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attributes, highlighting the most attractive features in the construction of classifiers. How-
ever, its results can be enhanced even more if other data reduction techniques, such as
instance selection, are considered.

In this work, a hybrid evolutionary algorithm for data reduction, using both instance and
feature selection, is presented. A global process of instance selection, carried out by a
steady-state genetic algorithm, is combined with a fuzzy rough set based feature selection
process, which searches for the most interesting features to enhance both the evolutionary
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Evolutionary algorithms search process and the final preprocessed data set. The experimental study, the results of
Nearest neighbor which have been contrasted through nonparametric statistical tests, shows that our pro-

posal obtains high reduction rates on training sets which greatly enhance the behavior
of the nearest neighbor classifier.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Classification is one of the best known tasks in machine learning [5,72]. Starting from an already processed training set,
machine learning methods are able to extract knowledge from the data, which can be used to characterize new samples and
classify them into classes already specified by the domain of the problem.

In recent years, there has been a manifold increase in the size of the data which these machine learning methods must
manage [6]. Researchers in many application fields have developed more efficient and accurate data acquisition methods,
which have allowed them to face greater and more difficult problems than before [45]. Therefore, the amount of data ex-
tracted to analyze those new challenges has grown to a point at which many classical data mining methods do not work
properly, or, at least, suffer several drawbacks in their application.

Data reduction [54] is a data preprocessing task which can be applied to ease the problem of dealing with large amounts
of data. Its main objective is to reduce the original data by selecting the most representative information. In this way, it is
possible to avoid excessive storage and time complexity, improving the results obtained by any data mining application. The
best known data reduction processes are feature selection (FS) [43], feature generation [28], attribute discretization [39],
instance generation [65,66] and instance selection (IS) [21,41,42].
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The K-Nearest Neighbors classifier (K-NN) [13,48,58] can be greatly enhanced when using these data reduction tech-
niques. It is a nonparametric classifier which simply uses the entire input data set to establish the classification rule. Thus,
the effectiveness of the classification process performed by the K-NN classifier relies mainly on the quality of the training
data. Also, it is important to note that its main drawback is its relative inefficiency as the size of the problem increases,
regarding both the number of examples in the data set and the number of attributes which will be used in the computation
of the similarity function (distance) [11,33,68]. The K-NN classifier is one of the most relevant algorithms in data mining [73],
being the best known Lazy Learning [1] method.

Recently, rough set theory (RST) [50,53] has been used to tackle several data mining problems with success. Focusing on
the FS problem, RST can be used as a tool to extract a minimal set of features from the original data set (decision reducts),
preserving the underlying semantics of the data while allowing reasonable generalization capabilities for the classifier
[10,74]. This approach can be enhanced in several ways; for example, tolerance-based rough sets [60] provide an advanced
way of defining approximation spaces and related similarity measures [46,61,62].

In addition, fuzzy logic [75] can also be hybridized with RST, obtaining as a result fuzzy rough feature selection methods,
which offer greater flexibility and better potential to produce good-sized, high-quality feature subsets than the crisp ones
[12,30,34,35,67]. Another key trait of fuzzy rough feature selection methods is that they can be applied directly over data
sets representing continuous data, in contrast with pure RST feature reducers, which cannot be applied over continuous data
sets without discretizing them at a previous step. Although discretization has proven to be a good technique for solving this
kind of issues [39], in the K-NN classifier the use of continuous values is preferred due to the intrinsic characteristics of its
decision rule (in fact, much research has been carried out in the opposite direction, turning discrete-based similarities values
for the K-NN classifier into continuous ones [70]).

Evolutionary algorithms (EAs) [17] are general-purpose search algorithms that use principles inspired by nature to evolve
solutions to problems. They have been successfully applied in different data mining problems [19,25,49]. Given that IS and FS
tasks can be defined as combinatorial problems, it is possible to carry them out by using EAs [15]. In fact, many successful
evolutionary proposals (most of them based on Genetic Algorithms (GAs)) have been developed to tackle them
[2,7,20,29,31,32,38,47]. In particular, our previous work [14] proposes an evolutionary method for dealing with both IS
and FS tasks simultaneously, using a ensemble based on preprocessed training sets.

In this work we present a new hybrid approach considering both fuzzy RST based FS and evolutionary IS, which we denote
as EIS-RFS (evolutionary instance selection enhanced by Rough set based feature selection). A steady-state GA is developed
to conduct the search for a suitable subset of instances, whereas the most useful features are selected by an heuristic-based
fuzzy RST method. In this way, proper feature subsets can be selected during the search, taking advantage of using the infor-
mation about indiscernibility already present in the training set.

Moreover, these subsets are considered within the framework of the GA, thus modifying the environment in which the
instances are chosen. At the end of its application, EIS-RFS reports the best subsets found, which can be used to construct a
reduced version of the training set, well suited to be used as a reference set for the K-NN classifier.

The performance of EIS-RFS is studied, comparing it with the K-NN classifier over unreduced data, considering different
numbers of neighbors. Moreover, we test our approach further introducing a comparative study with several related tech-
niques for IS and FS, considering a large set of standard classification problems. Finally, we also test its performance over
large data sets, with a higher number of instances and features. All the results obtained have been contrasted using nonpara-
metric statistical techniques [14], reinforcing the conclusions obtained.

The rest of the paper is organized as follows. In Section 2, some background about evolutionary IS and fuzzy RST based FS
is given. In Section 3, the main characteristics of EIS-RFS are explained. Section 4 presents the experimental framework. Sec-
tion 5 shows the achieved results. Section 6 summarizes our conclusions. Finally, Appendix A extends the description of the
contrast estimation, one of the nonparametric tests employed in the study.

2. Background

This section covers the background information necessary to define and describe our proposal. It focuses on two topics: IS
and FS as data reduction techniques (Section 2.1), and the use of fuzzy RST for FS (Section 2.2).

2.1. Instance and feature selection

IS is one of the main data reduction techniques. In IS, the goal is to isolate the smallest set of instances which enable a data
mining algorithm to predict the class of a query instance with the same quality as the initial data set [41]. By minimizing the
data set size, it is possible to reduce the space complexity and decrease the computational cost of the data mining algorithms
that will be applied later, improving their generalization capabilities through the elimination of noise.

More specifically, IS can be defined as follows: Let (X,.4) be an information system, where X = {xy,...,x,} and
A ={ay,...,an} are finite, non-empty sets of instances and features. Then, let us assume that there is a training set TR which
consists of N instances and M features (M = |A|), and a test set TS composed of T instances (TRU TS = (X, .A)). Let S C TR be
the subset of selected samples that resulted from the execution of an IS algorithm, then we classify a new pattern T from TS
by a data mining algorithm acting over the instances of S.
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IS methods can be divided into two categories: Prototype Selection (PS) methods and Training Set Selection (TSS) meth-
ods. PS methods [21] are IS methods which expect to find training sets offering the best classification accuracy and reduction
rates by using instance based classifiers which consider a certain similarity or distance measure (for example, K-NN). On the
other hand, TSS methods are known as the application of IS methods over the training set to build any predictive model (e.g.
decision trees, subgroup discovery, neural networks [8,9,37]). In this work, we will focus on PS, since the nearest neighbor
Rule will be used as the baseline rule to perform the classification process.

A key property of PS methods is given in [71]. There, Wilson and Martinez suggest that the determination of the k value in
the K-NN classifier may depend on the proposal of the IS algorithm. Setting k as greater than 1 decreases the sensitivity of the
algorithm to noise and tends to smooth the decision boundaries. In some IS algorithms, a value k > 1 may be convenient,
when the interest lies in protecting the classification task against noisy instances. Therefore, they state that it may be appro-
priate to find a value of k to use during the reduction process, and then redetermine the best value of k in the classification
task. In this study, we will test the differences found when using several values for k in EIS-RFS, although we recommend
using the value k = 1, given that our EA needs to have the greatest possible sensitivity to noise during the reduction process.
In this way, an evolutionary IS algorithm can better detect the noisy and redundant instances in order to find a subset of
instances adapted to the simplest method of nearest neighbors.

Many approaches to PS have been developed [21]. Concerning evolutionary IS [15], the first contribution was made by
Kuncheva et al. [38]. Interest in this field was increased by the study performed by Cano et al. [7], where a complete study
of the use of EAs in IS was made. They concluded that EAs outperform classical algorithms both in reduction rates and clas-
sification accuracy. Therefore, research in this field has grown recently, with a wide number of noteworthy proposals
[2,14,20,24,26,29].

FS is another of the main data reduction techniques. In FS, the goal is to select the most appropriate subset of features
from the initial data set. It aims to eliminate irrelevant and/or redundant features to obtain a simple and accurate classifi-
cation system [43].

Starting from the definition given for IS, FS can be defined as follows: Let us assume A, X, TR and TS have already been
defined. Let BC A be the subset of selected features that resulted from the execution of an FS algorithm over TR, then we
classify a new pattern from TS by a data mining algorithm acting over TR, employing as a reference only the features selected
in B.

There are three main categories into which FS methods can be classified:

e Wrapper methods, where the selection criterion is dependent on the learning algorithm, being a part of the fitness function
[55].

e Filtering methods, where the selection criterion is independent of the learning algorithm (separability measures are
employed to guide the selection) [27].

e Embedded methods, where the search for an optimal subset is built into the classifier construction [57].

As with IS methods, a large number of FS methods have been developed recently. Two of the most well known classical
algorithms are forward sequential and backward sequential selection [40], which begin with a feature subset and sequen-
tially add or remove features until the finalization of the algorithm. Some complete surveys, analyzing both classical and
advanced approaches to FS, can be found in the literature [27,57,44].

2.2. Fuzzy RST for FS

In rough set analysis [51,52], each attribute a in .A corresponds to an X — V, mapping, in which V, is the value of a over .
For every subset B of A, the B-indiscernibility relation Rp is

Ry ={(x,y)e &* and (VaeB)(a(x)=a(y))} (1)

Therefore, Rp is an equivalence relation. Its equivalence classes [x], can be used to approximate concepts, that is, subsets of
the universe X. Given A C &, its lower and upper approximation with respect to Rp are defined by

Rs | A= {x € X|[x]; CA} (2)
R 1 A={xe€X|x NA#0} 3)

A decision system (X, AU {d}) is a special kind of information system, used in the context of classification, in which d(d ¢ A)
is a designated attribute called the decision attribute. Its equivalence classes [x]; are called decision classes. Given B C A, the
B-positive region POSp contains those objects from X for which the values of B allow to predict the decision class
unequivocally:

POSg = JRy | [X]y, (4)

xeX
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Indeed, if x € POSg, it means that whenever an instance has the same values as x for the attributes in B, it will also belong to
the same decision class as x. The predictive ability with respect to d of the attributes in B is then measured by the following
value (degree of dependency of d on B):

POS

A subset B of A is called a decision reduct if it satisfies POSg = POS 4, that is, B preserves the decision making power of 4, and
moreover it cannot be further reduced; in other words, there is no proper subset B’ of B so that POSy = POS,. If the latter
constraint is lifted - B is not necessarily minimal - we call B a decision superreduct.

Instead of using a crisp equivalence relation R to represent objects’ indiscernibility, we can also measure their approxi-
mate equality by means of a fuzzy relation R. Typically, we assume that R is at least a fuzzy tolerance relation; in other words,
R is reflexive and symmetric.

Assuming that for a qualitative attribute a, the classical way of discerning objects is used, that is, Ry(x,y) = 1 if a(x) = a(y)
and R,(x,y) = 0 otherwise, we can define, for any subset B of A, the fuzzy B-indiscernibility relation by

RB(X,_V) = T(Rﬂ(x7y)a€B) (6)

in which 7 represents a t-norm. It can be seen that if only qualitative attributes (possibly originating from discretization) are
used, then the traditional concept of B-indiscernibility relation is recovered.

For the lower approximation of a fuzzy set A in X by means of a fuzzy tolerance relation R, we adopt the definitions of [56]:
given an implicator Z and a t-norm 7, formulas (2) and (3) were paraphrased to define R|A and RTA by

(RLA)Y) = infTRY), AR), W eX 7
R1A)Y) =supT(R(xy). AW). Wy eX )

Using fuzzy B-indiscernibility relations, we can define the fuzzy B-positive region by, for y in U,

POSy(y) = (U Rg | P%]) ) 9)
xeX
This means that the fuzzy positive region is a fuzzy set in X, to which an object y belongs to the extent that its Rg-foreset is
included into at least one of the decision classes.
While formula (9) provides the most faithful way to define the fuzzy positive region, it was shown in [12] that

POSy(y) = (Rg | Ray)(¥) (10)

becomes Eq. (9) when the decision feature is crisp.

Once we have fixed the fuzzy positive region, we can define an increasing [0, 1]-valued measure to gauge the degree of
dependency of a subset of features on another subset of features. For FS it is useful to phrase this in terms of the dependency
of the decision feature on a subset of the conditional features:

_|POSg|

“/B—m (11)

3. An evolutionary fuzzy RST based model for feature and instance selection: EIS-RFS

This section is devoted to analyzing and describing EIS-RFS, and its main components, from a bottom-up perspective.
Therefore, the first step will be to describe the GA employed to conduct the search of the subsets of instances (Section
3.1). These subsets will be optimized with the inclusion of a fuzzy RST-based FS procedure (Section 3.2). Finally, the EIS-
RFS framework will be defined as a cooperation between the former procedures (Section 3.3).

3.1. A steady-state GA for IS

The IS component of EIS-RFS is guided by an evolutionary method. Specifically, we have opted to develop a steady-state
GA to accomplish this task.

Steady-state GAs are GAs in which only a reduced (and fixed) set of offspring are produced in each generation (usually
one or two).Parents are selected to produce offspring and then a decision is made as to which individuals in the population
will be selected for deletion in order to make room for the new offspring.

In the development of the steady-state GA for our approach, the following choices have been made:

o Codification: The steady-state GA will use binary chromosomes to represent the solutions. Each bit will represent the state
of each instance in the training set (1 if the instance is selected; 0 if it is deleted), as is usually done in Evolutionary IS
approaches [15].
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e Selection of parents: Binary tournament procedure will be used to select parents in each generation.

o Crossover operator: A two-point crossover operator has been considered. In each generation, this operator is applied twice,
obtaining as a result two offspring.

e Mutation operator: The bit-flip mutation operator (changing the value of the selected allele from 0 to 1, and vice versa) is
applied to each offspring produced, with a given probability per bit.

e Replacement strategy: The two worst individuals of the population are chosen for replacement, only if their fitness value is
lower than the offspring’s.

Algorithm 1 shows a basic pseudocode of the steady-state GA.

Algorithm 1. Steady-state GA algorithm basic structure

Input:A population
Output:An optimized population
Initialize population;
while Termination criterion not satisfied do
Select two parents from the population;
Create two offspring using crossover and mutation;
Evaluate the offspring with the Fitness function;
Select two individuals in the population, which may be replaced by the offspring;
Decide if this/these individuals will be replaced;
end

Concerning the fitness function, it must pursue both reduction and accuracy objectives when evaluating an IS chromo-
some, J. To do so, we will follow the proposal given in [7], where Cano et al. defined AccRate as the accuracy achieved by
a K-NN classifier when classifying the entire training set using the currently selected subset as a reference and using
leave-one-out as validation scheme

AccRate(]) = K — NNAccuracy(J) (12)
RedRate as the reduction rate achieved over the currently selected (maintained) instances

RedRate(]) — #Instancej\l Selected(]) (13)

and a real-valued weighting factor, «, to adjust the strength of each term in the resulting fitness value. Eq. (14) defines the
full fitness function

Fitness(J) = a - AccRate(]) + (1 — o) - RedRate(J) (14)

Following the recommendations given in [7], EIS-RFS will employ a value « = 0.5, which should offer an adequate trade-off
between accuracy and reduction goals.

3.2. Selecting features by means of a fuzzy RST procedure

The concept of discernibility, defined in the realm of fuzzy RST, allows several useful approaches to data reduction to be
developed [12,34]. The elements of a given data set can be analyzed, identifying which are discernible (with respect to the
elements belonging to the other classes of the domain), regarding the specific set of features considered.

Therefore, a straightforward method to properly characterize a specific training set is to select those features which are
able to fully discern all the instances of the training set (or, at least, discern them as much as possible). This way, the pruned
training set can maintain its capabilities of separating instances belonging to different classes (or even increase them, by the
removal of noisy and irrelevant features), while its size is reduced.

Eq. (11) gives a proper measure to evaluate the discernibility of a subset of features. The first step to compute this mea-
sure consists of defining a similarity measure between two different values of a same feature. This measure can be modeled
as a fuzzy tolerance relation, R. For quantitative values, a suitable measure was defined in [36]:

Ra(x,y) = max(min((a(y) — a(X) + 9 ; ax) —a) + 6”),0)) (15)

04 04

where x and y are two different instances belonging to the training set, and o, denotes the standard deviation of a. For nom-
inal attributes, instead of using the equality metric:

1 if ax) = a(y)

16
0 otherwise (16)

mmw:{
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we propose the Value Difference Metric (VDM) [63,70], where two values are considered to be closer if they have more sim-
ilar classifications (that is, more similar correlations with the output classes).

C q
Ra(x,y) _ Z Na,x.c . Na.y,c
c=1

o 17
Nox  Ngy (17)
where:

e N, is the number of instances in the training set that have the same value as instance x for attribute a.

e Ny« is the number of instances in the training set that have the same value as instance x for attribute a and output class c.
e C is the number of output classes in the problem domain.

e g is a constant (typically 2).

Although the joint use of the overlap metric with crisp connectives would lead to an approach similar to those based on
classical RST, the use of VDM is preferred, since it provides a soft similarity measure, suitable to be combined with the use of
fuzzy connectives.

Eqgs. (16) and (17) allows us to employ the fuzzy B-indiscernibility relation defined by Eq. (6), in which 7 represents the
minimum t-norm, 7 (x,y) = min(x,y),x,y € [0, 1]. Then, it is possible to compute the lower approximation of a fuzzy set A in
X by means of a fuzzy tolerance relation R, by using Eq. (7) (employing, as implicator, Z, the Lukasiewicz one,
I(x,y) =min(1,1 —x+y),x,y € [0,1]). With these definitions, it is possible to obtain the degree of inclusion of the instances
of the training set in the fuzzy B-positive region, POSg, and the gamma measure for B, V.

Once a suitable measure of quality for a given subset of features, B, has been defined (yg), a search procedure to find the
best possible subset can be carried out. Following the recommendations given in [12], the QUICKREDUCT heuristic [35] will
be employed. Algorithm 2 shows its basic pseudocode.

Algorithm 2. QUICKREDUCT heuristic

Input:A set of instances
Output:A subset of features (B)
B—{}
repeat
T — B,best —-1;
foreach ac (A \ B) do
If v (ap> best then
T — Bu {a}, best —yp a);
end
end
B—T;
until y5 > MaxGamma;

Basically, QUICKREDUCT considers all the features in the domain of the problem and tries to add them to the candidate
subset T. Features are added only if yp is improved. This hillclimbing procedure is continued until an established MaxGamma
value (typically 1) is reached.

This filter method enables suitable subsets of features (with yg=1) to be found quickly, which properly represent the
information contained in the data set considered as the input parameter. Note that, when this method is used inside the
framework of a larger algorithm, either subsets of instances or the entire training set can be considered.

3.3. Hybrid model for simultaneous IS and FS

Once the two basic tools considered for performing IS and FS have been defined, we can describe the hybrid model which
composes our approach. Basically, it is a steady-state GA for IS where, every time a fixed number of evaluations has been
spent, an RST based FS procedure is applied to modify the features considered during the search. Therefore, at any time only
a single feature subset will be used in the whole search procedure. As the search progresses, this subset will be upgraded and
adapted, to fit with the best subset of instances found.

Fig. 1 shows a flowchart representing its main steps: Initialization (Step 1), feature selection procedure (Step 4), Instance
Selection procedure (Step 5), and Output (Step 7). The rest of the operations (Steps 2,3 and 6) control whether each of the
former procedures should be carried out. The properties of each step are detailed as follows:

1. Initialization: The initialization procedure consists of the initialization of the chromosomes of the population, and the
selection of the initial subset of features. The chromosomes, representing different subsets of instances, are initialized
randomly (taking binary values, that is, in {0,1}). Regarding the initial subset of features, two different subsets are
considered:



J. Derrac et al./Information Sciences 186 (2012) 73-92 79

EIS-RFS Scheme
|

2: NO
Stabilize [
phase?

YES NO 3. Update YES
Features
time?

5: New IS generation 4: Search a new
(Steady-State GA) - subset of features
l (Fuzzy RST procedure)

NO

7: Output:

[:> Best subsets

found

6: Termination
criterion?

Fig. 1. Flowchart depicting the main steps of EIS-RFS. Rectangles depict processes whereas rhombuses depict decisions taken by the algorithm.

e The full set of features of the domain.

e The subset of features selected by the RST based FS method using the whole training set as input.

The best performing subset (that is, the one which achieves the lowest error when applied to a K-NN classifier) is selected
as the global subset of features of EIS-RFS. Only the features included in this subset will be considered in subsequent phases,
until new changes in the subset are made (step 4).

2. Stabilize phase: Changes in the current subset of features are only considered if the search is not near its end. Therefore,
if the current number of evaluations spent is higher than 8- MAX_EVALUATIONS (usually with g near to 1), the stabilize
stage is activated and no further changes in the subset of features selected are considered. This mechanism allows EIS-
RFS to easily converge for hard problems, where the final subset of features is fixed before the end of the search. It allows
EIS-RFS to focus its last efforts on optimizing the subsets of instances selected, performing a final refinement of the solu-
tions achieved.

3. Update Features: If the Stabilize phase is not activated yet, it checks whether the FS procedure will be started or not. It
will be performed every time UpdateFS evaluations have been spent by the steady-state GA.

4. Search for a new subset of features: This procedure consists of using the RST-based FS filter method, using as input the
current best chromosome of the population (the best subset of instances found so far). The new subset of features
obtained is tested by applying it to a K-NN classifier (considering as a reference set only the current best subset of
instances). If this subset performs better than the former, it is accepted as the global subset of features of EIS-RFS.

5. New IS generation: An IS generation is carried out using the steady-state GA scheme described in Section 3.1. Note that,
when evaluating a new chromosome, the K-NN classifier used in the fitness function will only consider the selected fea-
tures in the global subset of features of EIS-RFS.

6. Termination criterion: The search process of EIS-RFS ends if the number of evaluations spent reaches the MAX_EVALU-
ATIONS limit. Otherwise, a new cycle of the algorithm begins.

7. Output: Best subsets found: When the fixed number of evaluations runs out, the best chromosome of the population is
selected as the best subset of instances found. The current global subset of selected features is designed as the best subset
of features found. Both subsets are returned as the output of EIS-RFS.

The output of EIS-RFS (a subset of instances and a subset of features) defines a pruned version of the original training set.

This set is ready to be used as a reference set by a K-NN classifier to perform a faster and more accurate classification of new
test instances.

4. Experimental framework
This section presents the experimental study designed to test our proposal. Section 4.1 presents the classification data

sets used throughout the study. Section 4.2 summarizes the algorithms selected for the comparison and the statistical pro-
cedures applied.

4.1. Data sets

To check the performance of EIS-RFS, we have selected a set of 43 classification data sets (30 standard data sets and 13
large data sets). These are well-known problems in the area, taken from the UCI Machine Learning Repository [18] and the
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Table 1

Summary description for standard data sets.
Data Set #EX. #Feat. #Num. #Nom. #ClL. Data set #EX. #Feat. #Num. #Nom. #CL.
Australian 690 14 8 6 2 Iris 150 4 4 0 3
Balance 625 4 4 0 3 Led7digit 500 7 7 0 10
Bupa 345 6 6 0 2 Lymphography 148 18 3 15 4
Cleveland 303 13 13 0 5 Mammographic 961 5 5 0 2
Contraceptive 1,473 9 9 0 3 Monk-2 432 6 6 0 2
Crx 690 15 6 9 2 Newthyroid 215 5 5 0 3
Ecoli 336 7 7 0 8 Pima 768 8 8 0 2
Flare-solar 1,066 11 0 11 6 Saheart 462 9 8 1 2
German 1,000 20 7 13 2 Sonar 208 60 60 0 2
Glass 214 9 9 0 7 Spectheart 267 44 44 0 2
Haberman 306 3 3 0 2 Tic-tac-toe 958 9 0 9 2
Hayes-roth 160 4 4 0 3 Wine 178 13 13 0 3
Heart 270 13 13 0 2 Wisconsin 699 9 9 0 2
Hepatitis 155 19 19 0 2 Yeast 1,484 8 8 0 10
Housevotes 435 16 0 16 2 Zoo 101 16 0 16 7

Table 2

Summary description for large data sets.
Data Set #EX. #Feat. #Num. #Nom. #CL. Data Set #EX. #Feat. #Num. #Nom. #CL.
Abalone 4,174 8 7 1 28 Satimage 6,435 36 36 0 7
Banana 5,300 2 2 0 2 Segment 2,310 19 19 0 7
Chess 3,196 36 0 36 2 Spambase 4,597 57 57 0 2
Marketing 8,993 13 13 0 9 Splice 3,190 60 0 60 3
Mushroom 8,124 22 0 22 2 Titanic 2,201 3 3 0 2
Page-blocks 5,472 10 10 0 5 Twonorm 7,400 20 20 0 2
Ring 7,400 20 20 0 2

KEEL-dataset repository' [3,4]. Tables 1 and 2 summarizes their properties. For each data set, we provide its number of exam-
ples (#Ex.), Features (#Feat.) the number of numerical (#Num.) and nominal (#Nom.) attributes, and the number of classes
(#CL.). For continuous attributes, their values are normalized in the interval [0,1] to equalize the influence of attributes with
different range domains.

The data sets considered are partitioned by using the ten fold cross-validation (10-fcv) procedure [64], that is, each data
set is randomly partitioned into ten subsets, preserving the same size (the same number of instances) and the same class
distribution between partitions. In an iterative process, one partition is selected as the test set whereas the training set is
composed of the rest. Final results are obtained averaging the results obtained over the ten partitions (stochastic algorithms
have been run three times).

4.2. Algorithms, parameters and statistical analysis

Several evolutionary preprocessing methods for the K-NN classifier have been selected to perform a comprehensive study
of the capabilities of our approach. These methods are the following:

o IS-SSGA: A steady-state GA for IS. This evolutionary method has the same characteristics as EIS-RFS, but does not include
any kind of feature selection process. Its behavior as an IS method was studied in depth in [7].

o FS-SSGA: A steady-state GA for FS. The features of the domain are encoded in the binary chromosomes, in a similar way to
IS-SSGA. Note that in the fitness function of this method, the reduction rate is computed over the ratio of features
selected. Therefore, its oo weight must be very near to 1.0, to avoid an excessive deletion of features which may degrade
the accuracy of the classifier too much.

o IFS-SSGA: A steady-state GA for simultaneous IS and FS. Its binary coded chromosomes encode both instances and fea-
tures of the domain. The fitness function of this method only considers instances’ reduction rate to compute the reduction
ratio achieved.

o FS-RST: The fuzzy RST based feature selection method (FS-RST) used within the EIS-RFS framework, applied in isolation.

o FS-RST + IS-SSGA: FS-RST used as a preprocessor to IS-SSGA, that is, the preprocessed reference set obtained after the
application of FS-RST is used as the input of the IS-SSGA method.

o IS-SSGA + FS-RST: [S-SSGA used as a preprocessor to FS-RST, that is, the preprocessed reference set obtained after the
application of IS-SSGA is used as the input of the IS-SSGA method.

T http://www.keel.es/datasets.php.
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Table 3

Parameter specification for the algorithms tested in the experimentation.
Algorithm Parameters (all K-NN based methods will use k = 1, unless explicitly stated in a particular experiment)
EIS-RFS MAX_EVALUATIONS: 10000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, o: 0.5

MaxGamma: 1.0, UpdateFS: 100, g: 0.75

IS-SSGA MAX_EVALUATIONS: 10000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, o: 0.5
FS-SSGA MAX_EVALUATIONS: 10000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, o: 0.99
IFS-SSGA MAX_EVALUATIONS: 10000, Population size: 50, Crossover probability: 1.0, Mutation probability: 0.005 per bit, o: 0.5
FS-RST MaxGamma: 1.0

In order to estimate the classification accuracy, the preprocessed training sets obtained as a result of the application of
these methods are tested by using a K-NN classifier.

Many different configurations can be established for each combination of domain and method. However, for the sake of a
fair comparison, we have selected a fixed set of parameters for each method. Table 3 summarizes them.

Hypothesis testing techniques are used to contrast the experimental results and provide statistical support for the anal-
ysis [59]. Specifically, we use non-parametric tests, since the initial conditions that guarantee the reliability of the parametric
tests may not be satisfied, causing the statistical analysis to lose credibility [16,23].

Throughout the study, two nonparametric tests for pairwise statistical comparisons of classifiers will be employed. The
first one is the well-known Wilcoxon Signed-Ranks Test [69]. The second one is the Contrast Estimation of medians [22],
which is very useful for estimating the difference between two algorithms’ performance. We describe its detailed definition
in Appendix A.

Further information about these tests and other statistical procedures specifically designed for use in the field of Machine
Learning can be found at the SCI2S thematic public website on Statistical Inference in Computational Intelligence and Data
Mining.2

5. Results and analysis

This section is devoted to presenting and analyzing the results achieved in several studies performed to test the behavior
of EIS-RFS and compare it with several related techniques. To this end, Section 5.1 studies the behavior of EIS-RFS and K-NN
as the number of neighbors selected grow. Section 5.2 shows a comparison between EIS-RFS and the rest of the comparison
methods selected in standard data sets. Finally, Section 5.3 compares EIS-RFS when applied to large data sets.

5.1. EIS-RFS vs K-NN

One of the most critical issues of the K-NN classifier lies in the selection of its k parameter, that is, the number of neigh-
bors considered in the decision rule. Usually, an odd number of them is preferred, since this way ties in the decision of the
class membership are less likely to occur.

Concerning EIS-RFS, this is also a key issue, since the specific number of neighbors selected will affect the way in which
the accuracy assigned to the chromosomes is estimated, thus modifying its behavior during the search.

To analyze this issue, we have classified the 30 standard data sets with EIS-RFS and K-NN, using 1, 3, 5 and 7 neighbors.
Table 4 shows the average accuracy results achieved (the best results in each data set and category are highlighted in bold)
and the number of times that each method achieves the best result. Table 5 presents the results of the Wilcoxon Signed-
Ranks Test performed to contrast the results in each category.

The results show the validity of EIS-RFS as a preprocessing method for the K-NN classifier. Its average accuracy is im-
proved in every category studied (from 1 to 7 neighbors), and the number of data sets in which EIS-RFS offers a best result
is always greater. Moreover, the Wilcoxon Signed-Ranks Test confirms that differences between the methods are significant
at the 0.05 significance level.

Fig. 2 depicts this comparison graphically. The dots symbolize the accuracy achieved in test phase by EIS-RFS and K-NN in
a concrete data set (30 points are represented in each graph). A straight line splits the graph, exactly at the points where the
accuracy measure of both classifiers is equal. Therefore, those points below (right) of the line represent data sets where EIS-
RFS behaves better than K-NN, whereas those points above (left) of the line represent the opposite.

Clearly, EIS-RFS outperforms K-NN in every case, albeit the improvement achieved with the application of preprocessing
diminishes as the number of neighbors considered is increased. Similarly to IS algorithms, setting a value of k greater than 1
for EIS-RFS decreases its sensitivity to noise, smoothing the decision boundaries [71]. Therefore, the enhancement obtained if
the number of neighbors selected is high will be lower, although its application will still be beneficial if its results are com-
pared with those obtained without preprocessing data (K-NN).

Finally, a second conclusion arrived at this study is that EIS-RFS behaves slightly better if only 1 neighbor is considered.
Thus, we will fix the number of neighbors considered by it to 1 in the rest of the experimental study.

2 http://sci2s.ugr.es/sicidm/.
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Table 4
Average accuracy rates obtained by EIS-RFS and K-NN considering different numbers of neighbors.
Data set 1 neighbor 3 neighbors 5 neighbors 7 neighbors
EIS-RFS K-NN EIS-RFS K-NN EIS-RFS K-NN EIS-RFS K-NN
Australian 85.66 81.45 85.91 84.78 84.98 84.78 85.65 84.78
Balance 85.92 79.04 85.74 83.37 86.88 86.24 87.83 88.48
Bupa 65.72 61.08 64.91 60.66 64.37 61.31 63.75 62.53
Cleveland 55.16 53.14 56.42 54.44 56.47 55.45 56.81 56.45
Contraceptive 45.42 42.77 46.85 44.95 47.59 46.85 49.16 48.27
Crx 84.93 79.57 84.49 84.20 85.07 85.51 85.80 85.65
Ecoli 82.14 80.70 79.84 80.67 80.55 81.27 80.87 82.45
Flare-solar 66.32 55.54 65.48 55.07 65.95 57.04 66.04 63.89
German 70.80 70.50 70.90 69.60 74.10 71.80 74.30 72.20
Glass 67.35 73.61 65.36 70.11 64.90 66.85 65.10 66.83
Haberman 71.56 66.97 72.60 70.58 72.49 66.95 72.19 69.90
Hayes-roth 80.86 35.70 74.98 24.82 67.98 23.95 62.59 26.86
Heart 80.74 77.04 79.56 77.41 78.89 80.74 80.37 79.26
Hepatitis 82.58 82.04 83.13 83.88 83.04 85.21 83.29 83.88
Housevotes 94.48 91.24 95.84 94.01 94.00 93.31 93.32 93.09
Iris 96.00 93.33 94.00 94.00 96.00 96.00 95.33 96.00
Led7digit 73.20 40.20 74.60 45.20 70.40 41.40 70.20 43.40
Lymphography 77.15 73.87 77.44 77.39 82.65 79.44 82.25 81.49
Mammographic 80.65 76.38 81.27 79.19 81.56 81.06 81.48 81.17
Monk-2 100.00 77.91 97.55 96.29 97.07 94.75 100.00 89.16
Newthyroid 96.77 97.23 95.41 95.37 94.91 93.98 96.32 92.58
Pima 74.80 70.33 73.45 72.93 73.72 73.06 74.50 72.93
Saheart 68.82 64.49 68.67 68.18 68.64 67.10 68.46 66.45
Sonar 80.76 85.55 78.83 83.07 78.60 83.10 78.48 80.21
Spectfheart 76.82 69.70 74.99 71.20 78.33 71.97 77.86 77.58
Tic-tac-toe 78.29 73.07 78.01 77.56 78.12 83.30 78.69 82.88
Wine 97.19 95.52 94.35 95.49 96.26 96.05 96.35 96.63
Wisconsin 96.42 95.57 96.33 96.00 96.28 96.57 96.14 97.00
Yeast 53.37 50.47 56.20 53.17 55.86 56.74 57.55 57.49
Zoo 96.39 92.81 94.81 92.81 94.97 93.64 94.64 92.97
Average 78.88 72.89 78.26 74.55 78.35 75.18 78.51 75.75
Best result (of 30) 27 3 25 6 21 10 21 9
Table 5
Wilcoxon Signed-Ranks Test results for EIS-RFS vs K-NN.
EIS-RFS vs K-NN R R~ P-value
1 neighbor 418.0 47.0 0.00004
3 neighbors 357.0 78.0 0.00182
5 neighbors 310.0 125.0 0.04552
7 neighbors 335.5 129.5 0.03363

5.2. Comparison with IS, FS and hybrid techniques

Table 6 shows the results measured by accuracy in test data for each method considered in the study. For each data set,

the mean accuracy and the standard deviation are computed. The best case in each data set is highlighted in bold. The last
row in each table shows the average considering all data sets.

On the other hand, Table 7 shows the average reduction rates achieved. In instances’ search space, the reduction is defined
by Eq. (13). The reduction rate for features is computed in a similar way, considering only those features selected (main-

tained) in the final reference set

RedRateFeatures =

In each category, only those methods that perform any kind of reduction are considered, that is:

#Features Selected

M

e Instances’ search space: EIS-RFS, IS-SSGA, IFS-SSGA, FS-RST + IS-SSGA, IS-SSGA + FS-RST.
e Features’ search space: EIS-RFS, FS-SSGA, IFS-SSGA, FS-RST, FS-RST + IS-SSGA, IS-SSGA + FS-RST.

(18)
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Fig. 2. Graphical comparison of EIS-RFS and K-NN using 1, 3, 5 and 7 neighbors. EIS-RFS shows a better performance in every case. However this
improvement is lower as the number of neighbors increases.

Finally, Table 8 reports the time elapsed by each method in training phase (in seconds).? Note that running times in test
phase are not reported due to the fact that they are too low to show interesting differences and efficiency in test phase is already
reflected by the reduction rates achieved (the higher the reduction rates are, the less running time will be needed).

Reading the results shown in the tables, we can make the following analysis:

e EIS-RFS achieves the best accuracy result, obtaining the best overall result in 13 of the 30 data sets.

e Concerning reduction in instances’ space, all the methods considered achieve a similar rate. Hence, the computational
time spent by the K-NN classifier in test phase will be very low if any of the reference sets produced is used, including
the one preprocessed by EIS-RFS.

o In the features’ space, EIS-RFS shows a similar behavior to FS-RST. Although these reduction rates are low when compared
with the ones achieved by the evolutionary techniques (FS-SSGA and IFS-SSGA), these methods could delete too much
features due to the fitness function used. Note that, within the evolutionary search (and especially in its first steps), it
is easier to remove features than to find an accurate combination of them in order to improve the fitness value. Thus,
by sacrificing some of its reduction power, EIS-RFS is able to find better subsets of features, reinforcing our hypothesis
of hybridizing Fuzzy-RST with EIS.

e Concerning the time elapsed, EIS-RFS spent a slightly higher time than the rest of methods, except for FS-RST (whose
computational time is not comparable since it only evaluates a single reference set, instead of the 10,000 evaluations per-
formed by the evolutionary methods), and FS-SSGA, whose time requirements are twice those of the rest.

Regarding the statistical analysis performed, Table 9 presents the results of the Wilcoxon Signed Ranks test, while Table
10 shows the results of the Contrast Estimation. Note that these tests have been carried out considering the average accuracy
of the results obtained.

The Wilcoxon test shows that our approach, EIS-RFS, statistically outperforms all the comparison methods with a level of
significance o = 0.01; that is, no comparison of EIS-RFS and any comparison method achieves a P-value equal to or higher
than 0.01. This is a strong result, which supports the fact that EIS-RFS clearly outperforms all the other techniques.

3 The experiments have been carried out on a machine with a Dual Core 3,20 GHz processor and 2 GB of RAM, running under the Fedora 4 operating System.
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Table 6

Accuracy results in test phase.
Data set EIS-RFS IS-SSGA FS-SSGA IFS-SSGA FS-RST FS-RST+IS-SSGA  IS-SSGA+ FS-RST
Australian 85.66 £2.27 85.65 +2.77 85.07 +3.49 85.36 +3.31 81.45 £4.52 85.51+2.92 80.87 +4.49
Balance 85.92 +2.62 86.40 +3.08 70.89 +9.80 84.31+4.85 79.04 +6.81 71.89+3.28 61.05+6.82
Bupa 65.72 +8.79 61.14 £9.37 59.91+10.19  62.72 £8.40 62.51+7.78 61.14 £9.60 61.14+7.17
Cleveland 55.16 £5.82 52.82 £4.47 51.47 +9.47 56.13 + 6.07 52.51+9.49 54.42 £5.07 51.51+9.37
Contraceptive 4542 +5.14 44.54 +4.61 41.96 +3.57 45.15+2.32 42.63 £3.73 4454 +492 45.15+4.07
Crx 84.93+5.72 84.64 £4.22 81.16 £7.61 84.64 +5.08 81.30£6.28 83.19+4.79 80.72 £5.82
Ecoli 82.14+8.42 80.38 £5.69 78.90 +7.30 77.70 £5.52 76.58 +14.73 77.18 £6.49 75.97 +15.00
Flare-solar 66.32 +2.94 64.82 +3.37 62.76 £3.65 67.35+4.12 63.23 £5.56 64.82 +3.53 63.04 +5.31
German 70.80 + 4.24 70.40 +3.24 69.50 +2.68 70.10 +3.48 67.90 +3.41 69.20 +3.34 69.60 +3.20
Glass 6735+11.83  67.10+14.74 71.80+1430 71.23+10.64 74.50+13.17 67.10 + 15.68 66.12 + 13.66
Haberman 71.56 +7.34 71.23 £5.40 72.81+6.15 72.83 +5.99 65.68 £6.58 71.23+6.20 71.23+6.42
Hayes-roth 80.86+11.70  69.15+11.69 83.93 + 8.33 79.80+11.65  76.07 £14.07 74.87+11.13 77.95+12.76
Heart 80.74 £ 6.34 81.11 £7.90 76.67 +6.06 82.59 +6.31 78.89 £6.77 79.26 +8.84 71.48 £6.93
Hepatitis 82.58+7.99 79.33 £8.71 76.21 +7.89 80.67 +6.13 79.50 £7.95 80.04 +8.38 7113 £7.52
Housevotes 94.48 + 3.67 93.79+3.43 94.01 £4.53 94.46 + 4.37 90.78 + 6.47 7442 +4.04 62.56 +5.99
Iris 96.00 +4.92 94.67 £2.81 95.33 £4.50 94.67 £4.22 93.33+5.44 94.67 +3.32 94.67 +£5.73
Led7digit 73.20 £4.99 73.40 £2.84 63.00 + 6.94 71.40 +4.81 63.60 +5.87 17.40 +2.99 17.00 £ 6.15
Lymphography 7715+12.15  77.92+9.39 78.49 £9.12 7492+10.79 77.38+11.21 78.06 +9.87 66.55+12.18
Mammographic 80.65 + 4.51 79.50 + 3.85 75.86 +6.07 80.15 £6.23 75.76 £4.97 79.50 + 3.85 79.50 £5.08
Monk-2 100.00 + 0.00 83.53 £6.21 100.00 + 0.00 98.64 +3.07 77.91£5.71 100.00 + 5.95 96.13 £5.50
Newthyroid 96.77 £ 4.83 98.16 £3.20 96.30 £ 1.95 96.32 £3.60 97.23+2.39 98.16 +£3.58 98.61+2.23
Pima 74.80 £3.71 72.26 +4.44 67.70 + 4.59 73.83+3.15 70.33+3.71 72.26 +4.48 72.26 +3.67
Saheart 68.82 £7.16 69.27 +3.70 61.24 £3.91 67.99 £ 5.69 64.49 +4.21 65.39 +4.09 66.04 +4.61
Sonar 80.76 +7.88 75.45+11.74 84.62 + 8.65 75.50+12.59  81.69+9.83 71.10+11.61 69.21 £9.62
Spectfheart 76.82 +7.07 75.31+5.96 74.17 £6.34 75.34+7.31 70.04 + 8.00 79.12 £592 70.10 + 8.46
Tic-tac-toe 78.29 £5.07 78.71 £3.36 83.51+3.10 77.87 £5.25 73.07 £2.70 65.35+3.44 65.35+2.63
Wine 97.19 +5.09 92.68 £7.91 94.90 +3.30 94.93 £3.17 95.49 +4.40 96.05 +9.24 83.17 £4.38
Wisconsin 96.42 +1.55 96.13 +2.95 95.14 £ 2.62 95.86 +2.47 95.57 £2.73 96.71 £ 3.36 95.99 £2.72
Yeast 53.37+3.36 54.18 £+ 4.38 52.30+3.94 53.50+3.77 52.23+4.39 54.18 £ 4.74 53.30+4.02
Zoo 96.39 £ 4.80 94.22 £7.94 95.42 +6.00 90.72 £7.09 96.50 + 4.61 89.14+7.88 86.08 +4.18
Average 78.88 £5.73 76.93+5.78 76.50 +5.87 77.89+5.72 75.24+6.58 73.86+6.17 70.78 £ 6.52
Best result (of 30) 13 4 5 4 2 4 1

Furthermore, median estimators computed by the Contrast Estimation (Table 10) represent the quantitative difference
between the different methods considered in the experimental study. Fig. 3 depicts these results graphically. As can be
seen in the graph, EIS-RFS achieves a moderate improvement on IFS-SSGA. This improvement is greater when comparing
EIS-RFS with IS-SSGA, FS-RST + IS-SSGA and FS-SSGA. The greatest differences are found comparing it with FS-RST and IS-
SSGA + FS-RST.

In summary, all these results depict EIS-RFS as an outstanding approach for enhancing the behavior of the K-NN classifier,
with respect to the related techniques selected. It offers the most accurate results, while reduction rates are maintained with
respect to its related techniques (thus the test phase will take the same computational resources — time and storage require-
ment - as the rest of methods). Moreover, its computational time in training phase is comparable to the rest of the evolu-
tionary techniques, allowing it to be employed in standard classification problems with ease.

In addiction, it is important to point out that it significantly improves the non-hybrid proposals considered in the exper-
imental framework: FS-RST + IS-SSGA and IS-SSGA + FS-RST. This fact reinforces the validity of the hybrid approach, in con-
trast to simply using both techniques one after the other.

5.3. Comparison in large domains

Table 11 shows the results measured by accuracy in test data for each method considered in the study with large
data sets (including the 1-NN classifier as baseline). For each one, the mean accuracy and the standard deviation are
computed. The best case in each data set is highlighted in bold. The last row in each table shows the average consid-
ering all data sets.

Tables 12 and 13 reports the average reduction rates achieved and the time elapsed footnote 3, respectively.

Observing the results shown in the tables, we can make the following analysis:

o EIS-RFS again achieves the best accuracy result, obtaining the best overall result in 11 of the 13 data sets. In addition, it
still greatly outperforms the 1-NN classifier.

e Concerning reduction in instances’ space, all the methods considered achieve a similar rate. Again, the computational
time spent by the K-NN classifier in test phase will be very low if any of the reference sets produced is used, including
the one preprocessed by EIS-RFS.



J. Derrac et al./Information Sciences 186 (2012) 73-92 85

Table 7
Average reduction results over instances and features.

Data set Instances Features

EIS-RFS  IS-SSGA  IFS-SSGA  FS-RST+  IS-SSGA+  EIS-RFS ~ FS-SSGA  IFS-SSGA  FS-RST  FS-RST+  IS-SSGA +

IS-SSGA FS-RST IS-SSGA FS-RST
Australian 0.8872 0.8799 0.8808 0.8808 0.8799 0.1571 0.8071 0.7929 0.0000 0.7929 0.2643
Balance 0.8464 0.8686 0.8085 0.9085 0.8686 0.0000 0.3000 0.0000 0.0000  0.0000 0.5250
Bupa 0.8502 0.8644 0.8644 0.8644 0.8644 0.0000 0.3667 0.4333 0.1274  0.4333 0.0000
Cleveland 0.9014 09171 0.9289 0.9289 09171 0.0462 0.7385 0.6077 03908  0.6077 0.5231
Contraceptive 0.7637 0.7530 0.7530 0.7530 0.7530 0.0667 0.4556 0.5889 0.0360  0.5889 0.1222
Crx 0.8914 0.8816 0.8805 0.8805 0.8816 0.1800 0.5667 0.5533 0.2000  0.5533 0.4067
Ecoli 0.8882 0.9077 0.9130 0.9130 0.9077 0.1286 0.1714 0.1857 0.2286  0.1857 0.2571
Flare-solar 0.8122 0.8391 0.8005 0.8405 0.8391 0.0556 0.5111 0.5778 0.1556  0.5778 0.3000
German 0.8014 0.7914 0.7928 0.7928 0.7914 0.2350 0.5150 0.7450 0.1450  0.7450 0.4900
Glass 0.8718 0.8791 0.8791 0.8791 0.8791 0.0444 0.4444 0.4556 0.0168  0.4556 0.0778
Haberman 0.9306 0.9379 0.9379 0.9379 0.9379 0.0000 0.6667 0.5333 0.0254  0.5333 0.0000
Hayes-roth 0.8544 0.8384 0.8452 0.8452 0.8384 0.2500 0.2500 0.2500 0.1000  0.2500 0.2500
Heart 0.9255 0.9506 0.9230 0.9230 0.9506 0.2308 0.4538 0.5692 0.1846  0.5692 0.6000
Hepatitis 0.9262 0.9226 0.9355 0.9355 0.9226 0.5368 0.6684 0.5421 0.4263  0.5421 0.7211
Housevotes 0.9387 0.9410 0.9653 0.9653 0.9410 0.3500 0.7000 0.7313 0.0188  0.7313 0.8625
Iris 0.9511 0.9481 0.9481 0.9481 0.9481 0.1250 0.4000 0.4500 0.0000  0.4500 0.0000
Led7digit 0.9416 0.9071 0.9491 0.9491 0.9071 0.0000 0.0143 0.0000 0.0143  0.0000 0.8571
Lymphography 0.9257 0.8994 0.9234 0.9234 0.8994 0.4444 0.6500 0.6500 0.2611  0.6500 0.6944
Mammographic ~ 0.8322 0.8229 0.7829 0.8229 0.8229 0.0000 0.5000 0.6200 0.3396  0.6200 0.0000
Monk-2 0.9342 0.8570 0.9406 0.9406 0.8570 0.5000 0.5000 0.5333 0.0000  0.5333 0.5000
Newthyroid 0.9473 0.9571 0.9571 0.9571 0.9571 0.0600 0.3000 0.3800 0.0000  0.3800 0.1000
Pima 0.7911 0.8187 0.8187 0.8187 0.8187 0.0000 0.5750 0.4375 0.0000  0.4375 0.0875
Saheart 0.8668 0.8841 0.8778 0.8778 0.8841 0.0000 0.6333 0.5778 0.0000 0.5778 03111
Sonar 0.8899 0.8595 0.8974 0.8974 0.8595 0.2900 0.6633 0.6600 0.7183  0.6600 0.9167
Spectfheart 0.9497 0.9426 0.9409 0.9409 0.9426 0.2727 0.6750 0.6614 0.2750 0.6614 0.8773
Tic-tac-toe 0.8655 0.7917 0.8047 0.8747 0.7917 0.0000 0.2444 0.2889 0.0000  0.2889 0.8889
Wine 0.9451 0.9538 0.9557 0.9557 0.9538 0.3308 0.4538 0.4538 0.5231  0.4538 0.7462
Wisconsin 0.9103 0.9027 0.9048 0.9048 0.9027 0.0444 0.3889 0.3222 0.0000 0.3222 0.3667
Yeast 0.7550 0.7485 0.7485 0.7485 0.7485 0.0375 0.0875 0.1625 0.1256  0.1625 0.2375
Zoo 0.8634 0.8714 0.8468 0.8468 0.8714 0.2125 0.7125 0.3750 0.2750  0.3750 0.7500
Average 0.8819 0.8779 0.8802 0.8885 0.8779 0.1533 0.4804 0.4713 0.1529  0.4713 0.4244

o In the features’ space, EIS-RFS obtains a slightly lower result than the rest of the reference techniques. However, with the
high reduction rates obtained in the instances’ space, the lower reduction rates over features will not cause the K-NN
classifier to consume too much time in test phase.

o Concerning time elapsed, we again obtain the same results: EIS-RFS spent a slightly higher time than the rest of the meth-
ods, except for FS-RST and 1-NN (whose computational time is not comparable since they only evaluate a single reference
set, instead of the 10,000 evaluations performed by the evolutionary methods), and FS-SSGA, whose time requirements
are greater than the rest.

This time, the statistical analysis performed is shown in Tables 14 and 15. The former presents the results of the Wilcoxon
Signed Ranks test, the latter shows the results of the Contrast Estimation. Again, note that these tests have been carried out
considering the average accuracy results obtained.

The Wilcoxon test shows that our approach, EIS-RFS, statistically outperforms all the comparison methods with a
level of significance o =0.01; that is, no comparison of EIS-RFS and any comparison method achieves a P-value equal
to or higher than 0.01. This result confirms that the good behavior of EIS-RFS is maintained when applied to large data
sets.

Median estimators computed by Contrast Estimation (Table 15) represent greater differences than in the former study,
although similar conclusions can be drawn. Fig. 4 depicts these results graphically. As can be seen in the graph, EIS-RFS
achieves a moderate improvement over the purely evolutionary methods (IS-SSGA, FS-SSGA and IFS-SSGA), which is greater
when compared with FS-RST. The greatest differences are found comparing it with and FS-RST + IS-SSGA, IS-SSGA + FS-RST
and 1-NN.

The results obtained in this part of the study contrast the quality of EIS-RFS further. Its capabilities are not diminished if it
is applied over large data sets, even maintaining the same number of evaluations as in the standard study. Moreover,
although its application in these domains is costly, the computational times reported suggest that EIS-RFS can be used in
these domains without the necessity of exceptional computer resources, allowing the model to be considered for use in
real-world applications.
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Average time elapsed (training phase), in seconds.

Data set EIS-RFS IS-SSGA FS-SSGA IFS-SSGA FS-RST FS-RST + IS-SSGA IS-SSGA + FS-RST
Australian 82.54 79.16 161.39 48.14 0.70 81.13 79.90
Balance 54.44 38.71 88.56 38.33 0.03 2941 37.45
Bupa 20.71 13.70 32.65 11.33 0.04 13.17 13.28
Cleveland 19.29 11.89 33.37 9.04 0.10 10.17 11.93
Contraceptive 316.30 348.66 704.06 306.52 1.32 347.29 339.26
Crx 86.38 79.72 220.59 70.56 0.46 83.90 83.55
Ecoli 20.68 10.92 37.50 11.17 0.05 10.35 11.06
Flare-solar 183.44 160.00 349.09 123.76 0.01 146.04 145.15
German 304.94 252.59 591.00 167.51 2.07 245.40 263.49
Glass 10.30 5.39 15.93 5.18 0.05 5.63 5.56
Haberman 9.41 7.09 13.63 6.06 0.01 7.15 7.07
Hayes-roth 3.86 2.68 5.00 2.52 0.02 2.74 2.77
Heart 14.57 8.03 32.98 7.01 0.06 7.91 8.02
Hepatitis 8.50 3.83 13.08 3.21 0.04 343 3.90
Housevotes 39.42 24.98 82.91 17.38 0.02 15.94 25.31
Iris 4.40 2.44 5.22 233 0.02 2.55 245
Led7digit 40.50 25.05 88.31 28.87 0.00 17.60 25.21
Lymphography 8.14 3.97 11.77 3.23 0.02 3.19 3.99
Mammographic 127.75 116.67 205.34 77.57 0.20 105.70 112.27
Monk-2 27.92 20.72 46.18 14.22 0.02 14.06 20.24
Newthyroid 8.03 3.68 11.76 3.63 0.01 3.81 3.66
Pima 96.68 85.38 175.95 72.09 0.29 77.98 78.76
Saheart 3345 25.98 62.64 22.45 0.15 24.01 25.78
Sonar 136.71 17.12 66.79 13.86 0.40 9.91 17.22
Spectfheart 40.33 15.14 80.53 15.25 0.27 12.10 15.23
Tic-tac-toe 176.75 150.31 348.57 132.37 0.06 75.92 138.99
Wine 7.67 3.62 14.80 3.34 0.03 3.40 3.64
Wisconsin 73.61 55.66 159.05 50.62 0.10 49.54 53.67
Yeast 420.58 354.55 825.97 364.96 1.47 351.06 342.82
Zoo 5.31 2.52 5.12 2.46 0.01 2.33 2.46
Average 79.42 64.34 149.66 54.50 027 58.76 62.80
Table 9
Wilcoxon signed-ranks test results.

Comparison R* R P-value

EIS-RFS vs IS-SSGA 381 84 0.00158

EIS-RFS vs FS-SSGA 342 93 0.00599

EIS-RFS vs IFS-SSGA 371.5 93.5 0.00335

EIS-RFS vs FS-RST 426 39 0.00001

EIS-RFS vs FS-RST +IS-SSGA 389 39 0.00007

EIS-RFS vsIS-SSGA + FS-RST 456 39 0.00000

Table 10

Contrast estimation results.

EIS-RFS vs Median estimation
IS-SSGA 1.031
FS-SSGA 1.946
IFS-SSGA 0.435
FS-RST 2.941
FS-RST +IS-SSGA 1.706
IS-SSGA + FS-RST 3.966

EIS-RFS
0 1 2

4

IFS-SSGAJ

IS-SSGA
FS-RST+IS-SSGA

LIS»SSGA+FS»RST

FS-RST

FS-SSGA

Fig. 3. Graphic depicting the Contrast Estimation of medians between EIS-RFS and the comparison methods.



Table 11
Accuracy results in test phase.

Data set EIS-RFS 1S-SSGA FS-SSGA IFS-SSGA FS-RST FS-RST + IS-SSGA IS-SSGA + FS-RST 1-NN
Abalone 26.31+2.01 21.78 £1.96 20.82 £1.98 20.44+1.81 19.84 +1.89 19.66 +2.01 12.87 £2.17 1038 £1.74
Banana 89.34+2.70 88.42 +0.95 87.49 +1.05 88.06 +1.38 87.49+1.05 81.70+2.78 78.48 +£2.88 74.76 £ 2.08
Chess 91.30 £ 5.38 86.83 +2.36 64.23 £ 0.76 67.03 + 1.06 75.47 +2.07 73.23+5.79 74.86 + 5.65 68.99 +4.84
Marketing 30.12+1.85 27.10+1.15 27.02+1.14 29.09 +1.70 27.58 £ 1.06 24.90 +2.00 18.35+1.87 17.20+1.52
Mushroom 100.00 + 0.00 99.96 + 0.08 100.00 + 0.00 99.94+0.13 98.52£0.35 98.26 + 0.55 99.00 +0.34 100.00 + 0.00
Page-blocks 95.25+5.51 94.97 £+ 0.83 96.44 + 0.73 95.63 +0.44 95.07 £ 0.76 95.10 £ 5.72 85.48 + 6.01 76.73+5.84
Ring 86.01 + 1.86 74.93 +1.47 83.01+1.38 82.01+1.08 79.18+1.35 71.39+1.98 61.39+1.94 50.25+1.64
Satimage 89.60 + 1.87 87.73 £1.65 89.44 £1.96 88.65 +1.68 85.21+1.99 84.36 +1.95 83.30+1.97 88.38+1.63
Segment 94.37+0.94 94.59 + 1.46 96.84 + 1.02 95.93 +1.21 94.29 +1.61 94.92 +1.03 93.49 £ 0.99 96.06 + 0.82
Spambase 89.35 £3.05 82.60+0.72 83.47 £1.40 87.54+2.07 81.74+1.74 76.93+3.23 79.43 +3.20 77.89 +2.49
Splice 83.07 £2.32 73.57+1.36 76.93+2.61 72.95 +2.49 85.89+1.85 72.46 +2.38 58.26 + 2.40 60.55 +1.85
Titanic 79.38 £11.23 78.78 £2.33 76.10 £ 5.60 78.74 £ 2.50 59.16 + 8.08 51.35+11.61 61.44+11.94 13.98 £12.33
Twonorm 96.54 + 1.34 95.54 + 1.64 94.86 £ 1.76 94.59 +1.83 77.86 +1.72 80.73 +1.37 81.10+ 1.47 89.35+1.46
Average 80.82 +3.08 77.45+1.38 76.67 £ 1.65 76.97 +1.49 74.41 +1.96 71.15+3.26 68.27 +£3.29 63.42+2.94
Best result (of 13) 11 0 3 0 0 0 0 1
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Table 12

Average reduction results over instances and features.
Data set Instances Features

EIS-RFS IS-SSGA IFS-SSGA FS-RST +IS-SSGA IS-SSGA + FS-RST EIS-RFS FS-SSGA IFS-SSGA FS-RST FS-RST +IS-SSGA IS-SSGAFS-RST

Abalone 0.7401 0.7426 0.7391 0.6913 0.7426 0.3575 0.5875 0.4625 0.5000 0.5000 0.5000
Banana 0.7509 0.7560 0.7483 0.7623 0.7560 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Chess 0.7466 0.7578 0.7686 0.7184 0.7578 0.4722 0.4333 0.5306 0.9444 0.9444 0.5820
Marketing 0.7420 0.7357 0.7341 0.7326 0.7357 0.3585 0.7000 0.6385 0.3846 0.3846 0.3639
Mushroom 0.7620 0.7619 0.7609 0.7244 0.7619 0.8383 0.8091 0.5955 0.9545 0.9545 0.9121
Page-blocks 0.7643 0.7661 0.7610 0.7631 0.7661 0.7922 0.6000 0.4300 0.7000 0.7000 0.7000
Ring 0.7308 0.7258 0.7344 0.7345 0.7258 0.4537 0.5050 0.5450 0.7000 0.7000 0.6350
Satimage 0.7498 0.7528 0.7461 0.7020 0.7528 0.5700 0.5556 0.4611 0.8611 0.8611 0.6140
Segment 0.8062 0.8053 0.7993 0.7731 0.8053 0.0000 0.6895 0.6737 0.0000 0.0000 0.0000
Spambase 0.7549 0.7538 0.7389 0.7349 0.7538 0.5584 0.5298 0.5930 0.8596 0.8596 0.6930
Splice 0.7572 0.7431 0.7428 0.6913 0.7431 0.6833 0.8317 0.8317 0.8667 0.8667 0.8333
Titanic 0.8299 0.8283 0.8202 0.8156 0.8283 0.0000 0.5333 0.0333 0.0000 0.0000 0.0000
Twonorm 0.7521 0.7557 0.7285 0.7194 0.7557 0.0000 0.0000 0.0100 0.7500 0.7500 0.7500
Average 0.7605 0.7604 0.7556 0.7356 0.7604 0.3911 0.5211 0.4465 0.5785 0.5785 0.5064
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Average time elapsed (training phase), in seconds.

89

Data set EIS-RFS IS-SSGA FS-SSGA IFS-SSGA FS-RST FS-RST + IS-SSGA IS-SSGA + FS-RST
Abalone 3739 3546 7992 3265 27 3391 3436
Banana 2496 3145 6992 3343 2 2948 3099
Chess 14345 5614 20910 4794 1 5249 5456
Marketing 21471 27793 47621 19468 98 25989 27774
Mushroom 33249 33121 62833 23482 4 31833 33136
Page-blocks 5853 7942 16681 6668 14 7419 7741
Ring 26797 24125 59894 20742 325 23185 24401
Satimage 62529 26160 82022 27992 426 25574 27607
Segment 1384 1641 4891 1206 4 1567 1618
Spambase 41759 19965 63763 19872 560 18870 19472
Splice 62673 9431 26504 5898 395 8951 9376
Titanic 413 605 1402 516 0 573 603
Twonorm 24515 22273 70736 25004 292 20941 21865
Average 23171 14259 36326 12481 165 13576 14276
Table 14
Wilcoxon signed-ranks test results (large data sets).
Comparison R R P-value
EIS-RFS vs IS-SSGA 89 2 0.00073
EIS-RFS vs FS-SSGA 71 7 0.00928
EIS-RFS vs IFS-SSGA 82 9 0.00806
EIS-RFS vs FS-RST 85 6 0.00342
EIS-RFS vs FS-RST + IS-SSGA 89 2 0.00073
EIS-RFS vs IS-SSGA + FS-RST 91 0 0.00024
EIS-RFS vs 1-NN 76 2 0.00146
Table 15
Contrast estimation results.
EIS-RFS vs Median estimation
IS-SSGA 2.653
FS-SSGA 2.849
IFS-SSGA 2.598
FS-RST 4.855
FS-RST + IS-SSGA 7.260
IS-SSGA + FS-RST 10.784
1-NN 13.540
EIS-RFS
(I) 5 10 1 |5
|
IFS-SSGAQ \_
I1S-SSGA 1-NN
FS-SSGA IS-SSGA+FS-RST
FS-RST FS-RST+IS-SSGA

Fig. 4. Graphic depicting the Contrast Estimation of medians between EIS-RFS and the comparison methods in large data sets.

6. Conclusions

In this paper, we have presented EIS-RFS, a novel approach which introduces the cooperation between two well-known
techniques for data reduction: A steady-state GA for IS, and a fuzzy RST based method for FS. The judicious selection of fea-
tures performed by the RST based method has been shown to be beneficial for the search procedure performed by the GA,
thus allowing our approach to achieve highly reduced training sets which greatly enhances the behavior of the K-NN

classifier.

The experimental study performed has highlighted these improvements, especially in the case of 1-NN. It has also shown
that EIS-RFS outperforms several preprocessing methods related to IS and FS, including hybrid models, considering
classification accuracy. Moreover, these results are maintained when it is applied to higher size data sets, thus confirming
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the capabilities of our approach as a suitable preprocessing method for most of the standard problems present in supervised
classification.

As regards future work, we point out the possibility of using EIS-RFS to enhance other kinds of machine learning algo-
rithms. Given the nature of our method (in essence, a wrapper-based model) and the generality of the fuzzy rough feature
selection method and the fitness function defined, it is possible to apply it to improve the results of the majority of machine
learning methods. The only requirement would be the existence of a way in which the current performance of the method
could be evaluated such as, for example, the accuracy measure of the K-NN classifier. A suitable starting point for this line
would be the research shown in [8,9,37], where IS (namely TSS) is used to enhance other models such as decision trees, sub-
group discovery methods and neural networks, respectively.
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Appendix A. A nonparametric method for analyzing medians of classifiers: the contrast estimation

The Contrast Estimation based on medians [22] can be used to estimate the difference between two classifiers’ perfor-
mance. It assumes that the expected differences between performances of algorithms are the same across data sets. There-
fore, the performance of methods is reflected by the magnitudes of the differences between them in each domain.

The interest of this test lies in estimating the contrast between medians of samples of results considering all pairwise
comparisons. The test obtains a quantitative difference computed through medians between two algorithms over multiple
data sets, proceeding as follows:

1. For every pair of k algorithms in the experiment, compute the difference between the performances x of the two algo-
rithms in each of the n data sets. That is, compute the differences

Di(u,v) = Xiu — Xip (Al)

wherei=1,...,n; u=1,...,k; v=1,...,k. (consider only performance pairs where u < v).

2. Find the median of each set of differences (Z,,, which can be regarded as the unadjusted estimator of the medians of the
methods u and v, M, — M,). Since Z,, = Z,,, it is only required to compute Z,, in those cases where u < . Also note that
Zuw=0.

3. Compute the mean of each set of unadjusted medians having the same first subscript, m,:

=B =1,k (A2)

4. The estimator of M, — M, is m, — m,, where u and v range from 1 through k. For example, the difference between M; and
M, is estimated by m; — m;

These estimators can be understood as an advanced global performance measure. Although this test cannot provide a
probability of error associated with the rejection of the null hypothesis of equality, it is especially useful to estimate how
far a method outperforms another one.

An implementation of the Contrast Estimation procedure can be found in the CONTROLTEST package, which can be ob-
tained at the SCI2S thematic public website on Statistical Inference in Computational Intelligence and Data Mining (http://sci2-
s.ugr.es/sicidm/).
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