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Published online: 14 October 2011

� Springer-Verlag 2011

Abstract Fuzzy rule-based classification systems (FRBCSs)

are known due to their ability to treat with low quality data

and obtain good results in these scenarios. However, their

application in problems with missing data are uncommon

while in real-life data, information is frequently incomplete

in data mining, caused by the presence of missing values in

attributes. Several schemes have been studied to overcome

the drawbacks produced by missing values in data mining

tasks; one of the most well known is based on prepro-

cessing, formerly known as imputation. In this work, we

focus on FRBCSs considering 14 different approaches to

missing attribute values treatment that are presented and

analyzed. The analysis involves three different methods, in

which we distinguish between Mamdani and TSK models.

From the obtained results, the convenience of using

imputation methods for FRBCSs with missing values is

stated. The analysis suggests that each type behaves dif-

ferently while the use of determined missing values

imputation methods could improve the accuracy obtained

for these methods. Thus, the use of particular imputation

methods conditioned to the type of FRBCSs is required.

Keywords Classification � Missing values �
Fuzzy rule-based classification systems � Imputation

1 Introduction

Many existing, industrial and research datasets contain

missing values (MVs). There are various reasons for their

existence, such as manual data entry procedures, equipment

errors and incorrect measurements. The presence of such

imperfections requires a preprocessing stage in which the

data are prepared and cleaned (Pyle 1999), in order to be

useful to and sufficiently clear for the knowledge extraction

process. The simplest way of dealing with missing values is

to discard the examples that contain them. However, this

method is practical only when the data contains a relatively

small number of examples with MVs and when analysis of

the complete examples will not lead to serious bias during

the inference (Little and Rubin 1987).

Fuzzy rule-based classification systems (FRBCSs)

(Ishibuchi et al. 2004; Kuncheva 2000) are widely employed

due to their capability to build a linguistic model interpret-

able to the users with the possibility of mixing different

information. They are also well known for being able to deal

with imprecise data. However, few analysis have been car-

ried out considering the presence of MVs (Berthold and

Huber 1998; Gabriel and Berthold 2005) for FRBCSs and

usually the presence of MVs is not usually taken into account

and they are usually discarded, maybe inappropriately.

Incomplete data in either the training set or test set or in both

sets affect the prediction accuracy of learned classifiers

(Gheyas and Smith 2010). The seriousness of this problem

depends in part on the proportion of missing data. Most

FRBCSs cannot work directly with incomplete datasets and

due to the high dimensionality of real problems it is possible

that no valid (complete) cases would be present in the dataset

(Garcı́a-Laencina et al. 2009).

This inappropriate handling of missing data in the anal-

ysis may introduce bias and can result in misleading
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conclusions being drawn from a research study, and can

also limit the generalizability of the research findings

(Wang and Wang 2010). Three types of problems are usu-

ally associated with missing values in data mining (Barnard

and Meng 1999): (1) loss of efficiency; (2) complications in

handling and analyzing the data; and (3) bias resulting from

differences between missing and complete data.

Therefore, the treatment of missing data in data mining

is necessary and it can be handled in three different ways

normally (Farhangfar et al. 2007):

• The first approach is to discard the examples with

missing data in their attributes. Therefore, deleting

attributes with elevated levels of missing data are

included in this category too.

• Another approach is the use of maximum likelihood

procedures, where the parameters of a model for the

complete data are estimated, and later used for impu-

tation by means of sampling.

• Finally, the imputation of MVs is a class of procedures

that aims to fill in the MVs with estimated ones. In most

cases, a dataset’s attributes are not independent from

each other. Thus, through the identification of relation-

ships among attributes, MVs can be determined.

We will focus our attention on the use of imputation

methods. A fundamental advantage of this approach is that

the missing data treatment is independent of the learning

algorithm used without erasing any example. For this

reason, the user can select the most appropriate method for

each situation he faces. There is a wide family of impu-

tation methods, from simple imputation techniques like

mean substitution, K-Nearest Neighbour, etc.; to those

which analyze the relationships between attributes such as:

support vector machines-based, clustering-based, logistic

regressions, maximum-likelihood procedures and multiple

imputation (Batista and Monard 2003; Farhangfar et al.

2008).

The literature on imputation methods in data mining

employs well-known machine learning methods for their

studies, in which the authors show the convenience of

imputing the MVs for the mentioned algorithms, particu-

larly for classification. The vast majority of MVs studies in

classification usually analyze and compare one imputation

method against a few others under controlled amounts of

MVs, and induce them artificially with known mechanisms

and probability distributions (Acuna and Rodriguez 2004;

Batista and Monard 2003; Farhangfar et al. 2008; Hruschka

Jr. et al. 2007; Li et al. 2004; Luengo et al. 2010).

We want to analyze the effect of the use of a large set of

imputation methods on FRBCSs, trying to obtain the best

imputation procedure for each one. We consider three

representative FRBCSs of different natures which have

proven to perform well.

• The fuzzy hybrid-genetic-based machine learning (FH-

GBML) method proposed by Ishibuchi et al. (2005)

which is a Mamdani-based FRBCS.

• The fuzzy rule learning model proposed by Chi et al.

(1996) which is a Mamdani-based FRBCSs as well.

• The positive definite fuzzy classifier (PDFC) proposed

by Chen and Wang (2003) which is a Takagi-Sugeno

(TSK)-based FRBCS.

In order to perform the analysis, we use a large bunch of

datasets, twenty-one in total, with natural MVs. All the

datasets have their proper MVs and we do not induce them,

as we want to stay as close to the real world data as pos-

sible. First, we analyze the use of the different imputation

strategies versus case deletion and the total lack of missing

data treatment, for a total of 14 imputation methods.

Therefore, each FRBCS is used over the 14 imputation

results. All the imputation and classification algorithms are

publicly available in the KEEL software1 (Alcalá-Fdez

et al. 2009). These results are compared using the Wilco-

xon Signed Rank test (Demšar 2006; Garcı́a and Herrera

2008) in order to obtain the best method(s) for each

FRBCS. With this information we can extract the best

imputation method for each FRBCS, and indicate if there is

a common best option depending on the FRBCS type.

We have also analyzed two metrics related to the data

characteristics, formerly known as Wilson’s noise ratio and

Mutual Information. Using these measures, we have observed

the influence of the imputation procedures on the noise and on

the relationship of the attributes with the class label as well.

This procedure tries to quantify the quality of each imputation

method independently of the classification algorithm.

The rest of the paper is organized as follows: Sect. 2

introduces the descriptions of the FRBCSs considered and

a brief review of the current state of the art in MVs for

FRBCSs. In Sect. 3 we present the basis of the application

of the imputation methods and the description of the

imputation methods we have used. In Sect. 4, the experi-

mental framework, the classification methods and the

parameters used for both imputation and classification

methods are presented. In Sect. 5, the results obtained are

analyzed. In Sect. 6, we use two measures to quantify the

influence of the imputation methods in the datasets, both in

the instances and in the features. Finally, in Sect. 7 we

make some concluding remarks.

2 Fuzzy rule-based classification systems

In this section, we describe the basis of the three models

that we have used in our study. First, we introduce the

1 http://keel.es.
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basic notation that we will use later. Next, we describe

the Chi method (Sect. 2.1), the FH-GBML method

(Sect. 2.2) and the PDFC method (Sect. 2.3). In Sect. 2.4,

we describe the contributions made to the MVs treatment

for FRBCSs and we tackle the different situations which

apply for the three FRBCSs considered when MVs

appear.

Any classification problem consists of w training pat-

terns xp ¼ ðxp1; . . .; xpnÞ; p ¼ 1; 2; . . .;m from M classes

where xpi is the ith attribute value (i ¼ 1; 2; . . .; n) of the

p-th training pattern.

In this work, we use fuzzy rules in the following form:

Rule Rj : If x1 is A1
j and. . . and xn is An

j then Class ¼ Cj

with RWj ð1Þ

where Rj is the label of the jth rule, x ¼ ðx1; . . .; xnÞ is an

n-dimensional pattern vector, Aj
i is an antecedent fuzzy set,

Cj is a class label or a numeric value, and RWj is the rule

weight. We always use triangular membership functions as

antecedent fuzzy sets.

2.1 Chi et al. approach

This FRBCSs design method (Chi et al. 1996) is an

extension of the well-known Wang and Mendel method

(1992) for classification problems. To generate the fuzzy

rule base (RB), it determines the relationship between the

variables of the problem and establishes an association

between the space of the features and the space of the

classes by means of the following steps:

Step 1: Establishment of the linguistic partitions. Once

the domain of variation of each feature Ai is determined,

the fuzzy partitions are computed.

Step 2: Generation of a fuzzy rule for each example

xp ¼ ðxp1; . . .; xpn;CpÞ: To do this it is necessary:

Step 2.1: To compute the matching degree l (xp) of

the example to the different fuzzy regions using a

conjunction operator (usually modeled with a mini-

mum or product T-norm).

Step 2.2: To assign the example xp to the fuzzy region

with the greatest membership degree.

Step 2.3: To generate a rule for the example, whose

antecedent is determined by the selected fuzzy region

and whose consequent is the label of class of the

example.

Step 2.4: To compute the rule weight.

We must remark that rules with the same antecedent can

be generated during the learning process. If they have the

same class in the consequent we just remove one of the

duplicated rules, but if they have a different class only the

rule with the highest weight is kept in the RB.

2.2 Fuzzy hybrid-genetic-based machine learning rule

generation algorithm

The basis of the algorithm described here (Ishibuchi et al.

2005) consists of a Pittsburgh approach where each rule set

is handled as an individual. It also contains a genetic

cooperative-competitive learning (GCCL) approach (an

individual represents a unique rule), which is used as a kind

of heuristic mutation for partially modifying each rule set,

because of its high search ability to efficiently find good

fuzzy rules.

The system defines 14 possible linguistic terms for each

attribute, as shown in Fig. 1, which correspond to Ruspini’s

strong fuzzy partitions with two, three, four, and five uni-

formly distributed triangular-shaped membership functions.

Furthermore, the system also uses ‘‘don’t care’’ as an

additional linguistic term, which indicates that the variable

matches any input value with maximum matching degree.

The main steps of this algorithm are described below:

Step 1: Generate Npop rule sets with Nrule fuzzy rules.

Step 2: Calculate the fitness value of each rule set in the

current population.

Step 3: Generate (Npop -1) rule sets by selection,

crossover and mutation in the same manner as the

Pittsburgh-style algorithm. Apply a single iteration of

the GCCL-style algorithm (i.e., the rule generation and

the replacement) to each of the generated rule sets with a

pre-specified probability.

Step 4: Add the best rule set in the current population to

the newly generated (Npop -1) rule sets to form the next

population.

Step 5: Return to Step 2 if the pre-specified stopping

condition is not satisfied.

Next, we will describe every process of the algorithm:

• Initialization: Nrule training patterns are randomly

selected. Then, a fuzzy rule from each of the selected

training patterns is generated by choosing probabilis-

tically [as shown in (2)] an antecedent fuzzy set from

the 14 candidates Bkðk ¼ 1; 2; . . .; 14Þ (see Fig. 1) for

each attribute. Then each antecedent fuzzy set of the

generated fuzzy rule is replaced with don’t care using a

pre-specified probability Pdon0t care:

Pdon0t careðBkÞ ¼
lBk
ðxpiÞ

P14
j¼1 lBj

ðxpiÞ
ð2Þ

• Fitness computation: the fitness value of each rule set Si

in the current population is calculated as the number of
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correctly classified training patterns by Si. For the GCCL

approach the computation follows the same scheme.

• Selection: it is based on binary tournament.

• Crossover: the substring-wise and bit-wise uniform

crossover are applied in the Pittsburgh part. In the case

of the GCCL part only the bit-wise uniform crossover is

considered.

• Mutation: each fuzzy partition of the individuals is

randomly replaced with a different fuzzy partition using

a pre-specified mutation probability for both approaches.

2.3 Positive definite function classifier

The PDFC learning method (Chen and Wang 2003) uses a

support vector machine (SVM) approach to build up the

model. PDFC considers a fuzzy model with m ? 1 fuzzy

rules of the form given in Eq. (1) where Aj
k is a fuzzy set

with membership function ak
j : R! ½0; 1�;RWj ¼ 1 and

Cj ¼ bj 2 R: Therefore, PDFC is a FRBCS with constant

THEN-parts. If we choose product as the fuzzy conjunction

operator, addition for fuzzy rule aggregation and center of

area defuzzification, then the model becomes a special

form of the Takagi-Sugeno fuzzy model.

PDFC considers the use of membership functions gen-

erated from a reference function ak through location

transformation (Dubois and Prade 1978). In Chen and

Wang (2003) well-known types of reference functions can

be found, like the symmetric triangle and the gaussian

function. As a consequence of the presented formulation,

Kðxp; zjÞ ¼
Yn

k¼1

akðxk
p � zk

j Þ ð3Þ

is a Mercer Kernel (Cristianini and Shawe-Taylor 2000), if

it has nonnegative Fourier transform. Thus, the decision

rule of a binary fuzzy classifier is

f ðxpÞ ¼ sign b0 þ
Xm

j¼1

bj

Yn

k¼1

ak
j ðxk

pÞ
 !

: ð4Þ

So the remaining question is how to find a set of fuzzy

rules (fz1; . . .; zmg and fb0; . . .; bmg). It is well known that

the SVM algorithm finds a separating hyperplane with

good generalization by reducing the empirical risk and, at

the same time, controlling the hyperplane margin (Vapnik

1998). Thus, we can use the SVM algorithm to find an

optimal hyperplane in F: Once we get such a hyperplane,

fuzzy rules can easily be extracted. The whole procedure is

described next:

Step 1: Construct a Mercer kernel, K, from the given

positive-definite reference functions according to (3).

Step 2: Construct an SVM to get a decision rule of the

form

f ðxÞ ¼ sign
X

i2S

yiaiKðx; xiÞ þ b

 !

;

with S as the index set of the support vectors:

Step 2.1: Assign some positive number to the cost

C, and solve the quadratic program defined by the

proper SVM to get the Lagrange multipliers ai.

Step 2.2: Find b [details can be found in, for example,

(Platt 1999)].

Step 3: Extract fuzzy rules from the decision rule of the

SVM:

Step 3.1: b0 is the constant parameter of the hyper-

plane, that is b0  b:

Step 3.2: For each support vector create a fuzzy rule

where: we center the reference functions on the

support vector zj  xi and we assign the rule conse-

quent bj  yiai:

Fig. 1 Four fuzzy partitions for

each attribute membership

function
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2.4 Missing values treatment for fuzzy rule-based

classification systems

Traditionally, the presence of MVs in the data has not been

considered when building up the FRBCS model. Although

the FRBCS are capable of managing imperfect data, their

abilities have not been explicitly checked in this case. The

only precedent in the literature of FRBCSs learning in

the case of MVs is a technique proposed to tolerate MVs in

the training of a FRBCS by Berthold and Huber (1998).

This procedure was initially intended to estimate the best

approximation to the MV based on the core region of the

fuzzy label associated to the missing attribute.

This initial work was further developed applying the

initial technique to a particular fuzzy rule induction algo-

rithm in (Gabriel and Berthold 2005). The main idea was to

avoid the use of the missing attribute in the rule operations

when covering new examples or specializing the rules. This

is a simple and easy to implement idea, but its extension

is limited to few fuzzy rule induction algorithms, like

FH-GBML.

As we can appreciate from the mentioned studies there is

a lack of research in this area. There are many different

approaches to the treatment of MVs, which use many dif-

ferent methods (to classify and to impute MVs), but they

have not been considered with FRBCSs. Therefore, in spite

of the variety of studies presented, the necessity of analyze

the use of imputation methods for FRBCSs is demonstrated.

Only one of the presented classification methods in the

previous section has its own MVs treatment. We have

applied the procedure indicated in (Gabriel and Berthold

2005) using the ‘‘don’t care’’ label, but this extension is not

easy to apply to Chi et al. and PDFC algorithms due to

their different nature. For this reason PDFC and Chi et al.

FRBCSs are not able to deal with MVs. Thus we set the

training and test accuracy to zero in the presence of MVs,

as the methods cannot build a model or compute a distance

to the instance.

3 Imputation background

In this section, we first set the basis of our study in

accordance with the MV literature. The rest of this section

is organized as follows: in Sect. 3.1 we indicate the fun-

damental aspects in the MVs treatment based on the MV

introduction mechanism. In Sect. 3.2, we have summarized

the imputation methods that we have used in our study.

A more extensive and detailed description of these

methods can be found on the web page url:http://sci2s.

ugr.es/MVDM, and a PDF file with the original source paper

descriptions is present on the web page formerly named

‘‘Imputation of Missing Values. Methods’ Description’’. A

more complete bibliography section is also available on the

mentioned web page.

3.1 Missing values introduction mechanisms

It is important to categorize the mechanisms which lead to

the introduction of MVs (Little and Rubin 1987). The

assumptions we make about the missingness mechanism

and the missing data pattern of missing values can affect

which imputation method could be applied, if any. As

Little and Rubin (1987) stated, there are three different

mechanisms for missing data induction:

1. Missing completely at random (MCAR), when the

distribution of an example having a missing value for

an attribute does not depend on either the observed

data or the missing data.

2. Missing at random (MAR), when the distribution of an

example having a missing value for an attribute

depends on the observed data, but does not depend

on the missing data.

3. Not missing at random (NMAR), when the distribution

of an example having a missing value for an attribute

depends on the missing values.

In the case of the MCAR mode, the assumption is that

the underlying distributions of missing and complete data

are the same, while for the MAR mode they are different,

and the missing data can be predicted using the complete

data (Little and Rubin 1987). These two mechanisms are

assumed by the imputation methods so far. As Farhangfar

et al. (2008) and Matsubara et al. (2008) stated, it is only in

the MCAR mechanism case where the analysis of the

remaining complete data (ignoring the incomplete data)

could give a valid inference (classification in our case) due

to the assumption of equal distributions. That is, case and

attribute removal with missing data should be applied only

if the missing data are MCAR, as both of the other

mechanisms could potentially lead to information loss that

would lead to the generation of a biased/incorrect classifier

(i.e. a classifier based on a different distribution).

Another approach is to convert the missing values to a

new value (encode them into a new numerical value), but

such a simplistic method was shown to lead to serious

inference problems (Schafer 1997). On the other hand, if a

significant number of examples contain missing values for

a relatively small number of attributes, it may be beneficial

to perform imputation (filling-in) of the missing values. In

order to do so, the assumption of MAR randomness is

needed, as Little and Rubin (1987) observed in their

analysis.

In our case we will use single imputation methods, due

to the time complexity of the multiple imputation schemes,

and the assumptions they make regarding data distribution
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and MV randomness; that is, that we should know the

underlying distributions of the complete data and missing

data prior to their application.

3.2 Description of the imputation methods

In this subsection, we briefly describe the imputation

methods that we have used.

• Do not impute (DNI): as its name indicates, all the

missing data remains unreplaced, so the FRBCSs must

use their default MVs strategies. The objective is to

verify whether imputation methods allow the classifi-

cation methods to perform better than when using the

original datasets. As a guideline, in Grzymala-Busse

and Hu (2000) a previous study of imputation methods

is presented.

• Case deletion or Ignore Missing (IM). Using this

method, all instances with at least one MV are discarded

from the dataset.

• Global most common attribute value for symbolic

attributes, and global average value for numerical

attributes (MC) (Grzymala-Busse et al. 2005): this

method is very simple: for nominal attributes, the MV

is replaced with the most common attribute value, and

numerical values are replaced with the average of all

values of the corresponding attribute.

• Concept most common attribute value for symbolic

attributes, and concept average value for numerical

attributes (CMC) (Grzymala-Busse et al. 2005): as

stated in MC, the MV is replaced by the most repeated

one if nominal or the mean value if numerical, but

considering only the instances with the same class as

the reference instance.

• Imputation with K-nearest neighbor (KNNI) (Batista

and Monard 2003): using this instance-based algorithm,

every time an MV is found in a current instance, KNNI

computes the k nearest neighbors and a value from

them is imputed. For nominal values, the most common

value among all neighbors is taken, and for numerical

values the average value is used. Therefore, a proximity

measure between instances is needed for it to be

defined. The euclidean distance (it is a case of a Lp

norm distance) is the most commonly used in the

literature.

• Weighted imputation with K-nearest neighbor

(WKNNI) (Troyanskaya et al. 2001): the weighted

K-nearest neighbor method selects the instances with

similar values (in terms of distance) to a considered

one, so it can impute as KNNI does. However, the

estimated value now takes into account the different

distances from the neighbors, using a weighted mean or

the most repeated value according to the distance.

• K-means clustering Imputation (KMI) (Li et al. 2004):

given a set of objects, the overall objective of clustering

is to divide the dataset into groups based on the

similarity of objects, and to minimize the intra-cluster

dissimilarity. KMI measures the intra-cluster dissimi-

larity by the addition of distances among the objects

and the centroid of the cluster which they are assigned

to. A cluster centroid represents the mean value of the

objects in the cluster. Once the clusters have converged,

the last process is to fill in all the non-reference

attributes for each incomplete object based on the

cluster information. Data objects that belong to the

same cluster are taken to be nearest neighbors of each

other, and KMI applies a nearest neighbor algorithm to

replace missing data, in a similar way to KNNI.

• Imputation with fuzzy K-means clustering (FKMI)

(Acuna and Rodriguez 2004; Li et al. 2004): in fuzzy

clustering, each data object has a membership function

which describes the degree to which this data object

belongs to a certain cluster. In the process of updating

membership functions and centroids, FKMI’s only take

into account complete attributes. In this process, the

data object cannot be assigned to a concrete cluster

represented by a cluster centroid (as is done in the basic

K-mean clustering algorithm), because each data object

belongs to all K clusters with different membership

degrees. FKMI replaces non-reference attributes for

each incomplete data object based on the information

about membership degrees and the values of cluster

centroids.

• Support vector machines imputation (SVMI) (Feng

et al. 2005) is an SVM regression-based algorithm to

fill in missing data, i.e. set the decision attributes

(output or classes) as the condition attributes (input

attributes) and the condition attributes as the decision

attributes, so SVM regression can be used to predict the

missing condition attribute values. In order to do that,

first SVMI selects the examples in which there are no

missing attribute values. In the next step the method

sets one of the condition attributes (input attribute),

some of those values that are missing, as the decision

attribute (output attribute), and the decision attributes

as the condition attributes by contraries. Finally, an

SVM regression is used to predict the decision attribute

values.

• Event covering (EC) (Wong and Chiu 1987): based on

the work of Wong and Chiu (1987), a mixed-mode

probability model is approximated by a discrete one.

First, EC discretizes the continuous components using a

minimum loss of information criterion. Treating a

mixed-mode feature n-tuple as a discrete-valued one, a

new statistical approach is proposed for the synthesis of

knowledge based on cluster analysis. The main

868 J. Luengo et al.
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advantage of this method is that it does not require

either scale normalization or the ordering of discrete

values. By synthesizing the data into statistical knowl-

edge, the EC method involves the following processes:

(1) synthesize and detect from data inherent patterns

which indicate statistical interdependency; (2) group

the given data into inherent clusters based on this

detected interdependency; and (3) interpret the under-

lying patterns for each cluster identified. The method of

synthesis is based on the author’s event–covering

approach. With the developed inference method, EC

is able to estimate the MVs in the data.

• Regularized expectation-maximization (EM) (Schnei-

der 2001): missing values are imputed with a regular-

ized expectation maximization (EM) algorithm. In an

iteration of the EM algorithm, given estimates of the

mean and of the covariance matrix are revised in three

steps. First, for each record with missing values, the

regression parameters of the variables with missing

values among the variables with available values are

computed from the estimates of the mean and of the

covariance matrix. Second, the missing values in a

record are filled in with their conditional expectation

values given the available values and the estimates of

the mean and of the covariance matrix, the conditional

expectation values being the product of the available

values and the estimated regression coefficients. Third,

the mean and the covariance matrix are re-estimated, the

mean as the sample mean of the completed dataset and

the covariance matrix as the sum of the sample

covariance matrix of the completed dataset and an

estimate of the conditional covariance matrix of the

imputation error. The EM algorithm starts with initial

estimates of the mean and of the covariance matrix and

cycles through these steps until the imputed values and

the estimates of the mean and of the covariance matrix

stop changing appreciably from one iteration to the next.

• Singular value decomposition imputation (SVDI) (Tro-

yanskaya et al. 2001): in this method, singular value

decomposition is used to obtain a set of mutually

orthogonal expression patterns that can be linearly

combined to approximate the values of all attributes in

the dataset. In order to do that, first SVDI estimates the

MVs within the EM algorithm, and then it computes the

singular value decomposition and obtains the eigen-

values. Now SVDI can use the eigenvalues to apply a

regression to the complete attributes of the instance, to

obtain an estimation of the MV itself.

• Bayesian principal component analysis (BPCA)

(Oba et al. 2003): this method is an estimation method

for missing values, which is based on Bayesian

principal component analysis. Although the methodol-

ogy that a probabilistic model and latent variables are

estimated simultaneously within the framework of

Bayesian inference is not new in principle, actual

BPCA implementation that makes it possible to

estimate arbitrary missing variables is new in terms of

statistical methodology. The missing value estimation

method based on BPCA consists of three elementary

processes. They are (1) principal component (PC)

regression, (2) Bayesian estimation, and (3) an expec-

tation-maximization (EM)-like repetitive algorithm.

• Local least squares imputation (LLSI) (Kim et al.

2005): with this method, a target instance that has

missing values are represented as a linear combination

of similar instances. Rather than using all available

genes in the data, only similar genes based on a

similarity measure are used. The method has the

‘‘local’’ connotation. There are two steps in the LLSI.

The first step is to select k genes by the L2-norm. The

second step is regression and estimation, regardless of

how the k genes are selected. A heuristic k parameter

selection method is used by the authors.

4 Experimental framework

When analyzing imputation methods, a wide range of set

ups can be observed. The datasets used, their type (real or

synthetic), the origin and amount of MVs, etc. must be

carefully described, as the results will strongly depend on

them. All these aspects are described in Sect. 4.1.

The results obtained by the classification methods

depend on the previous imputation step, but also on the

parameter configuration used by both the imputation and

classification methods. Therefore, they must be indicated in

order to be able to reproduce any results obtained. In

Sect. 4.2 the parameter configurations used by all the

methods considered in this study are presented.

4.1 Datasets description

The experimentation has been carried out using 21 bench-

mark datasets from the KEEL-Dataset repository.2 Each

dataset is described by a set of characteristics such as the

number of data samples, attributes and classes, summarized

in Table 1. In this table, the percentage of MVs is indicated

as well: the percentage of values which are missing, and the

percentage of instances with at least one MV.

We cannot know anything about the randomness of

MVs in the datasets, so we assume they are distributed in

an MAR way, so the application of the imputation methods

is feasible. In our study, we want to deal with the original

2 http://sci2s.ugr.es/keel/datasets.php.
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MVs and therefore to obtain the real accuracy values of

each dataset with our imputation methods. In addition to

this, we use all kinds of datasets, which include nominal

datasets, numeric datasets and mixed-mode datasets.

In order to carry out the experimentation, we have used

a tenfold cross validation scheme. All the classification

algorithms use the same partitions, to perform fair com-

parisons. We take the mean accuracy of training and test of

the 10 partitions as a representative measure of the meth-

od’s performance.

All these datasets have natural MVs, and we have

imputed them with the following scheme. With the training

partition, we apply the imputation method, extracting the

relationships between the attributes, and filling in this

partition. Next, with the information obtained, we fill in the

MVs in the test partition. Since we have 14 imputation

methods, we will obtain 14 instances of each partition of a

given dataset once they have been preprocessed. All these

partitions will be used to train the classification methods

used in our study, and then we will perform the test vali-

dation with the corresponding test partition. If the impu-

tation method works only with numerical data, the nominal

values are considered as a list of integer values, starting

from 1 to the amount of different nominal values in the

attribute.

4.2 Parameter configuration

In Table 2 we show the parameters used by each imputa-

tion method described in Sect. 3.2, in cases where the

method needs a parameter. The values chosen are those as

recommended by their respective authors. Please refer to

their respective papers for further descriptions of the

parameters’ meaning.

In Table 3, the parameters used by the different

FRBCSs are presented. All these parameters are the rec-

ommended ones that have been extracted from the

respective publications of the methods. Please refer to the

associated publications and the KEEL platform to obtain

further details about the meaning of the different

parameters.

5 Analysis of the imputation methods for fuzzy

rule-based classification systems

In this section, we analyze the imputation results obtained

for the FRBCSs and study the best imputation choices in

each case. We first show the test accuracy results for the

three FRBCSs using the 14 imputation methods in Sect. 5.1

and indicate the best approaches using these initial criteria.

Table 1 Datasets used

Dataset Acronym # Instances # Attributes # Classes % MV % Instance with MV

Cleveland CLE 303 14 5 0.14 1.98

Wisconsin WIS 699 10 2 0.23 2.29

Credit CRX 689 16 2 0.61 5.37

Breast BRE 286 10 2 0.31 3.15

Autos AUT 205 26 6 1.11 22.44

Primary tumor PRT 339 18 21 3.69 61.06

Dermatology DER 365 35 6 0.06 2.19

House-votes-84 HOV 434 17 2 5.3 46.54

Water-treatment WAT 526 39 13 2.84 27.76

Sponge SPO 76 46 12 0.63 28.95

Bands BAN 540 40 2 4.63 48.7

Horse-colic HOC 368 24 2 21.82 98.1

Audiology AUD 226 71 24 1.98 98.23

Lung-cancer LUN 32 57 3 0.27 15.63

Hepatitis HEP 155 20 2 5.39 48.39

Mushroom MUS 8124 23 2 1.33 30.53

Post-operative POS 90 9 3 0.37 3.33

Echocardiogram ECH 132 12 4 4.73 34.09

Soybean SOY 307 36 19 6.44 13.36

Mammographic MAM 961 6 2 2.81 13.63

Ozone OZO 2534 73 2 8.07 27.11

870 J. Luengo et al.
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In order to establish a more robust and significant com-

parison we have used the Wilcoxon Signed Rank test in

Sect. 5.2, to support our analysis with a statistical test that

provides us with statistical evidence of the good behavior

of any imputation approach for the FRBCSs.

5.1 Results for all the classification methods

In this section, we analyze the different imputation

approaches for all the imputation methods as a first attempt

to obtain an ‘‘overall best’’ imputation method for each

FRBCS. Following the indications given in the previous

subsection, in Table 4 we depict the average test accuracy

for the three FRBCSs for each imputation method and

dataset. The best imputation method in each case is stres-

sed in bold face. We include a final column with the

average accuracy across all datasets for each imputation

method.

Attending to the average test accuracy obtained, the best

imputation methods are:

• DNI for FH-GBML: the use of the ‘‘don’t care’’ option

when MVs appear obtains good results in comparison

with the rest of imputation methods. This is specially

appreciable in the case of HOC and AUD datasets. The

CMC method is also close in the final average, while it

presents less difference with the best method when it is

not the best one unlike DNI.

• BPCA for Chi et al.: although BPCA presents an

irregular behavior, its superior performance in DER,

HOV, BAN, LUN and HEP datasets allows it to obtain

a better average. Again, CMC is the second best

method and its behavior is more similar to the rest of

the methods with less variations.

• EC for PDFC: the results for PDFC are less irregular,

and EC is consistently better in the majority of them. In

contraposition with FH-GBML and Chi et al., in this

case the best imputation method obtains a clear

difference with the second best, SVMI in this case.

From these results, an initial recommendation of the best

imputation procedures for each FRBCS can be made.

However, the high variations in the results discourages to

use the accuracy as the criterion to select them, specially

for FH-GBML and Chi et al. methods. Therefore, a more

robust procedure must be used in the comparisons in order

to obtain the best imputation method for each FRBCS. This

is discussed in the next subsection.

Table 2 Imputation methods parameters

Method Parameters

SVMI Kernel = RBF

C = 1.0

Epsilon = 0.001

shrinking = no

KNNI, WKNNI K = 10

KMI K = 10

Iterations = 100

Error = 100

FKMI K= 3

Iterations = 100

Error = 100

m = 1.5

EC T = 0.05

EM Iterations = 30

Stagnation tolerance = 0.0001

Inflation factor = 1

Regression type = multiple ridge regression

SVDI Iterations = 30

Stagnation tolerance = 0.005

Inflation factor = 1

Regression type = multiple ridge regression

Singular vectors = 10

LLSI Max number of nearest neighbor = 200

Table 3 Parameters used by the FRBCSs (p is the number of attri-

butes in the dataset)

FH-GBML

Number of fuzzy rules: 5 9 p rules

Number of rule sets (Npop): 200 rule sets

Crossover probability: 0.9

Mutation probability: 1/p

Number of replaced rules: All rules except the best-one

(Pittsburgh-part, elitist approach), number of rules/5

(Michigan-part)

Total number of generations: 1,000 generations

Don’t care probability: 0.5

Probability of the application of the Michigan iteration: 0.5

PDFC

C = 100

d = 0.25

Positive definite function type: symmetric triangle

Chi

Number of labels: 3

T-norm: product

Rule weight: penalized certainty factor

Fuzzy reasoning method: winning rule

Missing data imputation for FRBCSs 871
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5.2 Statistical analysis

In order to appropriately analyze the imputation and clas-

sification methods, we apply the Wilcoxon Signed rank test

comparing the imputation methods for each FRBCS sepa-

rately. With the results of the test, we create one table per

FRBCS in which we provide an average ranking for each

imputation method indicating the best ones. The content of

the tables and its interpretation is as follows:

1. We create an n 9 n table for each classification

method. In each cell, the outcome of the Wilcoxon

signed rank test is shown.

2. In the aforementioned tables, if the p value obtained by

the Wilcoxon tests for a pair of imputation methods is

higher than our a level, formerly 0.1, then we establish

that there is a tie in the comparison (no significant

difference was found), represented by a D.

3. If the p value obtained by the Wilcoxon tests is lower

than our a level, formerly 0.1, then we establish that

there is a win (represented by a W) or a loss

(represented by an L) in the comparison. If the method

presented in the row has a better ranking than the

method presented in the column in the Wilcoxon test

then there is a win, otherwise there is a loss.

With these columns, we have produced an average

ranking for each FRBCS. We have computed the number

of times that an imputation methods wins, and the number

of times that an imputation method wins and ties. Then we

obtain the average ranking by putting those imputation

methods which have a higher ‘‘wins ? ties’’ sum first

among the rest of the imputation methods. If a draw is

found for ‘‘wins ? ties’’, we use the ‘‘wins’’ to establish

the rank. If some methods obtain a draw for both ‘‘wins ?

ties’’ and ‘‘wins’’, then an average ranking is assigned for

all of them.

In order to compare the imputation methods for the

FRBCS considered in each we have added one more final

column with the mean ranking for each imputation method

across all the datasets, that is, the mean of every row. By

doing so, we can obtain a new rank (final column

RANKING), in which we propose a new ordering for the

imputation methods for a given FRBCS, using the values of

the column ‘‘Avg.’’ to sort the imputation methods.

Table 5 depicts the results for FH-GBML. The best

imputation method is CMC, while DNI is the sixth best. That

means that although DNI is capable of obtaining very good

results in few datasets, it is a very irregular MV treatment

strategy. CMC is capable of obtaining good results in every

dataset and even being the best on some of them. SVMI and

MC imputation methods are also good alternatives for FH-

GBML. Case deletion (IM) is an affordable option due to the

good generalization abilities of FH-GBML, but it obtains a

lower mean accuracy than SVMI and MC.

Table 6 summarize the results for Chi et al. Again we

find that CMC is the best imputation choice, while BPCA

was the preferred one considering only the accuracy

results. The behavior of BPCA is even more irregular for

Chi et al. than DNI for FH-GBML. CMC is better than

most of the imputation strategies, with 9 wins, making it a

clear imputation choice for this FRBCS.

Table 7 shows the results for PDFC. In this case, the

ranking using the Wilcoxon statistical comparison is in

concordance with the results obtained using the test accu-

racy: EC is the best imputation method for PDFC with 10

wins out of 14 methods. We can conclude that EC is the

best imputation method for PDFC.

For the Wilcoxon tables with their rankings we have

built Table 8 with the best three methods of each FRBCS.

We have stressed in bold those rankings equal to or below

three. An important outcome of the results is that both FH-

GBML and Chi et al. FRBCSs share the same best

Table 5 Average ranks for FH-GBML

IM EC KNNI WKNNI KMI FKMI SVMI EM SVDI BPCA LLSI MC CMC DNI Ties ? wins Wins Ranking

IM D D W D D D W W W D D D D 13 4 3

EC D D D D D D D D W D D D L 12 1 9.5

KNNI D D D D D D W D W D D D D 13 2 6

WKNNI L D D D D L D D W D L L D 9 1 11

KMI D D D D D D D D W D D D D 13 1 8

FKMI D D D D D D D W W D D D D 13 2 6

SVMI D D D W D D W W W D D D D 13 4 3

EM L D L D D D L D W D L L D 8 1 12.5

SVDI L D D D D L L D W D L L D 8 1 12.5

BPCA L L L L L L L L L L L L L 0 0 14

LLSI D D D D D D D D D W D L D 12 1 9.5

MC D D D W D D D W W W D D D 13 4 3

CMC D D D W D D D W W W W D D 13 5 1

DNI D W D D D D D D D W D D D 13 2 6
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imputation method, while PDFC has a different choice. We

must stress that FH-GBML and Chi et al. are Mamdani-

based FRBCSs, while PDFC is a special form of TSK

model. Therefore, the kind of FRBCS considered appears to

have influence on the best imputation strategy when con-

sidering other FRBCSs than those analyzed in this work.

As a final remark, we can state that:

• The imputation methods which fill in the MVs outper-

form the case deletion (IM method) and the lack of

imputation (DNI method). Only in the case of the IM

imputation method obtain a relatively low rank (2nd

and 3th place) but these results can be altered when new

examples are presented to the model learned with less

data. This fact indicates that the imputation methods

usually outperform the non-imputation strategies.

• There is no universal imputation method which

performs best for all type of FRBCS.

Please note that we have tackled the second point by

adding a categorization and a wide benchmark bed,

obtaining a group of recommended imputation methods for

each family.

6 Influence of the imputation on the instances

and individual features

In the previous section, we have analyzed the relationship

between the use of several imputation methods with respect

to the FRBCS’s accuracy. However, it would be interesting

Table 6 Average ranks for Chi et al.

IM EC KNNI WKNNI KMI FKMI SVMI EM SVDI BPCA LLSI MC CMC DNI Ties ? wins Wins Ranking

IM W D D D D D D D D W D D W 13 3 3

EC L L L L L L L L L L L L W 1 1 13

KNNI D W D D D L D D D D D L W 11 2 10.5

WKNNI D W D D D L D D D D D L W 11 2 10.5

KMI D W D D D D D D D D D L W 12 2 7.5

FKMI D W D D D D D D D D D L W 12 2 7.5

SVMI D W W W D D D D D D D D W 13 4 2

EM D W D D D D D W D D D L W 12 3 4

SVDI D W D D D D D L D D D L W 11 2 10.5

BPCA D W D D D D D D D D D D W 13 2 5.5

LLSI L W D D D D D D D D D L W 11 2 10.5

MC D W D D D D D D D D D D W 13 2 5.5

CMC D W W W W W D W W D W D W 13 9 1

DNI L L L L L L L L L L L L l 0 0 14

Table 7 Average ranks for PDFC

IM EC KNNI WKNNI KMI FKMI SVMI EM SVDI BPCA LLSI MC CMC DNI Ties ? wins Wins Ranking

IM L D D D D D D D W D D D W 12 2 7.5

EC W W W D W D W W W W D W W 13 10 1

KNNI D L D D D L D D W D D D W 11 2 9.5

WKNNI D L D D D D D D W D D D W 12 2 7.5

KMI D D D D D D D W W D D D W 13 3 6

FKMI D L D D D D D W W W D D W 12 4 4.5

SVMI D D W D D D W W W W D D W 13 6 2

EM D L D D D D L D W D D D W 11 2 9.5

SVDI D L D D L L L D W D L L W 7 2 12

BPCA L L L L L L L L L L L L W 1 1 13

LLSI D L D D D L L D D W L L W 8 2 11

MC D D D D D D D D W W W D W 13 4 3

CMC D L D D D D D D W W W D W 12 4 4.5

DNI L L L L L L L L L L L L L 0 0 14

Table 8 Best imputation methods for FRBCS

FH-GBML ranking Chi et al. ranking PDFC ranking

IM 3 3 2

EC 9.5 13 1

SVMI 3 2 2

MC 3 5.5 3

CMC 1 1 4.5
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to relate the influence of the imputation methods to the

information contained in the dataset. In order to study the

influence and the benefits/drawbacks of using the different

imputation methods, we have considered the use of two

different measures. They are described as follows:

• Wilson’s noise ratio: this measure proposed by Wilson

(1972) observes the noise in the dataset. For each

instance of interest, the method looks for the K nearest

neighbors (using the euclidean distance), and uses the

class labels of such neighbors in order to classify the

considered instance. If the instance is not correctly

classified, then the variable noise is increased by one

unit. Therefore, the final noise ratio will be

Wilson’s noise ¼ noise

# instances in the dataset
:

In particular, we only compute the noise for the imputed

instances considering K = 5.

• Mutual information: mutual information (MI) is consid-

ered to be a good indicator of relevance between two

random variables (Cover and Thomas 1991). Recently,

the use of the MI measure in feature selection has become

well known and seen to be successful (Kwak and Choi

2002a, b; Peng et al. 2005). The use of the MI measure

for continuous attributes has been tackled by (Kwak and

Choi 2002a), allowing us to compute the MI measure not

only in nominal-valued datasets. In our approach, we

calculate the MI between each input attribute and the

class attribute, obtaining a set of values, one for each

input attribute. In the next step we compute the ratio

between each one of these values, considering the

imputation of the dataset with one imputation method

in respect to the not imputed dataset. The average of

these ratios will show us if the imputation of the dataset

produces a gain in information:

Avg. MI ratio ¼
P

xi2X
MIaðxiÞþ1

MIðxiÞþ1

jXj

where X is the set of input attributes, MIa(i) represents the

MI value of the ith attribute in the imputed dataset and

MI(i) is the MI value of the ith input attribute in the not

imputed dataset. We have also applied the Laplace

correction, summing 1 to both numerator and

denominator, as an MI value of zero is possible for some

input attributes. The calculation of MI(xi) depends on the

type of attribute xi. If the attribute xi is nominal, the MI

between xi and the class label Y is computed as follows:

MInominalðxiÞ ¼ Iðxi; YÞ ¼
X

z2xi

X

y2Y

pðz; yÞlog2

pðz; yÞ
pðzÞpðyÞ :

On the other hand, if the attribute xi is numeric, we have

used the Parzen window density estimate as shown in

(Kwak and Choi 2002a) considering a Gaussian window

function:

MInumericðxiÞ ¼ Iðxi; YÞ ¼ HðYÞ � HðCjXÞ;

where H(Y) is the entropy of the class label

HðYÞ ¼ �
X

y2Y

pðyÞlog2pðyÞ;

and H(C|X) is the conditional entropy

HðY jxiÞ ¼ �
X

z2xi

X

y2Y

pðz; yÞlog2pðyjzÞ:

Considering that each sample has the same probability,

applying the Bayesian rule and approximating p(y|z) by the

Parzen window we get:

ĤðY jxiÞ ¼ �
Xn

j¼1

1

n

XN

y¼1

p̂ðyjzjÞlog2p̂ðyjzjÞ

where n is the number of instances in the dataset, N is the

total number of class labels and p̂ðcjxÞ is

p̂ðyjzÞ ¼
P

i2Ic
exp � ðz�ziÞR�1ðz�ziÞ

2h2

� �

PN
k¼1

P
i2Ik

exp � ðz�ziÞR�1ðz�ziÞ
2h2

� � :

In this case, Ic is the set of indices of the training examples

belonging to class c, and R is the covariance of the random

variable (z - zi).

Comparing with Wilson’s noise ratio we can observe

which imputation methods reduce the impact of the MVs as

a noise, and which methods produce noise when imputing.

In addition, the MI ratio allows us to relate the attributes to

the imputation results. A value of the MI ratio higher than 1

will indicate that the imputation is capable of relating more

of the attributes individually to the class labels. A value

lower than 1 will indicate that the imputation method is

adversely affecting the relationship between the individual

attributes and the class label.

In Table 9, we have summarized the Wilson’s noise

ratio values for the 21 datasets considered in our study.

We must point out that the results of Wilson’s noise ratio

are related to a given dataset. Hence, the characteristics of

the proper data appear to determine the values of this

measure.

In Table 10, we have summarized the average MI

ratios for the 21 datasets. In the results, we can observe

that the average ratios are usually close to 1; that is, the

use of imputation methods appears to harm the relation-

ship between the class label and the input attribute little

or not at all, even improving it in some cases. However,

the mutual information considers only one attribute at a

time and therefore the relationships between the input

attributes are ignored. The imputation methods estimate
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Table 9 Wilson’s noise ratio values

Dataset Imp. method % Wilson’s

noise ratio

Dataset Imp. method % Wilson’s

noise ratio

Dataset Imp. method % Wilson’s

noise ratio

CLE MC 50.0000 HOV MC 7.9208 HEP MC 17.3333

CMC 50.0000 CMC 5.4455 CMC 16.0000

KNNI 50.0000 KNNI 7.4257 KNNI 20.0000

WKNNI 50.0000 WKNNI 7.4257 WKNNI 20.0000

KMI 50.0000 KMI 7.4257 KMI 20.0000

FKMI 50.0000 FKMI 7.9208 FKMI 17.3333

SVMI 50.0000 SVMI 6.9307 SVMI 17.3333

EM 66.6667 EM 11.8812 EM 22.6667

SVDI 66.6667 SVDI 8.9109 SVDI 21.3333

BPCA 50.0000 BPCA 6.9307 BPCA 21.3333

LLSI 50.0000 LLSI 4.9505 LLSI 18.6667

EC 33.3333 EC 7.4257 EC 16.0000

WIS MC 18.7500 WAT MC 31.5068 MUS MC 0.0000

CMC 12.5000 CMC 21.2329 CMC 0.0000

KNNI 12.5000 KNNI 27.3973 KNNI 0.0000

WKNNI 12.5000 WKNNI 27.3973 WKNNI 0.0000

KMI 12.5000 KMI 27.3973 KMI 0.0000

FKMI 12.5000 FKMI 31.5068 FKMI 0.0000

SVMI 12.5000 SVMI 23.9726 SVMI 0.0000

EM 12.5000 EM 46.5753 EM 0.0000

SVDI 12.5000 SVDI 49.3151 SVDI 0.0000

BPCA 12.5000 BPCA 26.0274 BPCA 0.0000

LLSI 12.5000 LLSI 25.3425 LLSI 0.0000

EC 12.5000 EC 22.6027 EC 0.0000

CRX MC 18.9189 SPO MC 27.2727 POS MC 33.3333

CMC 18.9189 CMC 22.7273 CMC 33.3333

KNNI 21.6216 KNNI 27.2727 KNNI 33.3333

WKNNI 21.6216 WKNNI 27.2727 WKNNI 33.3333

KMI 21.6216 KMI 27.2727 KMI 33.3333

FKMI 18.9189 FKMI 27.2727 FKMI 33.3333

SVMI 13.5135 SVMI 27.2727 SVMI 33.3333

EM 32.4324 EM 36.3636 EM 33.3333

SVDI 27.0270 SVDI 31.8182 SVDI 33.3333

BPCA 21.6216 BPCA 27.2727 BPCA 33.3333

LLSI 18.9189 LLSI 27.2727 LLSI 33.3333

EC 13.5135 EC 27.2727 EC 33.3333

BRE MC 55.5556 BAN MC 25.4753 ECH MC 40.0000

CMC 55.5556 CMC 24.3346 CMC 40.0000

KNNI 55.5556 KNNI 23.1939 KNNI 46.6667

WKNNI 55.5556 WKNNI 22.8137 WKNNI 44.4444

KMI 55.5556 KMI 25.4753 KMI 46.6667

FKMI 55.5556 FKMI 24.3346 FKMI 40.0000

SVMI 55.5556 SVMI 21.2928 SVMI 44.4444

EM 44.4444 EM 26.2357 EM 51.1111

SVDI 44.4444 SVDI 22.4335 SVDI 48.8889

BPCA 66.6667 BPCA 23.9544 BPCA 44.4444

LLSI 66.6667 LLSI 24.7148 LLSI 37.7778

EC 66.6667 EC 23.5741 EC 48.8889
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the MVs using such relationships and can afford

improvements in the performance of the FRBCSs. Hence

the highest values of average MI ratios could be related

to those methods which can obtain better estimates for

the MVs, and maintaining the relationship degree

between the class labels and the isolated input attributes.

It is interesting to note that when analyzing the MI ratio,

the values do not appear to be as highly data dependant

as Wilson’s noise ratio, as the values for all the datasets

are more or less close to each other.

If we count the methods with the lowest Wilson’s noise

ratios in each dataset in Table 9, we find that the CMC

method is first, with 12 times the lowest one, and the EC

method is second with 9 times the lowest one. If we count

the methods with the highest mutual information ratio in

each dataset in Table 10, the EC method has the highest

ratio for 7 datasets and is therefore the first one. The CMC

method has the highest ratio for 5 datasets and is the second

one in this case. Considering the analysis of the previous

Sect. 5.2 with these two methods:

Table 9 continued

Dataset Imp. method % Wilson’s

noise ratio

Dataset Imp. method % Wilson’s

noise ratio

Dataset Imp. method % Wilson’s

noise ratio

AUT MC 45.6522 HOC MC 19.3906 SOY MC 2.4390

CMC 41.3043 CMC 10.2493 CMC 2.4390

KNNI 41.3043 KNNI 20.2216 KNNI 2.4390

WKNNI 41.3043 WKNNI 19.1136 WKNNI 2.4390

KMI 41.3043 KMI 21.8837 KMI 2.4390

FKMI 45.6522 FKMI 20.4986 FKMI 2.4390

SVMI 43.4783 SVMI 20.2216 SVMI 2.4390

EM 58.6957 EM 21.0526 EM 2.4390

SVDI 52.1739 SVDI 21.0526 SVDI 7.3171

BPCA 43.4783 BPCA 19.3906 BPCA 7.3171

LLSI 45.6522 LLSI 20.4986 LLSI 2.4390

EC 30.4348 EC 20.7756 EC 2.4390

PRT MC 71.0145 AUD MC 38.7387 MAM MC 21.3740

CMC 60.8696 CMC 32.8829 CMC 13.7405

KNNI 69.5652 KNNI 38.7387 KNNI 25.9542

WKNNI 69.5652 WKNNI 38.7387 WKNNI 25.9542

KMI 71.0145 KMI 38.7387 KMI 24.4275

FKMI 71.0145 FKMI 38.7387 FKMI 20.6107

SVMI 68.1159 SVMI 37.8378 SVMI 16.7939

EM 88.4058 EM 53.6036 EM 20.6107

SVDI 91.7874 SVDI 46.3964 SVDI 27.4809

BPCA 71.4976 BPCA 40.5405 BPCA 25.1908

LLSI 69.5652 LLSI 36.9369 LLSI 26.7176

EC 66.1836 EC 37.8378 EC 18.3206

DER MC 0.0000 LUN MC 80.0000 OZO MC 4.8035

CMC 0.0000 CMC 80.0000 CMC 3.6390

KNNI 0.0000 KNNI 80.0000 KNNI 4.3668

WKNNI 0.0000 WKNNI 80.0000 WKNNI 4.5124

KMI 0.0000 KMI 80.0000 KMI 4.9491

FKMI 0.0000 FKMI 80.0000 FKMI 4.0757

SVMI 0.0000 SVMI 80.0000 SVMI 3.7846

EM 0.0000 EM 20.0000 EM 4.8035

SVDI 0.0000 SVDI 40.0000 SVDI 4.8035

BPCA 0.0000 BPCA 80.0000 BPCA 4.3668

LLSI 0.0000 LLSI 80.0000 LLSI 4.2213

EC 0.0000 EC 80.0000 EC 4.8035
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Table 10 Average mutual information ratio

Dataset Imp. method Avg. MI ratio Dataset Imp. Method Avg. MI ratio Dataset Imp. method Avg. MI ratio

CLE MC 0.998195 HOV MC 0.961834 HEP MC 0.963765

CMC 0.998585 CMC 1.105778 CMC 0.990694

KNNI 0.998755 KNNI 0.965069 KNNI 0.978564

WKNNI 0.998795 WKNNI 0.965069 WKNNI 0.978343

KMI 0.998798 KMI 0.961525 KMI 0.980094

FKMI 0.998889 FKMI 0.961834 FKMI 0.963476

SVMI 0.998365 SVMI 0.908067 SVMI 1.006819

EM 0.998152 EM 0.891668 EM 0.974433

SVDI 0.997152 SVDI 0.850361 SVDI 0.967673

BPCA 0.998701 BPCA 1.091675 BPCA 0.994420

LLSI 0.998882 LLSI 1.122904 LLSI 0.995464

EC 1.000148 EC 1.007843 EC 1.024019

WIS MC 0.999004 WAT MC 0.959488 MUS MC 1.018382

CMC 0.999861 CMC 0.967967 CMC 1.018382

KNNI 0.999205 KNNI 0.961601 KNNI 0.981261

WKNNI 0.999205 WKNNI 0.961574 WKNNI 0.981261

KMI 0.999322 KMI 0.961361 KMI 1.018382

FKMI 0.998923 FKMI 0.961590 FKMI 1.018382

SVMI 0.999412 SVMI 0.967356 SVMI 0.981261

EM 0.990030 EM 0.933846 EM 1.142177

SVDI 0.987066 SVDI 0.933040 SVDI 1.137152

BPCA 0.998951 BPCA 0.964255 BPCA 0.987472

LLSI 0.999580 LLSI 0.964063 LLSI 0.977275

EC 1.000030 EC 1.027369 EC 1.017366

CRX MC 1.000883 SPO MC 0.997675 POS MC 1.012293

CMC 1.000966 CMC 1.022247 CMC 1.012293

KNNI 0.998823 KNNI 0.999041 KNNI 1.012293

WKNNI 0.998870 WKNNI 0.999041 WKNNI 1.012293

KMI 1.001760 KMI 0.998464 KMI 1.012293

FKMI 1.000637 FKMI 0.997675 FKMI 1.012293

SVMI 0.981878 SVMI 1.015835 SVMI 1.012293

EM 0.985609 EM 0.982325 EM 1.012293

SVDI 0.976398 SVDI 0.979187 SVDI 1.014698

BPCA 0.999934 BPCA 1.006236 BPCA 1.012293

LLSI 1.001594 LLSI 1.004821 LLSI 1.018007

EC 1.008718 EC 1.018620 EC 0.997034

BRE MC 0.998709 BAN MC 1.012922 ECH MC 0.981673

CMC 0.998709 CMC 1.070857 CMC 0.995886

KNNI 0.992184 KNNI 0.940369 KNNI 0.997912

WKNNI 0.992184 WKNNI 0.940469 WKNNI 0.998134

KMI 0.998709 KMI 1.016101 KMI 0.967169

FKMI 0.998709 FKMI 1.020989 FKMI 0.983606

SVMI 0.998709 SVMI 1.542536 SVMI 0.987678

EM 1.013758 EM 1.350315 EM 0.967861

SVDI 0.999089 SVDI 1.365572 SVDI 0.935855

BPCA 1.000201 BPCA 1.010596 BPCA 0.972327

LLSI 1.000201 LLSI 1.015033 LLSI 0.988591

EC 1.001143 EC 1.102328 EC 0.970029
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• The EC method is the best method obtained for PDFC,

and the third best for the rule Induction Learning

methods while is one of the worst for Chi et al. and

PDFC methods. Therefore, the TSK models seems to

benefit more from those imputation methods which

produce gain in the MI.

• The CMC method is the best method for the Mamdani

models (Chi et al. and FH-GBML), and not very bad

for PDFC. Mamdani FRBCSs benefit from the impu-

tation method which induce less noise in the resultant

imputed dataset.

Next, we rank all the imputation methods according to

the values presented in Tables 9 and 10. In order to do so,

we have calculated the average rankings of each imputation

method for all the datasets, for both Wilson’s noise ratio

and the mutual information ratio. The method to compute

this average ranking is the same as that presented in Sect.

5.2. In Table 11 we have gathered together these average

rankings, as well as their relative position in parentheses.

From the average rankings shown in Table 11, we can

observe that the CMC method is the first for both rankings.

The EC method is the second for the mutual information

Table 10 continued

Dataset Imp. method Avg. MI ratio Dataset Imp. Method Avg. MI ratio Dataset Imp. method Avg. MI ratio

AUT MC 0.985610 HOC MC 0.848649 SOY MC 1.056652

CMC 0.991113 CMC 2.039992 CMC 1.123636

KNNI 0.986239 KNNI 0.834734 KNNI 1.115818

WKNNI 0.985953 WKNNI 0.833982 WKNNI 1.115818

KMI 0.985602 KMI 0.821936 KMI 1.056652

FKMI 0.984694 FKMI 0.849141 FKMI 1.056652

SVMI 0.991850 SVMI 0.843456 SVMI 1.772589

EM 0.970557 EM 0.775773 EM 1.099286

SVDI 0.968938 SVDI 0.750930 SVDI 1.065865

BPCA 0.986631 BPCA 0.964587 BPCA 1.121603

LLSI 0.985362 LLSI 0.926068 LLSI 1.159610

EC 1.007652 EC 0.911543 EC 1.222631

PRT MC 0.949896 AUD MC 0.990711 MAM MC 0.974436

CMC 1.120006 CMC 1.032162 CMC 1.029154

KNNI 0.976351 KNNI 0.993246 KNNI 0.965926

WKNNI 0.976351 WKNNI 0.993246 WKNNI 0.965926

KMI 0.949896 KMI 1.000235 KMI 0.966885

FKMI 0.949896 FKMI 0.990711 FKMI 0.974228

SVMI 1.038152 SVMI 1.007958 SVMI 1.272993

EM 0.461600 EM 1.129168 EM 0.980865

SVDI 0.485682 SVDI 1.065091 SVDI 1.052790

BPCA 0.987598 BPCA 1.156676 BPCA 0.978209

LLSI 1.016230 LLSI 1.061197 LLSI 0.994349

EC 1.053185 EC 1.209608 EC 1.269505

DER MC 1.000581 LUN MC 0.996176 OZO MC 0.982873

CMC 1.002406 CMC 1.008333 CMC 0.989156

KNNI 0.999734 KNNI 0.996176 KNNI 0.982759

WKNNI 0.999734 WKNNI 0.996176 WKNNI 0.982721

KMI 1.000581 KMI 0.996176 KMI 0.982495

FKMI 1.000581 FKMI 0.996176 FKMI 0.982951

SVMI 1.001566 SVMI 1.006028 SVMI 0.988297

EM 1.000016 EM 1.067844 EM 0.979977

SVDI 0.999691 SVDI 1.076334 SVDI 0.979958

BPCA 0.999633 BPCA 0.996447 BPCA 0.983318

LLSI 0.999170 LLSI 1.007612 LLSI 0.983508

EC 1.000539 EC 1.002385 EC 0.944747
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ratio, and the third one for Wilson’s noise ratio. The SVMI

method obtains the second lowest ranking for Wilson’s

noise ratio, and the fourth lowest ranking for the MI ratio.

The SVMI method is the second best method for the rule

Induction learning algorithms with average rankings close

to EC.

With the analysis performed, we have quantified the

noise induced by the imputation methods and how the

relationship between each input attribute and the class is

maintained. We have discovered that the CMC and EC

methods show good behavior for these two measures, and

they are two methods that the best results for the FRBCSs

as we have previously analyzed. In short, these two

approaches introduce less noise and maintain the mutual

information better. They can provide us with a first char-

acterization of imputation methods and a first step for

providing us with tools for analyzing the imputation

method’s behavior.

7 Concluding remarks

This study is a general comparison of FRBCSs not previ-

ously considered in MV studies. We have studied the use of

imputation techniques for the analysis of three represen-

tative FRBCSs, presenting an analysis among imputation,

do not impute and ignore cases with MVs. We have used a

large bunch of datasets with real MVs to do so.

From the obtained results in Sect. 5.2, the particular

analysis of the MVs treatment methods conditioned to the

FRBCS nature is necessary. Thus, we can stress particular

imputation algorithms based on the classification groups, as

in the case of the CMC method for the Mamdami FRBCSs

and the EC method for the TSK models. Therefore, we can

confirm the positive effect of the imputation methods and

the FRBCS’ behavior, and the presence of more suitable

imputation methods for some particular FRBCS categories

than others.

Moreover, we have analyzed the influence of the

imputation methods in respect to two measures. These two

measures are the Wilson’s noise ratio and the average

mutual information difference. The first one quantifies the

noise induced by the imputation method in the instances

which contain MVs. The second one examines the incre-

ment or decrement in the relationship of the isolated input

attributes with respect to the class label. We have observed

that the CMC and EC methods are the ones which intro-

duce less noise and maintain the mutual information better,

which correspond to the best imputation methods observed

for each FRBCS types.
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