of modeling asymmetrical relationships,
(3) the representation of the most important global relationships present in the data, and (4) the fact that hierarchical con-
straints in most cluster analysis techniques do not apply to PFNETs.

In view of the latter, in this work we propose a methodology to debug MASs based on pruning their collaboration graphs
by means of an advanced Pathfinder algorithm variant (see Section 5).
3.3. The PFNETs approach vs. the clustering approach for MAS debugging

The use of clustering to obtain graphs representing the society of a MAS often generates good summaries of the system.
These graphs are used to debug the system, i.e., to verify that the system performance is adequate, at least in those aspects
for which the graphs are meant. These aspects are similarity and collaboration between agents. However, the clustering-
based approach has some shortcomings that are explained below. We show here how techniques based on PFNETs could
help to overcome these shortcomings.

The currently identified shortcomings of the clustering approach are:

1. The absence of intra and inter cluster visual information. One of the weaknesses of clustering is that it does not provide infor-
mation within a single cluster; its elements simply belong to that group. Hence, it does not show the relationship between
the elements (the agents) who belong to the same cluster. One the one hand, the distance between two elements which
appear within the same cluster does not indicate if these elements are more similar or more cooperative. On the other hand,
it provides no information either on the relationship between elements of different clusters, or between different clusters.

2. The absence of information about the most important elements in the representation. Another defect is that clustering does
not express where the most important agents1 are and, thus, what would be the most important information to be dis-
played. However, this information could be easily expressed by putting a stronger emphasis on the central elements within
the clusters, representing the important agents using nodes of larger size than those used by the rest, or emphasizing central
clusters to indicate a greater importance in comparison to the remaining elements of the display.

3. The amount of knowledge required by the user. From our point of view, this is the fundamental reason which justifies
changing the representation technique. The use of clustering requires some data mining skills to set the parameters of
the algorithms correctly. For a newcomer, this fact is much more critical because, depending on the chosen parameters,
the result will have a high variability in quality and in computation time. An expert should not experience major limita-
tions in the way he understands the parameters of the data mining tasks or by performing a lengthy iterative process to
achieve good results. In this domain, the achievement of visualizations which can be generated, manipulated and under-
stood by inexperienced users, in an automatic and efficient way, is still a challenge.

Of course, some alternatives of basic clustering approaches already exist that deal with some of these limitations. One of
these alternatives is hierarchical clustering. Dendrograms [14], a typical representation for this kind of clustering-based on
trees, would directly address the first defined shortcoming (about the intra and inter cluster visualization). However, the
new problem would be how to get a non-confusing representation of the hierarchy when a few hundred agents have to
be processed. Another possible solution for the visualization problem is the use of fuzzy clustering [2]. With this technique,
the relationships of each sample with all the clusters are clarified, but the relationships between the samples themselves are
not. Besides, this model does not provide sufficient information to derive which samples are the most significant, thus the
second defined shortcoming (about the most important elements emphasis) would still exist.

The use of PFNETs solves all the problems mentioned. By definition, PFNETs are connected, so each element is linked to
the rest [45]. We propose to use this property to address the first problem (about the intra and inter cluster visualization).
PFNETs are often combined with graph drawing algorithms such as Kamada–Kawai [23] that locate the most important ele-
ments2 in the centre of the representation (also called the backbone) and the less relevant elements in the periphery [57]. Thus,
thanks to their backbone behavior, PFNETs can also address the second problem (about the most important elements emphasis).
Finally, PFNET generation algorithms are totally autonomous algorithms that require no parameterization from the user. This
advantage efficiently addresses the third shortcoming mentioned (concerning the required user knowledge).

The advantages shown by PFNETs concerning the last three issues (the absence of intra and inter cluster visual informa-
tion, the absence of information about the most important elements in the representation, and the amount of knowledge
1 Note that, in our domain, when collaboration among agents is studied, an important agent is that with a significant activity in the collaboration graph (i.e.,
exchanging a significant amount of messages with the others) in comparison with the remaining agents in the MAS. When the similarities are studied, an
important agent is that which is most similar to the rest of the agents (i.e. a representative).

2 The importance of a node in the network is related to the weights of its edges in the weight matrix. This matrix collects the similarity values for each pair of
nodes. The similarity measure considered depends on the application domain. For example, these values could be distances between each pair of nodes. For
MAS debugging, when a similarity PFNET is built, these values will be related to the similarity within the set of communicating agents (see Definition 7 in
Section 5). When a collaboration PFNET is built, they will be related to the number of messages exchanged between the two agents (see Section 5.2).
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required by the user) have led us to propose their use to debug MASs at the level of society. We think that PFNETs obtained
from collaboration graphs becoming expressive representations of the MAS social behavior are useful tools to debug these
complex systems. In the next section, basic concepts about the generation of PFNETs are detailed, before explaining how
these graphs allow the derivation of an understandable representation of a MAS in Section 5.

4. How to generate PFNETs

In this section, we give the formal definition of a PFNET and describe the algorithm we use to generate them.
PFNETs are generated by the Pathfinder algorithm introduced by Schvaneveldt [13]. Their objectives are to reveal the sub-

jacent organization of a set of data, derived from a MAS in our case. Because of this explicative behavior, they are extensively
used in SNA [32]. These graphs are based on the estimation or the measure of the distance between pairs of entities. Their
formal definition is given as follows, taken from [13]:

Definition 5 (PFNET). A PFNETðr; qÞ is a septuple (N, E, W, LLR, LMR, r, q) where:

1. N ¼ fa1; . . . ; ang is the set of nodes of the network and N – ;.
2. E # fðai; ajÞ 2 N � N : i – jgwith cardinality m is the subset of edge names in the complete original graph. E is usually con-

sidered in a square matrix representation of dimensions n� n where eij is the name of the link connecting nodes ai and aj.
Note that, by definition, there is a unique link between each pair of nodes and autolinks are not allowed.

3. W is the subset of weights associated to the m edges in E. Again, it usually takes a square matrix representation where
wij 2 Rþ0 . Thus wij denotes the weight of edge eij. The weights on the main diagonal are assumed to be zero and the
remaining existing link weights are assumed to be finite and non negative.

4. LLR, the link-labeling rule, is the procedure used to determine a label for each link, according to some classification
scheme.

5. LMR, the link-membership rule, is the procedure used to determine whether or not each element of the E matrix is added to
the PFNET(r,q).

6. r is the value of the r-metric considered to build the PFNET, and 1 6 r 61.
7. q is the value of the q parameter considered to build the PFNET, and 1 6 q 6 n� 1, where n is the number of nodes.

The algorithm to get this kind of networks is called Pathfinder and will be introduced in the next subsection.

4.1. The Pathfinder algorithm

Pathfinder was introduced by Dearholt and Schvaneveldt [13] as a technique to yield structures revealing the underlying
organization of proximity data in SNA. It is an alternative to other approaches for the same task such as clustering or mul-
tidimensional scaling. Pathfinder is based on graph theory and specifically on shortest paths in graphs. It defines estimates of
the proximity between pairs of items as input and defines a network representation of the items that preserves only the most
important links (a weighted pruned graph called PFNET). Hence, this PFNET is characterized by keeping only those links in
the original graph whose weights do not violate the triangle inequality. When applied to graph theory, this classical math-
ematical property states that the direct distance between two nodes must be less than or equal to the total distance of any
path joining them by passing through any group of intermediate nodes. More formally, weightði; jÞ 6 weightði; kÞþ
weightðk; jÞ;8 nodes i; j; k. As stated by its creators, PFNETs provide unique representations of the underlying structure for
domains in which objective measures of distance are available [13].

The Pathfinder algorithm is applied on graphs where each link has a weight, and returns a pruned graph. The semantic of
the network weights is problem-dependent and can be customized for the specific application domain being tackled. In this
contribution, we propose the use of some similarity metrics allowing us to design PFNETS for MAS debugging at their social
level. As will be introduced in Section 5, the weights in the links of our PFNETs are based on a metric considering the number
of messages exchanged between the two linked agents when the collaboration is studied. When the similarity is studied, the
weights are an index measuring how similar the agents’ behavior is in terms of their cooperation with the remainder.

The Pathfinder algorithm is based on two main parameters. The first parameter is r 2 ½1;1�, which defines the adaptive
metric, the Minkowski r-metric, considered to measure the distance between two graph nodes not directly connected:
D ¼
X

i

dr
i

( )1
r

:

When r takes value 1, the Minkowski metric results in the sum of the link weights; when it takes value 2, it becomes the
usual Euclidean metric; and when r tends to1, the path weight is the same as the maximum weight associated with any link
along the path.

The second parameter is q 2 ½2;n� 1� (with n being the number of nodes in the graph), which limits the number of links in
the paths for which the triangle inequality is ensured in the final PFNET. Hence, every path connecting two nodes that violate
the triangle inequality, having an associated Minkowski distance greater than any other path between the same two nodes
composed of up to q links, will be removed.



Fig. 2. The Pathfinder algorithm.
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The PFNET structure becomes sparser (has fewer links) as either r or q increases [13], whereas its interpretability in-
creases. Of course it is always easier for a human being to interpret a graph with a significantly lower number of links rep-
resenting only the most important global relations. This explains why PFNETs (1, n� 1) where both parameters are set to
q ¼ n� 1 and r ¼ 1 have been used in a large variety of applications, as was shown at the end of related works review (Sec-
tion 2).

To build a PFNET, two different kinds of auxiliary matrices are used. The first matrix is Wi
jk, which stores the minimum

cost to go from node j to node k by following exactly i links. This matrix is computed recursively using matrix Wi�1
jk , with W1

being the original weight matrix. The second matrix is Di
jk, which stores the minimum cost to go from node j to node k by

following any path in the graph composed of i or less links. This matrix is computed recursively using matrices W1
jk; . . . ;Wi

jk.
The original Pathfinder algorithm pseudo-code is shown in Fig. 2 (w is the weight of an edge as in the PFNET definition,

see Definition 5). Note that the algorithm has a time complexity order Oðq � n3Þ as q steps have to be performed to build the q
matrices Wi and Di. Each of the latter matrices stores n2 weights, so a loop of this order is needed to compute them in each
step. Finally, an additional loop of n steps is needed to compute each component of Wiþ1, as seen in line 1 of the algorithm. As
the maximum possible value for q is n� 1, Pathfinder has a time complexity of Oðn4Þ in that case. On the other hand, the
resulting space is thus of complexity 2 � q � n2 (2 � n3 � 2 � n2 when q ¼ n� 1), since there is a need to build q matrices Wi

and q other matrices Di, as seen above.
4.2. Variants of the Pathfinder algorithm

The original Pathfinder algorithm can provide the user with all kinds of pruning, for all the possible acceptable parameter
values for r and q, but this algorithm shows a high time and space complexity. A study conducted by Quirin et al. showed that
the pruning of a graph of 1000 nodes could take more than one hour on a modern computer [45]. Since these kinds of graphs
are frequent in MAS debugging, a better response time is a critical aspect in the elaboration of a better interaction with the
user. Thus, three variants have been proposed to reduce its run time. Guerrero-Bote et al. [18] and Quirin et al. [46] recently
proposed, respectively, the Binary Pathfinder algorithm and the Fast Pathfinder algorithm two improved variants of the ori-
ginal Pathfinder aimed at reducing both its time and its space complexity.

The third improved Pathfinder variant is called MST-Pathfinder introduced by Quirin et al. [45]. To make a comparison
with the original Pathfinder, with this new algorithm, the same graph of 1000 nodes can be pruned in less than one second.
This small run time has been obtained thanks to some restrictions defined on the main parameters, for which only the values
r ¼ 1 and q ¼ n� 1 can be used. These values, and consequently, the small run time, make its use optimal for our applica-
tion. As this will be the graph pruning algorithm considered in this contribution, we will describe its operation mode in
detail.

It is well-known that there is a relationship between the results obtained with a Minimum Spanning Tree (MST)3 algorithm
and the Pathfinder algorithm. Dearholt [13] explicitly stated that, for a given symmetric cost matrix W; r and q, the union of all
the MSTs extracted from a PFNET ðr; qÞ is its PFNET ð1;n� 1Þ. As we have seen in the previous section, for each couple of nodes
ði; jÞ, PFNET ð1;n� 1Þ is the set of links with the minimum cost among all the paths between the nodes i and j.

Given these considerations, a new algorithm based on the relation between MSTs and the Pathfinder algorithm param-
eterized with r ¼ 1 and q ¼ n� 1 (the typical values in the most applications) has been written and detailed [45]. It applies
the idea that the generation of PFNET ð1; n� 1Þ is the simple union of all the MSTs of a given graph. This algorithm, called
MST-Pathfinder, gives the same result than Pathfinder (i.e., the same PFNET ð1;n� 1Þ), but with the same efficiency as the
usual MST algorithms. The algorithm pseudo-code is shown in Fig. 3. The algorithm has several sub-functions: (1) CREATE-
CLUSTER(v) creates a single cluster of size 1 including the node v as member, (2) CLUSTER(v) returns the cluster associated to
node v, and (3) MERGE-CLUSTER(u, v) performs the union between the cluster containing node u and containing node v.

The algorithm needs OðjEj � logðjEjÞÞ operations to sort the list of the links by their weights, where jEj is the number of
links. Using some data structures, such as path compression [11], it can be proved that the time complexity of this algorithm
is OðjEj � logðjEjÞÞ. When having a dense network, jEj is close to n2 and logðn2Þ is OðlogðnÞÞ, so the theoretical time complexity
of the full algorithm can be simplified to Oðn2 � logðnÞÞ. In conclusion, this algorithm is much faster than the original Path-
3 Let G ¼ ðV ; EÞ be a non-directed weighted and connected graph where V is the set of the nodes and E is the set of the links valued by their costs. A Minimum
Spanning Tree of G is a sub-graph T ¼ ðV ; E0Þ of G; E0 � E, including all the nodes of G, where T is a tree and where the sum of the costs of each link is minimal.



Fig. 3. The MST-Pathfinder algorithm.
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finder (Oðn4Þ, when applied with q ¼ n� 1). Concerning the memory, as only two link sets (T and F) have to be stored, the
complexity is only 2 � n2 (instead of 2 � n3 � 2 � n2).
4.3. Visualization of PFNETs

As stated in Section 3.2, collaboration graphs have some interesting topological properties which it is often valuable to
display graphically. The Pathfinder algorithm allows us to process the original raw graphs properly by reducing their com-
plexity in order to obtain PFNETs that contain only the most interesting global relations existing between the agents. Hence,
the PFNETS derived from the MAS social behavior will show some interesting topological properties that have a visual impact
which will guide the expert in the MAS debugging. These properties include the spatial proximity between the nodes, the
location of a specific node regarding the center of the map, and the degree of clustering of the ensemble of nodes. Neverthe-
less, they are only highlighted when the network is displayed graphically. It is in fact the combination of a pruning algorithm
and a visualization algorithm which will reveal the organization of the network by emphasizing some of these properties.

Chaomei Chen was the first to promote the combination of the Pathfinder algorithm and Kamada–Kawai’s algorithm [23]
for the visualization of PFNETs applied to co-citation networks [6]. Kamada–Kawai’s algorithm generates networks with cri-
teria such as the maximum use of available space and the forced separation of nodes, so building balanced and aesthetic
maps. Chen showed that the visual-spatial features obtained with this combination (for instance the organization of a central
backbone and the rearrangement of the least important nodes on the periphery) is highly relevant for the interpretability of
these co-citation networks. Hence, the Kamada–Kawai’s algorithm, which displays the more relevant elements in the center
of the PFNETs, allows us to solve one problem of our previous work mentioned in Section 3.3 which is the absence of infor-
mation about the most important elements in the representation.
5. Debugging MASs with PFNETs

This section explains the way to obtain a PFNET of a purely communicating MAS. The networks obtained are equivalent to
the two types of graphs which were explained in Section 3, collapsed similarity and collapsed collaboration graphs.4

Let us consider a MAS software program P whose execution includes a set of agents A and a set of relations between
agents R. Let us also consider a test t for P. The application of t to P allows us to obtain a set of messages exchanged between
agents denoted by M.

The set n of nodes N ¼ fn1;n2; . . . ;nng in both PFNETs corresponds to the set of agents in the system A ¼ fa1; a2; . . . ; ang.
That is, N ¼ A. The Pathfinder variant algorithm used, MST-Pathfinder, applies its LMR (link-membership rule), setting the
parameters r ¼ 1 and q ¼ n� 1. In this work, the LLR (link-labeling rule) is not applied. Therefore, only the set of edges E
and the set of weights W remain to end our definition of a PFNET sextuple. A PFNET will either be a similarity PFNET or a
collaboration PFNET in function of these two sets, E and W. This section is devoted exclusively to obtaining a set of edges
and weights to form the desired PFNETs.
4 From now on, we will avoid using the term ‘‘collapsed” for the sake of simplicity.
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5.1. Similarity PFNET

Obtaining the similarity PFNET requires the edges and weights to indicate similarity relations between the agents.
That is, the weight function is going to define a measure which reflects the level of similarity between agents. We refer
to similarity in terms of who the agents communicate with and with what intensity they carry out this communication.
Before introducing the weight function definition, a series of previous definitions are shown to help to define and under-
stand that function.

The basis to establish the collaboration or similarity between agents for this proposal is the number of messages
exchanged.

Definition 6. A function nmðai; ajÞ called number of messages is assumed, whose domain and codomain are nm : A2 ! N.
This function returns the number of messages in M which have been exchanged between any two agents ðai; ajÞ 2 A.

The number of messages allows the set of agents which communicate with an agent or a couple of them to be established.

Definition 7. Let us define the set of communicating agents with an agent. This is the set Aai # A including all the agents
which communicate with an agent ai 2 A, i.e., Aai ¼ fa 2 A : nmðai; aÞ – 0g. Let us also define the set of communicating agents
with a couple of agents, composed of all the agents which communicate with a couple of agents ðai; ajÞ 2 A. This set is defined
as Aai ;aj ¼ ðAai [ Aaj Þ � fai; ajg.

The weight function defines a measure that reflects the agents similarity in terms of who the agents communicate with
and with what intensity they carry out this communication. Let us consider two sets of agents: the common agents set (com-
posed of the agents which both communicate with ai and aj) and the different agents set (composed of those agents which
communicate with only one agent of the pair ðai; ajÞ 2 A). In this way, for the similarity PFNET, the weight function should
return a greater value when two agents communicate with the same agent. That is, the larger the set of common agents is,
the higher the value the weight function returns. Moreover, the weight is greater when those communications with common
agents have a similar number of messages. This would indicate that the couple of agents treated is more similar. It is also
sought to reduce the weight returned with the size of the set of different agents. That is, the larger the set of different agents
is, the lower the value the weight function returns. With the same reasoning, the weight is lower when those communica-
tions with different agents have a higher number of messages. This would indicate that the couple of agents treated is more
different.

Definition 8. The weight function for the similarity PFNET, Ws : A2 ! ð0;1� � R, is defined as:
Wsðai; ajÞ ¼
1

1þ
P
8a2Aai ;aj

nmðai; aÞ � nmðaj; aÞ
�� �� :
This function returns a weight of 1 if the agents passed as parameters communicate with the same agents and with the
same intensity.

The set Aai ;aj
contains the union between the common agents set and the different agents set. When the function considers

an agent of the different agents set in the summation, one of the values of the difference is zero. Hence, the summation is
increased and the value returned by the function is reduced. So, the more messages that have been sent to that different
agent a, the larger the summation result will be. On the other hand, when the function considers an agent from the common
agents set in the summation and agents ðai; ajÞ have exchanged the same number of messages, the summation is not in-
creased with a. However, if the number of messages exchanged with a is different, the summation is increased on the basis
of that difference. Thus, the value returned by the weight function is reduced. Therefore, the proposed weight function al-
lows us to achieve the pursued objectives. For example, we can consider the case in which agents ðai; ajÞ only communicate
with their agents in common and share the same number of messages. For this case, it is trivial to see that the final value
returned by the function Ws is 1, indicating the highest possible similarity provided by the function.

The only element missing to complete the definition of a PFNET is the set of edges. The function Ws is bounded by
ð0;1�. Note that weights asymptotically tend to 0. So if eliminating the least significant connections after the Pathfinder
pruning is wished, thresholds for edge consideration have to be defined. For example, we could consider only edges
with weights greater than 0.1, i.e., with a similarity greater than 10%. By the same reasoning, very high similarities
can be eliminated using another threshold if doing so is considered to be interesting. A higher threshold lu and a low-
er threshold li can thus be defined to limit the set of considered edges. The use of these thresholds is discussed in
Section 5.3.

Definition 9. The set of edges for the similarity PFNET is E ¼ fðai; ajÞg with ai; aj 2 A. If thresholds are used, the set of edges
that would complete the similarity PFNET would be:
E ¼ fðai; ajÞ : ½Wsðai; ajÞ 6 lu ^Wsðai; ajÞP li�g:
The reader can see how the similarity PFNET is very close to the classic use of PFNETs in the field of psychology to get the
cognitive structure of the subject [49]. The difference is that, instead of concepts and their similarities, we have agents and
their similarities. This paper extrapolates previous work with PFNETs to the field of debugging.
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5.2. Collaboration PFNETs

In the same way as with the case of the similarities, for the collaboration PFNET, the definition of a weight function
reflecting the degree of collaboration between agents and the set of edges is required. The weight function should return
a value depending on how much two agents cooperate. The cooperation is understood as a exchange of messages (the more
number of messages exchanged, the higher the cooperation).

Definition 10. The weight function for the collaboration PFNET sought with domain and codomain, Wc : A2 ! ½0;1Þ � R,
is:
Wcðai; ajÞ ¼ 1� 1

1þ nmðai; ajÞ2
:

The weight returned by the function is 0 if the agents do not cooperate at all and it tends to 1 as the communication between
them becomes greater.

Note that the number of messages is squared to amplify this factor in the expression. Therefore, the function tends to 1
faster.

The only element missing to complete the sextuple of a collaboration PFNET is the set of edges.

Definition 11. The set of edges for the collaboration PFNET is E ¼ fðai; ajÞ : Wcðai; ajÞ – 0g, with ai; aj 2 A. If thresholds are
used, the set of edges that would complete the collaboration PFNET would be:
E ¼ fðai; ajÞ : ½Wcðai; ajÞ – 0 ^Wcðai; ajÞ 6 lu ^Wcðai; ajÞP li�g:
Note that the function Wc (see Definition 10) is bounded between ½0;1Þ. Therefore, it is trivial not to consider edges with a
weight of 0, because a null weight indicates that there is no cooperation at all between the linked agents.

The reader can see how the collaboration PFNET is very similar to the implementation of the PFNETs to obtain sciento-
grams of major scientific domains [32]. The difference is that instead of nodes as fields of science and edges as citations be-
tween the scientific disciplines, the nodes are agents and the edges are messages between agents. Again, this paper
extrapolates previous work with PFNETs to the field of debugging.

5.3. Using thresholds

This section specifies a strategy to use and choose the weight thresholds that limit the set of edges. The thresholds are
used exclusively to improve the visualization and understanding of the resulting PFNETs. This paper proposes the use of
PFNETs to large-scale MASs, large systems which consequently cause huge representations. The thresholds can take values
between 0 and 1 because they are used to limit the network edges (the weighted edges and the nodes that bind these edges),
which also take values from 0 to 1.

Suppose we obtain a complex network, in terms of nodes and links. Suppose that its complexity is so high that the
information displayed is overwhelming the user. This is a typical situation in which thresholds should be employed.
The strategy we propose in one that has proved to be useful some time. It is based on a simple but effective routine.
(1) First, set up the extreme values for li ¼ 0 and lu ¼ 1 and obtain a new PFNET. Obtain conclusions about it. (2) Second,
it is time now to study strong links. In order to do is, we have to progressively increase li until we obtain a simple and
easy to understand network. Again, we obtain conclusions about it. At this point, notice that deleting weakest links by
augmenting the value of li will often generate a set of different unconnected PFNETS. (2) Third, if we are interested
now in studying weak links, we should progressively reduce the value of li but also the value of lu, until we get a con-
nected network again, with no strong links and the desired level of occurrence of weak links in order to obtain, again,
conclusions about it. The weak links tend to link large groups of closely related elements. If the MAS test has been ex-
plored enough, finish the process. If not, simply go to step (2) or (3) depending on what is being sought. The reader
may ask why an upper threshold is needed. The first strategy is increasing the lower threshold until an easy to understand
network is obtained (step 2). Therefore, a difficult to understand network will be obtained if we reduce only the lower
threshold in step 3. The solution is to reduce the upper threshold too.

There is a significant concern about the moment of pruning with thresholds to stop showing strong relations. First, an
array of weights representing a network is obtained, second, this network is pruned using the Pathfinder algorithm that
removes the less representative relationships (getting a PFNET); third the PFNET is represented graphically with a draw-
ing algorithm, the Kamada–Kawai one for example. Reducing the upper threshold means deleting links needed by Path-
finder to remove irrelevant weak links. Therefore, the additional pruning through the use of thresholds must be made
exactly between the application of Pathfinder algorithm, MST-Pathfinder for example, and the drawing algorithm. As a
final comment, note that the networks obtained by setting thresholds often make us go back to previous networks,
and especially to the global network, to supplement the provided information. In this process a user simply has to select
the weights that are going to be shown. In any case, these representations no longer require data mining skills to set the
parameters values.
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5.4. Collaboration PFNETs for a concrete agent

Some agents can be highlighted during the strategy for the choice of thresholds (see previous subsection), for example the
central elements of the PFNETs. The communications of these agents deserve special treatment because they can reveal bugs
or undesired behaviors. To analyze the communications highlighted, the user can study the raw data obtained from the MAS.
These data are the set of messages M which is obtained by applying a test t on a software program MAS P (see the beginning
of Section 5). The basic forensic analysis (Section 2.1) can be used to perform this task. However, it is also possible to obtain
more information using PFNETs for a concrete agent. This section studies the creation of those PFNETs.

The collaboration PFNETs for a concrete agent have all the elements in common with the collaboration PFNETs (see Sec-
tion 5.2) except for the nodes set N, i.e. the agents studied. The only nodes which are interesting to study in these PFNETs are
the concrete agent and the agents which communicate with it.

Definition 12. A collaboration PFNET for a concrete agent ai, with ai 2 A, is a collaboration PFNET where N ¼ Aai .

Note that the nodes are equivalent to the set of communicating agents with an agent ai (Definition 7).

6. A case study

Now let us see the application of the proposed PFNETs to assist the process of debugging a MAS of high complexity at its
social status. More specifically, PFNETs allow us to understand the behavior of the system to first identify deviations from
expected behavior (i.e. errors) and then locate them and fix them (i.e. clean them). A complex MAS is used to appreciate
the social level.

The complex system studied in this section models a society of users who want to obtain tickets to watch their preferred
movies. This is cinema example which has been used and detailed previously [52] to illustrate how clustering works in the
process of generating collaboration and similarity graphs. This system has been created with the INGENIAS methodology
[40] and tools for development [51].

In the example description, user (i.e. customer) preferences are the preferred extras available (nachos, pop-corn, drinks),
preferred sessions (e.g. from 19:00 to 20:00), preferred seats (e.g. seat numbers 1–20), movies (e.g. Die Hard), and the ex-
pected price [52]. The customer looks for sellers, the cinemas with the ticket price below or equal to his expectations. After
each interaction the customer will evaluate the result and update a seller preferences model. This model will serve to elim-
inate those sellers who have not satisfied the customer requirements. The MAS software test used as an example of appli-
cation includes 7 sellers and 100 customers.

The steps followed for the analysis are detailed now. (1) First the test of the MAS is launched in the infrastructure for
forensic analysis [51] (see Section 2.1). At the least, the user must log the agents of the execution (which are the nodes of
the following PFNETs) and the messages exchanged by each pair of agents (which are needed to establish the matrix of
weights). (2) The matrix of weights is generated. The matrix is formed following Definition 8 or 10 (see Section 5) to generate
a similarity or collaboration PFNET, respectively. (3) Edges are determined using Definitions 9 or 11 (see Section 5) to
Fig. 4. Similarity PFNET.
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generate a similarity or collaboration PFNET, respectively. (4) The MST-Pathfinder algorithm is executed (see Fig. 3) to prune
the edges significantly. (5) The resulting PFNET is displayed with the Kamada–Kawai algorithm (see Section 4.3). (6) The user
studies the network to extract interesting conclusions of the system. To complement the overall networks, the user can
return to step 3 of the methodology in order to determine several thresholds. These thresholds exclude the edges to be con-
sidered in the displayed PFNET. The strategy of choice of thresholds is detailed in Section 5.3. Furthermore, data of the foren-
sic analysis or PFNETs for concrete agents can be used to refine the findings from the overall networks (see Section 5.4).
6.1. Exploring the similarity dimension

First, similarity is treated. Let us focus on the overall similarity PFNET in Fig. 4.5 Notice that Ws is defined to asymptotically
tend to zero (see Definition 8). In other words, two agents are always going to have some relationship of similarity, maybe min-
imal, simply because they are both agents. To keep the graph connected, MST-pathfinder considers very weak relations, i.e.
those whose weights are below 1% of the maximum weight. Therefore, after applying MST-Pathfinder, it is necessary to filter
the edges which do not have interesting enough weights.

In the case of similarity, an overall net shows a customer at the center (Customer_64). That customer would be a prom-
inent agent (i.e. a representative for the whole customers community in the society). It is also highlighted that Seller 2_4 ap-
pears to be isolated from the rest. This means that it is an agent with minimal similarity with the remainder. Note that, this
information about similarity can be completed if it is used with the adequate collaboration PFNET. The concrete PFNET for
Customer_64 appears on the left part of Fig. 5. It can be clearly seen that Customer_64 only communicates with Seller 2_4.
Again, using the concrete PFNET for Seller 2_4, it appears in Fig. 6, we can easily see that this seller has numerous and intense
communications with many agents. Thus, we actually check that Customer_64 is a representative of many other customers as
he manifests the same behaviors with respect to them. Being the representative agent means having some degree of simi-
larity with the majority of agents. The discovery of a representative has a great and obvious advantage: it prevents the devel-
oper from studying every single agent. Instead of that, the developer can devote his efforts to analyzing the representative
only. Later, the results can be extrapolated to the rest of the agents.

Other interesting elements in this overall similarity PFNET (see Fig. 4) are the two subnets of similar customers located on
the left and on the right of the representative, respectively. A subnet of sellers can also be appreciated at the rightmost side of
the figure. This subnet shows six of the seven sellers, all except the mentioned Seller 2_4. At this point, we may question the
importance of Seller 2_4 because of its low similarity with the remaining sellers and the relationship of this agent with the
representative. The rest of the study will reveal that importance.

According to the strategy used to choose the thresholds explained in Section 5.3, we move on to study the strongest rela-
tionships. The strongest connections can be appreciated if we set the weight interval to [0.2,1], obtaining the three uncon-
nected networks shown in Fig. 7. This figure shows a number of sellers with a similarity of a 100% at the bottom right part.
That is, these sellers are communicating with the same agents and with the same number of messages sent to these agents.
The overall PFNET (Fig. 4) showed these sellers at the right part of the figure. They were connected, with a lower degree of
similarity, to two other sellers which do not appear in this figure (Seller 2_0 and Seller 1_2). There are also two groups of sim-
5 See the complete figure on: http://ants.dif.um.es/staff/emilioserra/ACLAnalyser/similarity0To100.pdf. The search tool in a pdf reader can be used to find
specific agents.

http://ants.dif.um.es/staff/emilioserra/ACLAnalyser/similarity0To100.pdf
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ilar customers (with a similarity of 20%). The overall PFNET (Fig. 4) showed these two groups of customers in a subnet on the
right of the representative. This subnet has been divided now into two subnetworks of customers with a high degree of sim-
ilarity in this new PFNET. On reviewing the PFNETs for the concrete agents Seller 2_0 (Fig. 5, right) and Seller 1_2 (figure not
included), it is observed that these sellers sell few times to few customers. Comparing the PFNET for the concrete agent Seller
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2_0 with the PFNET for the concrete agent Seller 2_4 (Fig. 6), we can see that the first seller has much fewer customers than
second.

Once we have studied the whole PFNET and some of the interesting PFNETS for concrete agents, let us focus our attention
on new PFNETS by using low thresholds. Thus, we will focus on the weakest relations of the whole PFNET. In consequence,
edges with a weight of less than 0.1 are removed, li ¼ 0:1 (that is, similarities less than 10%). The edges with a weight higher
or equal to 0.2 are removed as well. The result is shown in Fig. 8. This figure shows seven different unconnected networks.

One of the networks, that in the upper right corner, consists of a small subset of sellers with a star topology. It is easily
checked that this new graph is actually a sub-graph of that appearing in Fig. 4. Taking into account that link weights are lim-
ited to [0.1,0.2) and that we are working with similarity graphs, it can be concluded that there are at least three different
groups of similar agents. One is composed of the tips of the start, another is only composed of the centre, and the final
one is composed of the sellers which do not appear (i.e. s2_4 and s2_0). They do not appear because they are very different
from the rest of the seller agents in the system. One may hypothesize that they collaborate in extreme with the rest of agents
(i.e. either very lightly or very intensively), but this can only be confirmed by using the collaboration PFNETS we will study in
the next section.

Going back again to Fig. 8, note that all the customers belonging to the biggest network (i.e. that at the bottom left part of
the figure) appear also in the PFNET in Fig. 7, arranged in two separate networks. Note that, they also appear in a connected
subnet in the main PFNET at the right of the representative (Fig. 4). It is interesting to see a central axis of customers whose
members connect with all the other customers at both sides of the network. The most immediate conclusion we may draw
from such a representation is the following: all customers there are similar. However, if we work with this network and the
two networks of customers in the Fig. 7, we discover that customers in the central axis of the network in Fig. 8 are the mem-
bers of the network of customers at the top of Fig. 7. Moreover, the rest of agents in the same network are the members of the
network of customers at the bottom of the same figure. Then, we see that by manipulating thresholds appropriately, it is
possible to discover new similarity structures: a subnetwork of similar agents comprises those in the central axis and those
at the left of the network, and another one composed of those in the central axis again and those at the right of the network.
Hierarchical clustering cannot obtain such representations where the same elements belong to different clusters with no
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Fig. 8. Similarity PFNET only considering similarities in the range [0.1,0.2).



c_31

s2_3

c_16

c_1

c_450.75

c_24

c_56

0.75

c_94

c_7

c_71

c_67

0.75

c_66

c_77

c_98c_8

0.75

c_20
0.75

c_47

0.75

c_41

0.75

c_79

0.75

c_37

c_61s2_0

0.75

0.75

0.75

0.75

c_40

0.75

0.75

c_86

0.75

c_90

0.75

0.75

c_64

s1_0
0.75

0.75
0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

c_12

c_97

c_73

c_92

c_81

c_6

0.75

0.75

c_38

c_39

c_53

c_28

0.75

0.75

c_69

0.75

0.75 0.75

c_96

c_85

0.75

0.75

c_30

0.75

0.75

c_43

c_62

c_3

0.75

0.75

c_32

0.75

0.75

c_4

0.75

0.75 0.75

c_57
0.75

0.75

c_99

c_18

c_22

c_54

0.75

0.75 0.75

c_21

s2_4

0.99

0.75

0.8

0.85

0.75

0.85

0.8

0.8

0.8

0.75

0.99

0.75

0.990.85

0.75

0.85

0.75

0.75

0.96

0.75

0.75

0.85

0.75

0.88

0.75

0.98

0.98

0.99

0.99

0.85

0.75

0.99

0.75

0.85
0.75

0.8

0.85

0.85

0.75

0.8

0.85

0.85

0.75

0.85

0.98

0.99

0.8

0.75

0.75

c_9

0.8

c_51

0.8

c_78

0.8

c_76

0.75

0.75 0.75

0.75

c_89

0.75

0.75

0.85

c_72

0.8

c_80

0.8

c_10

0.8

c_42

0.99

c_88

0.75

0.75 0.75

0.75

c_35

0.75

c_0

0.75

0.75

0.9

c_29

0.8

c_27

0.75

c_87

0.99

c_25

0.75

0.75

0.85

c_48

0.75

0.75

0.9

s1_1 0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75
0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

s1_2

0.75

0.75
0.75

0.75

0.75

0.75

0.75

0.75

0.75 0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

c_52

0.97

c_44

0.99

c_75

0.75

c_5

0.8

c_33

0.8

c_74

0.75

0.75

0.9

0.75

c_60

0.75

s2_2 0.75

0.75
0.75

0.75

0.75

0.75

0.75

0.75

0.75
0.75

0.75

0.75

0.75
0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

c_26

0.75

0.75

0.85

0.75
0.75

0.75

c_50

0.75

0.75
0.75

0.75

0.75

0.75

0.75

c_58

0.75

0.75

0.85

0.75

0.75

0.75

Fig. 9. Collaboration PFNET.
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hierarchical relationship between them. Besides, we may obtain further information still. Note that, we may alternatively see
such network as a set of similar agents whose representatives are the customers of the central axis. This axis includes the
customers that are the most similar in comparison to all other customers in the graph. Therefore, in the absence of resources
to study the behavior of each agent in this graph, it would be enough to select agents from the central axis for the study and
to extrapolate the results to the rest of agents. For example, if the objectives of the agents in the central axis were accom-
plished, probably the objectives of the agents in the lateral axes would have been accomplished as well.

The remaining elements of Fig. 8 are subnets where customers are in the majority similar at a level of 14%. The other two
subnets of customers of this PFNET (at the upper right part) appeared on the left of the overall PFNET. These customers have
very low similarity between them. Therefore, they cannot be found in the previous PFNET, which studies the high similarities.
6.2. Exploring the collaboration dimension

Now let us see the collaboration network. In the case of collaboration, an overall PFNET is shown in Fig. 9.6 The centerpiece
is the agent Seller 2_4 who accumulates collaborations with most of the customers. In the left part of Fig. 9, one can distinguish a
6 See the complete figure on: http://ants.dif.um.es/staff/emilioserra/ACLAnalyser/co.pdf.
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set of five sellers with a high collaboration with customers (Sellers 1_0, 1_1, 1_2, 2_2 and 2_3). Finally, we can see Seller 2_0 at the
left most part of the PFNET, wich collaborates poorly (weights are the lowest in the PFNET, 0.75) and only with few customers
(there are few edges from this seller). On reviewing the PFNETs for these concrete agents (figure only included for Seller 2_0, see
Fig. 5, right), it is observed that these sellers sell few times to few customers. Therefore, it is true that the central elements in the
PFNET are the most important ones while the most irrelevant elements are in the peripheral part of the network, which is a
feature of PFNETs combined with Kamada–Kawai’s algorithm. In addition, the network helped us to discover anomalies at
the social behavior of the system in an immediate and intuitive way. It is interesting to note that the observer can separate
the PFNET mentioned into various subnets in a subjective way, somehow like clusters in hierarchical clustering. In this way,
the observer can see a subnet around the most collaborative seller, Seller 2_4, composed of all the customers who buy from
it. Perhaps the observer prefers to group Seller 2_4 with the customers which only buy from this seller (at least with sufficient
intensity to appear in the PFNET). These customers are easily distinguishable in the right part of the PFNET. The observer can
also group together the five sellers on the left with the customers which buy from them. Let us denote this group as C1. And he
can also group Seller 2_0, with customers who buy from it. Let us denote this group of customers as C2. We can clearly see that
C2 � C1 in the PFNET, therefore it would be difficult to make this grouping using a hierarchical clustering technique.

Recall that in the similarity PFNET the agent Seller 2_0 was considered to be very different from the other sellers. Now this
network shows that this is because very few customers buy from this seller and they do it very infrequently. Quite the oppo-
site of that seller is Seller 2_4, which is different from the others because it attracts a large amount of the market.

According to the strategy to choose thresholds explained in Section 5.3, we move on to study the strongest relationships.
We can discuss the stronger collaborations by setting the weights interval to [0.9,1], that is li ¼ 0:9 and lu ¼ 1 (see the right
part of Fig. 10). Now, the only seller which appears is the agent Seller 2_4 with several customers around it. The relationship
with the overall collaboration PFNET (Fig. 9) is quite clear. The central element is the same, Seller 2_4, and only its main col-
laborations are shown. Collaborations reach degrees of more than 99%. This figure recalls the heliocentric graph, used to ob-
tain more detailed information about a specific node when PFNETs are used to get science maps [32] (see Section 2). In this
case, the graph is a PFNET itself and its shape is a pure coincidence. The study of this PFNET gives clues for forensic analysis in
order to discover bugs and undesired behaviors. Specifically, those customer agents have the capacity to spend much money
(maybe too much) and for some reason they decided to buy almost always from Seller 2_4.

The weights interval [0.8,0.9) can be used to discuss the collaborations with an average importance within the overall
PFNET. This shows the collaborations between 80% and 90% (see the left part of Fig. 10). This range is chosen simply because
the overall PFNET (Fig. 9) shows that there are many edges whose weights are within this interval. Besides, it allows us to
study the average collaborations because there are also many weights higher (to study the highest collaborations) and lower
(to study the lowest collaborations) than the limits of the interval chosen. As was expected, Seller 2_4 appears again as the
only seller with few customers which buy significantly from this seller. The relationship with the overall collaboration PFNET
(Fig. 9) is again quite clear. The central element is the same, Seller 2_4, and only its average collaborations are shown. Using
the collaboration PFNET, it is confirmed that the agent Seller 2_4 plays a key role in the system and should be studied exten-
sively by the forensic analysis (together with the customers which buy most intensively from this seller if it is possible).

If the collaborations of low intensity must be observed, a range of weights [0,0.8) may be fixed (see Fig. 11).7 Now the
central elements are not sellers. Instead, we have a central axis of customers which accumulate most of the low intensity col-
7 See the complete figure on: http://ants.dif.um.es/staff/emilioserra/ACLAnalyser/co2.pdf.
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laborations. Immediately on the right of this axis, the most centered seller (Seller 2_0) is located. This agent, which showed up as
the least important seller in the overall PFNET (Fig. 9), is now the most important seller in the collaboration PFNET of low
intensity.

Seller 2_4 still appears with few customers, who have a little collaboration with it. These customers do not appear in the
two previous PFNETS (Fig. 10) because the ranges of thresholds selected are disjoint. On the other hand, some of the custom-
ers who collaborate with less popular sellers (customers at the left part of the PFNET) appear in previous PFNETs. This is be-
cause a customer may have a limited partnership with a seller (and appear in this PFNET which studies the low
collaborations) and at the same time, this customer may have an intense relationship with other seller (and appear in PFNETs
which study higher collaborations). The customer Customer_0 shown in the left part of Fig. 10 is an example. This client is
linked to Seller 2_4 with a weight of 0.9. At the same time, the client is also shown in Fig. 11 linked with four other sellers
with a weight of 0.75. Besides, the overall PFNET shows that customer and all his mentioned collaborations. Again, the study
of this PFNET gives clues for forensic analysis in order to discover bugs and undesired behaviors. Specifically, Seller 2_0
should be studied to determine why it has so few customers. It should also be studied why these customers still buy from
this seller. The PFNET of the concrete agent Seller 2_0 (Fig. 5, right) showed clearly who those customers are.
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6.3. Discussion

In the light of the previous study, we have obtained a lot of useful points which denote possible clues for a successful
forensic analysis.

1. There is a customer similar, in some way, to all the agents in the system, and it is Customer_64 (see Fig. 4). The only
agent this customer communicates with is Seller 2_4 (see Fig. 5, left).

2. Seller 2_4 is very different from the remaining agents (Fig. 4).
3. The remaining sellers have some similarity between them (although it can be very small). These sellers are well sep-

arated and distinguished of the customers (Fig. 4).
4. There are sellers with a degree of similarity of 100%: Sellers 1_0, 1_1, 2_2 and 2_3 (Fig. 7).
5. The maximum similarity between customers is 20% (see Fig. 7).
6. Seller 1_2 has a 10% similarity with the set of sellers mentioned in (4) (see Fig. 8).
7. Seller 2_4 is the seller with the most customers (Fig. 9).
8. Other sellers share customers with Seller 2_4 (Fig. 9).
9. Seller 2_4 is the only seller used intensively by the customers (Fig. 10).

10. Seller 2_0 is the seller with the least sales (Fig. 11).
11. There are customers who buy from the most popular seller, but also from other sellers (although with less intensity).

The study of PFNETs reveals interesting features in the execution of the MAS, which can guide the forensic analysis of the
obtained data. As stated, the existence of a representative (item 1) allows choosing the agent to be analyzed when there are
limited resources. It also highlights Seller 2_4. This seller is the most different agent in the system (item 2). These two agents
should be studied extensively. Other sellers are more or less similar, so there is no preferred one to be revised (item 3). How-
ever, the high similarity of four of the sellers (item 4) makes one suspect an undesired behavior. A degree of similarity of
100% means that those sellers have sent messages to the same customers and exactly the same number of messages. It is
also noted that customers are very different, reaching a maximum similarity of 20% (item 5). This last point contrasts with
the existence of some sellers being so similar. Therefore, it can be deduced that customers buy at very different frequencies
from those sellers which are not so similar (making the customers more different). Item (6) indicates that Seller 1_2 is slightly
similar to the aforementioned four equal sellers. Item (7) says that Seller 2_4 is the most successful seller. This explains why
it is the most different agent of the system (item 2). Moreover, this is the only seller which receives collaborations with high
intensity (item 9). Therefore, it is confirmed that this seller is a key agent in the system and should be studied intensively. In
particular, analyzing the set of messages M obtained from the execution it is noted that the communications with this seller
are 75.4% of all messages exchanged in the system. Another interesting point to study is why the other sellers do not have
loyal customers to collaborate with. The customers who buy from the most popular seller sometimes buy from the remain-
ing sellers (item 11). Therefore, it is clear that customers have access to all sellers. More specifically, the forensic analysis
should study why Seller 2_0 is the seller with the least number of customers (item 10). If this seller is clearly inferior to
the others, perhaps it should be able to associate with others by establishing communications between sellers.

At this point of the paper, it is possible that some readers may still wonder about the actual convenience of using net-
works in which the only links appearing are those with low weights. To illustrate their utility more clearly, let us move
to another application domain for a while. Instead of speaking about sellers and customers, let us focus our attention on
the Air Traffic Management [42] arena. Suppose that instead of using seller agents, we model airstrips as active elements
of a particular airport. In the sellers and customers domain, a weak link within a collaboration PFNET reflected that specific
sellers received a low number of demands from a customer. But maybe in the air traffic management scenario it is even
clearer. In this case, a specific airstrip with weak links would be underused. No one would doubt about the convenience
of a deep study of the reasons why such a resource is not sufficiently employed. Thus, studying weak links is totally justified.
Moreover, by simply changing defined weight functions as defined in this paper with their corresponding inverse, new
PFNETs would be generated in which the most different (if we refer to similarity networks) or the least collaborative (if
we refer to collaboration networks) appear in the centre of the representation.

It is interesting to note that the centerpiece in the global collaboration network is the agent Seller 2_4, which accumulates
collaborations with most of the agents. Remember that this agent was considered the least similar to the others in the sim-
ilarity network. This reinforces the idea that the similarity and the collaboration between agents are complementary con-
cepts. An agent interacts with another agent because the former wants to get a service. Therefore, the former agent does
not provide the wanted service and is different from the latter. Perhaps in a social network environment, rather than in a
customer-server one, the opposite happens and the collaboration indicates a similarity between agents. Therefore, the col-
laboration can be understood in different ways depending on the problem domain. In view of the above, one can see that
using the social science and social-based-simulation techniques sometimes allows one of the main goals of this science dis-
ciplines to be reached: the empirical verification of sociological hypotheses. In this case, the hypothesis is that the similarity
between agents and the collaboration between them are contrary concepts.

With PFNETs we have interesting information for the compression and debugging of the social level of a MAS like: very
similar customers between them, identical sellers, sellers different from the remaining ones because they do not attract cus-
tomers, sellers different from the remaining ones because they attract the most customers, customers which only buy from



E. Serrano et al. / Information Sciences 180 (2010) 561–583 581
one seller with intensity, customers buying from several sellers, etc. The representations have split a set of a hundred cus-
tomers in to a handful of similar groups of customers. This simple fact means that PFNETs are a good way to divide the com-
plex study about the social level of this MAS. That is, by using PFNETs, hierarchies have been found in the system. By
hierarchy we mean a system that is composed of interrelated subsystems in the same way that atoms compose molecules,
nations compose continents or galaxies compose the universe. Complexity frequently takes the form of hierarchy and those
hierarchical systems have some common properties that are independent of their specific content [54]. Hence, it is possible
to develop techniques which capture the social hierarchy of a MAS as shown in this paper. This section shows that PFNETs
offer excellent views about collaborations or similarities between agents to understand and debug a MAS. Moreover, this
technique is automatic and requires no obscure user parameters to configure its behavior (except for the intuitive weights
interval to be shown).
7. Conclusions and future work

This paper deals with assistance to the process of debugging a multi-agent system (MAS) of high complexity in its social
level. More specifically, tools for understanding the behavior of the system have been given. They allow us to detect devi-
ations from the expected behavior (i.e. possible errors) and then to locate and fix them (i.e. debugging). These tools consist
of Pathfinder networks, PFNETs, which allow us to understand the social behavior of the system, discover emergent behav-
iors and debug possible undesirable behaviors.

The Introduction shows the inherit complexity in MAS testing and debugging. The Related works section explains the
problem of studying the social level of MASs and how techniques to discover knowledge are necessary, like the clustering
or PFNETs. Previous approaches to testing and debugging MASs are, with this, invalid for the social level. The Review of
previous MAS societies debugging strategies and the new proposal section shows a criticism of previous attempts to capture
and visualize the social behavior of the MAS in order to understand and debug it using data mining. In particular, this
section concluded that the complicated set of parameters that data mining often requires is an impediment for inexperi-
enced users. We have presented PFNETs as a solution to this and other problems mentioned. The section How to generate
PFNETs explains the fundamental concepts of PFNETs regardless of their field of application. Moreover, the classic Path-
finder algorithm to generate PFNETs, with a time complexity of Oðn4Þ, is detailed and the use of MST-Pathfinder is pro-
posed as an alternative of high efficiency with a time complexity of Oðn2 � logðnÞÞ. The section Debugging MASs with
PFNETs explains how representations about the social behavior of MASs can be obtained with only a few extra terms
to the classical definition of PFNETs. In particular, the performance of representations about similarities between agents
and collaboration cores in the agent society is described. Finally, the section A case study applies the above representations
to the understanding and treatment of a specific large-scale MAS. Throughout the section it is shown how PFNETs reveal
interesting information about the behavior of the system, information about possible malfunctions of society, emergent
behaviors, and even empirical testing of sociological hypotheses. PFNETs, which are used successfully in different fields,
are presented in this paper as an effective tool in the process of understanding, testing and debugging a complex MAS
in its social level.

Future work includes: studying new aspects in agent societies to be represented and improving the representations,
studying alternative techniques to get representations, improving the degree of automation.

The first future work is the development of new representations of the MAS execution to debug these systems. In the cur-
rent contribution, we have only described the similarity and collaboration PFNETs. Of course, there are many interesting ele-
ments to be represented in a system. For example, according to the methodology of development and programming
platform, elements which can appear are: the class implemented by an agent, the role played, the state of its beliefs, inten-
tions and desires, etc. In this way, for example, the shape of the node could indicate that the major role played by the agent is
petitioner of information and services, reporter/server, etc. Another example is the use of the range of colors to indicate, from
light to dark, the degree in which agents have achieved their objectives in the execution.

The basic representation of PFNETs which has been shown in this paper can be improved to show more information and
to be a more effective debugging tool. For example, the thickness of the nodes and edges can have a useful meaning, as re-
gards the collaboration degree. In this way, if an edge between two nodes is very thick, it might indicate that the agents have
been collaborating extensively. Or it may indicate an accumulated collaboration of that agent with the rest of the nodes
which are connected to it. We could make an analogous reasoning about similarity.

It is also interesting to automate the process of selecting a representative range of weights. For example, fuzzy partitions
can be used to split the weights in to: low, middle, and high. Besides, the use of fuzzy technology allows some weights to be
treated as low and middle at the same time (for example) in order to make partitions more homogeneous and representative.

As we improve the techniques described here, we should not despise other methods for the visualization of systems that
facilitate understanding, testing, and debugging. We have already worked in multivariate statistical analysis with clustering
and in the field of social networks with Pathfinder. Another major approach to be considered is neural networks. For exam-
ple, self organizing maps could be used as an alternative to clustering. In general, each approach will have certain advantages
that the others do not show. Therefore, combinations or iterative approaches can be interesting to understanding the social
level of the MAS. For example, clustering could be used to monitor large groups of similar agents in a bird’s eye view, and
then PFNETs could be used to detail each of the previously obtained groups.
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The current paper shows that when the level of abstraction to study a MAS is increased from the group level to the social
level, we come back to the first approaches for debugging: providing the developer with displays which show several kinds
of information (see Section 2). Therefore, our most challenging future work is to try to reach the degree of automation, effec-
tiveness and efficiency that is achieved in the testing and debugging of the MAS protocols, but applied to our problem: the
study of agent societies where previously undefined behaviors can appear.
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