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1. Introduction

The problem of imbalanced data-sets1–3 for binary classification occurs when the

number of instances for each class are very different between them, which can lead

to a good classification of the majority class and a poor accuracy on the minority

examples. Furthermore, the less representative class is usually the one which has

more interest from the point of view of the learning task.4–6 We must stress the

importance of imbalanced data-sets, since such type of data appears in most of the

real domains of classification. Some examples are face recognition,7 remote-sensing8

and forecasting of ozone levels9,10 among others.

We develop an experimental analysis in the context of imbalance classification.

In this study, we will make use of linguistic Fuzzy Rule Based Classification Systems

(FRBCSs), a very useful tool in the framework of computational intelligence, since

they provide a very interpretable model for the end user.11 The good behavior

of FRBCS when dealing with imbalanced data-sets has been recently analyzed in

Ref. 12.

An FRBCS presents two main components: the Inference System and the Knowl-

edge Base (KB). The KB is composed of the Rule Base (RB) constituted by the

collection of fuzzy rules, and of the Data Base (DB), that comprises the number of

labels for each linguistic variable (granularity level), as well as the fuzzy member-

ship functions associated to each label (fuzzy partition). The composition of the KB

of an FRBCS directly depends on the problem being solved. If there is no expert

information about the problem under solving, an automatic learning process must

be used to derive the KB from examples.

The number of labels per linguistic variable (granularity) is an information that

has not been considered to be relevant for the majority of FRBCS learning methods.

The usual way to proceed involves choosing a number of linguistic terms for each

linguistic variable, which is normally the same for all of them (the most used values

are the odd numbers between 3 and 7). This operation mode makes the granularity

level has a significant influence on the FRBCS performance. The fuzzy partition

granularity of a linguistic variable can be viewed as a sort of context information

with a significative influence in the FRBCS behavior. Considering a specific label set

for a variable, some labels can result irrelevant, that is, they can contribute nothing

and even can cause confusion. In other cases, it would be necessary to add new

labels to appropriately differentiate the values of the variable. The high influence

of granularity in fuzzy modeling has been analyzed in Ref. 13 and some approaches

for automatic learning of the KB in fuzzy modeling and fuzzy classification include

the granularity learning.14–17 In a previous work,18 we analyze the influence of

granularity learning in the performance of FRBCSs for imbalanced data-sets, and

the results obtained show that a significant improvement in the classification ability

is possible just by learning an adequate number of labels per variable although the

complexity of the model was lightly increased.
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On the other hand, in many classification problems, a large number of features

can originate RBs with a high number of rules, thus presenting a low degree of

interpretability and a possible overfitting (the error over the training data-set is

very low but the FRBCS present a significative decrease on the prediction ability).

This problem can be addressed from a double perspective:

• Via the compactness and reduction of the rule set, minimizing the number of

fuzzy rules included in it.

• Via a feature selection process that reduces the number of features used by the

FRBCS.

Rule reduction methods have been formulated using different approaches: Neural

Networks,19 clustering techniques,20 orthogonal transformation methods,21 similar-

ity measures22,23 and Genetic Algorithms (GAs).24,25 Notice that, for high dimen-

sional problems and problems where a high number of instances is available, it is

difficult for rule reduction approaches to get small rule sets, and therefore the sys-

tem comprehensibility and interpretability may not be as good as desired. For high

dimensionality classification problems, a feature selection process, that determines

the most relevant variables before or during the FRBCS inductive learning process,

must be considered.26 It increases the efficiency and accuracy of the learning and

classification stages.

The main objective of this paper is to propose a genetic learning process to derive

the KB of a FRBCS for imbalanced data-sets in order to maintain the improvement

level of the prediction ability achieved in Ref. 18 (by the granularity learning) joint

with a significative reduction of the model complexity in order to increase the

FRBCS interpretability (by the feature selection).

Our proposal uses a GA for jointly perform a feature selection and a granularity

learning, and considers a classical FRBCS learning method to derive the RB, the Chi

et al.’s approach.27 This KB generation approach, in which A DB generation process

wraps a RB learning one, is composed of two different (and independent) learning

processes. Therefore, our proposal of GA for DB generation can be combined with

any RB generation method. We have chosen the Chi et al.’s method for its simplicity

but more accurate ones can be used.

In order to show the influence of choosing a good set of features and an adequate

granularity level, we compare the results obtained with the ones obtained by Chi et

al.’s method with all the variables selected with and without a granularity learning

process. We also want to check the performance of our proposal compared with a

non-FRBCS classification model, C4.5,28 a decision tree algorithm that has been

used as a reference in the imbalanced data-sets field.29–32

We have selected a large collection of imbalanced data-sets from KEEL

data-set repository133 for developing our experimental analysis. In order to deal

with the problem of imbalanced data-sets we will make use of a preprocessing

1http://www.keel.es/dataset.php

http://www.keel.es/dataset.php
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technique, the “Synthetic Minority Over-sampling Technique” (SMOTE),34 to bal-

ance the distribution of training examples in both classes. Furthermore, we will

perform a statistical study using non-parametric tests35–37 to find significant dif-

ferences among the obtained results.

This paper is organized as follows. First, Sec. 2 introduces the preliminary con-

cepts of FRBCSs and imbalanced data-sets used in this paper. Next, in Sec. 3 we

will expose the main characteristics of our proposal, a GA for feature selection and

granularity learning in FRBCS. The next section describes the experimental study.

Finally, in Sec. 5, some conclusions will be pointed out.

2. Preliminaries

This section first introduces some basic concepts about FRBCS and describes the

fuzzy rule learning algorithm used in our work. Next, the problem of imbalanced

data-sets is addressed in detail.

2.1. Fuzzy rule based classification systems

Any classification problem consists of m training patterns xp = (xp1, . . . , xpn, Cp),

p = 1, 2, . . . ,m from M classes where xpi is the ith attribute value (i = 1, 2, . . . , n)

of the p-th training pattern.

In this work we use fuzzy rules of the following form for our FRBCSs:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class = Cj with RWj

(1)

where Rj is the label of the jth rule, x = (x1, . . . , xn) is an n-dimensional pattern

vector, Aji is an antecedent fuzzy set, Cj is a class label, and RWj is the rule

weight.38 We use triangular MFs as antecedent fuzzy sets.

In order to build the RB, we have chosen a classical and simple FRBCS, following

the same scheme as our previous works:12,39,40 the Chi et al.’s rule generation

method.27 This FRBCSs design method is an extension of the well-knownWang and

Mendel method41 to classification problems. To generate the fuzzy RB, this method

determines the relationship between the variables of the problem and establishes

an association between the space of the features and the space of the classes by

means of the following steps:

(1) Establishment of the linguistic partitions. Once the domain of variation of each

feature Ai is determined, the fuzzy partitions are computed.

(2) Generation of a fuzzy rule for each example xp = (xp1, . . . , xpn, Cp). To do this

it is necessary:

2.1 To compute the matching degree µ(xp) of the example to the different fuzzy

regions using a conjunction operator (usually modeled with a minimum or

product T-norm).
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2.2 To assign the example xp to the fuzzy region with the greatest membership

degree.

2.3 To generate a rule for the example, whose antecedent is determined by

the selected fuzzy region and whose consequent is the label of class of the

example.

2.4 To compute the rule weight.

We must remark that rules with the same antecedent can be generated during

the learning process. If they have the same class in the consequent we just remove

one of the duplicated rules, but if they have a different class only the rule with the

highest weight is kept in the RB.

2.2. Basic concepts on imbalanced data-sets

In this section, we first introduce the problem of imbalanced data-sets. Then, we

describe the pre-processing technique we have applied in order to deal with the im-

balanced data-sets: the SMOTE algorithm.34 Finally, we will present the evaluation

metrics for this type of classification problem.

2.2.1. The problem of imbalanced data-sets

The main property of this type of classification problem (in a binary context) is that

the examples of one class outnumbers examples of the other one.1,3 Since most of the

standard learning algorithms consider a balanced training set, this situation may

cause the obtention of suboptimal classification models, i.e. a good coverage of the

majority examples whereas the minority ones are misclassified more frequently.2,3

The reasons behind this behaviour include:

• The use of the standard accuracy metric, which is independent of the class dis-

tribution and therefore it favours the coverage of the majority class examples.

• The small disjuncts that can be found in the data set42 and the difficulty of most

learning algorithms in detecting these areas.30,43 In fact, learning algorithms try

to benefit those models with a higher degree of coverage and these small disjuncts

imply the application of very specific models which are discarded in favor or more

general ones.

• Related to the apparition of small disjuncts, we must stress the overlapping be-

tween the examples of the positive and the negative class,44 in which the minority

class examples can be simply treated as noise and ignored by the learning algo-

rithm. These phenomena are depicted in Fig. 1(a) and 1(b) respectively.

In the specialized literature, researchers usually manage all imbalanced data sets

as a whole.29,45,46 Nevertheless, in this paper we organize the different data sets

according to their degree of imbalance using the imbalance ratio (IR),30 which is

defined as the ratio of the number of instances of the majority class and the minority
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Small Disjuncts

a)

Small Disjuncts

a) b)b)

Fig. 1. Example of the imbalance between classes: (a) small disjuncts (b) overlapping between
classes.

class. Therefore we can focus only in those problem with a high IR considering them

more interesting from a learning point of view.

A large number of approaches have been previously proposed to deal with the

class-imbalance problem. These approaches can be categorized in two groups: the

internal approaches that create new algorithms or modify existing ones to take the

class-imbalance problem into consideration45,47–49 and external approaches that

preprocess the data in order to diminish the effect of their class imbalance.29,50

Furthermore, cost-sensitive learning solutions incorporating both the data and al-

gorithmic level approaches assume higher misclassification costs with samples in

the minority class and seek to minimize the high cost errors.51–53

The great advantage of the external approaches is that they are more versatile,

since their use is independent of the classifier selected. Furthermore, we may pre-

process all data-sets beforehand in order to use them to train different classifiers.

In this manner, the computation time needed to prepare the data is only required

once.

In our previous work on this topic,12 we analysed the cooperation of some pre-

processing methods with FRBCSs, showing a good behaviour for the oversampling

methods, especially in the case of the SMOTE methodology.34 In accordance with

these results, we will use the SMOTE algorithm in this paper in order to deal with

the problem of imbalanced data-sets, which is detailed in the next subsection.

2.2.2. Pre-processing imbalanced data sets. The SMOTE algorithm

In the specialized literature, we can find several papers about resampling techniques

studying the effect of changing class distribution to deal with imbalanced data-sets.

Those works have proved empirically that, applying a preprocessing step in order to

balance the class distribution, is usually a positive solution.12,29,54 Furthermore, the

main advantage of these techniques is that they are independent of the underlying

classifier.
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Resampling techniques can be categorized into three groups or families:

(1) Undersampling methods, which create a subset of the original data-set by

eliminating instances (usually majority class instances).

(2) Oversampling methods, which create a superset of the original data-set by repli-

cating some instances or creating new instances from existing ones.

(3) Hybrids methods, which combine both sampling approaches.

As mentioned before, previous analysis on preprocessing methods with FRBCSs

have shown the goodness of the oversampling techniques. The simplest approach,

random oversampling, makes exact copies of existing instances, and therefore sev-

eral authors agree that this method can increase the likelihood of occurring over-

fitting.29 According to the previous fact, more sophisticated methods have been

proposed based on the generation of synthetic samples. Among them, the SMOTE

methodology,34 whose main idea is to form new minority class examples by inter-

polating between several minority class examples that lie together, have become

one of the most significant approaches in this area.

The positive class is over-sampled by taking each minority class sample and

introducing synthetic examples along the line segments joining any/all of the k

minority class nearest neighbours. Depending upon the amount of over-sampling

required, neighbours from the k nearest neighbours are randomly chosen. This

process is illustrated in Fig. 2, where xi is the selected point, xi1 to xi4 are

some selected nearest neighbours and r1 to r4 the synthetic data points created

by the randomised interpolation. The implementation of this work uses only one

nearest neighbour with the Euclidean distance, and balances both classes to 50%

distribution.
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Fig. 2. An illustration of how to create the synthetic data points in the SMOTE algorithm.

Synthetic samples are generated in the following way: Take the difference be-

tween the feature vector (sample) under consideration and its nearest neighbour.

Multiply this difference by a random number between 0 and 1, and add it to the fea-

ture vector under consideration. This causes the selection of a random point along

the line segment between two specific features. This approach effectively forces the

decision region of the minority class to become more general. A numerical example

is detailed in Fig. 3.



May 2, 2012 15:38 WSPC/118-IJUFKS S0218488512500195

376 P. Villar et al.

Consider a sample (6,4) and let (4,3) be its nearest neighbour.

(6,4) is the sample for which k-nearest neighbours are

being identified and (4,3) is one of its k-nearest neighbours.

Let: f1_1 = 6 f2_1 = 4, f2_1 - f1_1 = -2

f1_2 = 4 f2_2 = 3, f2_2 - f1_2 = -1

The new samples will be generated as

(f1’,f2’) = (6,4) + rand(0-1) * (-2,-1) rand(0-1)

generates a random number between 0 and 1.

Fig. 3. Example of the SMOTE application.

2.2.3. Evaluation in imbalanced domains

The measures of the quality of classification are built from a confusion matrix

(shown in Table 1) which records correctly and incorrectly recognized examples for

each class.

Table 1. Confusion matrix for a two-class problem.

Positive Prediction Negative Prediction

Positive Class True Positive (TP) False Negative (FN)

Negative Class False Positive (FP) True Negative (TN)

The most used empirical measure, accuracy (2), cannot be considered for im-

balanced data sets, since it does not distinguish between the number of correct

classifications of the different classes, which may lead to erroneous conclusions in

this case. As a classical example, if the ratio of imbalance presented in the data

is 1:100, i.e. there is one positive instance versus ninety-nine negatives, a classifier

that obtains an accuracy rate of 99% is not truly accurate if it does not correctly

cover any minority class instance.

Acc =
TP + TN

TP + FN + FP + TN
. (2)

Because of this, instead of using accuracy, more correct metrics are consid-

ered. Specifically, from Table 1 it is possible to obtain four metrics of perfor-

mance that measure the classification quality for the positive and negative classes

independently:

• True positive rate TPrate =
TP

TP+FN
is the percentage of positive cases cor-

rectly classified as belonging to the positive class.

• True negative rate TNrate = TN
FP+TN

is the percentage of negative cases

correctly classified as belonging to the negative class.

• False positive rate FPrate = FP
FP+TN

is the percentage of negative cases

misclassified as belonging to the positive class.

• False negative rate FNrate = FN
TP+FN

is the percentage of positive cases

misclassified as belonging to the negative class.
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Since in this classification scenario we intend to achieve good quality results for

both classes, there is a necessity of obtaining one way to combine the individual

measures of both the positive and negative classes, being none of these measures

alone adequate by itself.

Specifically, a well-known approach to unify these measures and to produce an

evaluation criteria is to use the Receiver Operating Characteristic (ROC) graphic.55

This graphic allows to visualize the trade-off between the benefits (TPrate) and costs

(FPrate), thus it evidences that any classifier cannot increase the number of true

positives without also increasing the false positives. The Area Under the ROC Curve

(AUC)56 corresponds to the probability of correctly identifying which one of the two

stimuli is noise and which one is signal plus noise. AUC provides a single measure

of a classifier’s performance for evaluating which model is better on average.

Figure 4 shows how to build the ROC space plotting on a two-dimensional chart

the TPrate (Y -axis) against the FPrate (X-axis). Points in (0, 0) and (1, 1) are trivial

classifiers where the predicted class is always the negative and positive respectively.

On the contrary, (0, 1) point represents the perfect classification. AUC measure is

computed just by obtaining the area of the graphic as:

AUC =
1 + TPrate − FPrate

2
. (3)

False Positive Rate

T
ru

e
 P

o
s
it

iv
e
 R

a
te

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Random Classifier

Fig. 4. Example of an ROC plot. Two classifiers’ curves are depicted: the dashed line represents
a random classifier, whereas the solid line is a classifier which is better than the random classifier.

As a final remark, we must state that AUC has a special statistical meaning:

it represents the probability that a randomly chosen negative example will have a

smaller estimated probability of belonging to the positive class than a randomly

chosen positive example.57 Moreover, AUC also equals to the quantity of Wilcoxon

statistic.58 Please refer to56 for details.
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3. Genetic Algorithm for Feature Selection and

Granularity Learning

In this section, we propose an standard generational GA for the DB definition that

allows us to select a set of variables (feature selection) and learn an adequate number

of labels for each selected variable (granularity learning). We denote our proposal as

GA-FS+GL (Genetic Algorithm for Feature Selection and Granularity Learning). In

this contribution, the possible values considered for the granularity are taken from

the set {2, . . . , 7}. Once the granularity for each feature is determined, the DB is

built. Uniform partitions with triangular membership functions are considered due

to its simplicity. Next, we use a quick method that derives the fuzzy classification

rules and then the whole KB is obtained. We must recall from the previous section

that the RB learning algorithm used in this work is the method proposed in Ref. 27,

that we have called the Chi et al.’s rule generation method.

The main purpose of GA-FS+GL is to obtain FRBCSs with good accuracy and

reduced complexity taking the feature selection and granularity learning as a base.

Unfortunately, FRBCSs with good performance have a high number of rules, thus

presenting a low degree of readability. On the other hand, as mentioned before, the

KB design methods sometimes lead to a certain overfitting to the training data-set

used for the learning process. In order to avoid that problem, our genetic process

try to design a compact and interpretable KB by penalizing FRBCSs with high

number of selected variables and/or high granularity average as it will be explained

in Section 3.3. Next, we describe the components of GA-FS+GL.

3.1. Encoding the DB

For a classification problem with N features, each chromosome will be composed of

two parts to encode the relevant variables and the number of linguistic terms for

variable (i.e. the granularity):

• Relevant variables (CV ): the selected features are stored in a binary coded

array of length N . In this array, an 1 indicates that the correspondent variable

is selected for the FRBCS.

• Granularity level (CG): the number of labels per variable is stored in an integer

array of length N. The possible values are taken from the set {2, . . . , 7}.

If vi is the bit that represents whether the variable i is selected and gi is the

granularity of variable i, a representation of the chromosome is shown next:

CV = (v1, v2, . . . , vN ) CG = (g1, g2, . . . , gN )

C = (v1, v2, . . . , vN , g1, g2, . . . , gN )

It would be possible to merge both parts considering only an integer array and

including the value 1 as a placeholder for not using the variable. We propose the

former coding scheme to assign the same importance to both parts and to make

easy the possibility of removing features.
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3.2. Initial gene pool

The initial population is composed of six groups with a different number of selected

variables. Let g the cardinality of the significant term set for the CV part, in our

case g = 6, corresponding to the six possibilities for the number of labels, 2 . . . 7.

The generation of the initial population is described below:

• In the first group all the chromosomes have all the features selected that is,

CV = (1, 1, 1, . . . , 1). It is composed of g + 10 chromosomes (16 in our case).

The first g individuals have the same granularity in all its variables. For each

granularity level, one individual is created. In the second 10 chromosomes the

granularity level is randomly selected.

• The next four groups have the same structure as the first group but each one of

them with a different percentage of randomly selected variables (75%, 50%, 25%

and 10%). So, each group has g + 10 chromosomes (16 in our case).

• The last group is composed for the remaining chromosomes, and all of their

components are randomly selected.

The minimum number of individuals is the sum of the chromosomes of the five

first groups: (g + 10) × 5 (80 for our proposal). In our case, the total population

length is 100. Therefore, the last group is comprised by 20 chromosomes. We try

to cover a wide zone of the search space with this initial population.

3.3. Evaluating the chromosome

There are three steps that must be done to evaluate each chromosome:

• Generate the DB using the information contained in the chromosome. For all the

selected variables (vi = 1), a uniform fuzzy partition with triangular membership

functions is built considering the number of labels of that variable (gi).

• Generate the RB by running the the Chi et al.’s method.

• Calculate the value of the evaluation function: We will employ a fitness function

composed of the aggregated sum of two values (one of them is an accuracy mea-

sure an the other one is a complexity measure), similar to other fitness functions

proposed for Genetic Fuzzy Systems in the specialized literature.14,15,24 The goal

of this type of function is to avoid the possible overfitting and to promote the

removal of unnecessary features. In our case, we will lightly penalize FRBCSs

with high number of selected variables and/or high granularity levels. The fitness

function to be minimized is:

FC = ω1 · (1 −AUC) + ω2 · (Ng/N)

being Ng the sum of the granularity levels of all the selected variables. In order

to normalize these two values, we calculate ω2 taking two values as a base: the

AUC of the FRBCS obtained with the RB generation method considering the

DB with all the variables selected, the maximum number of labels (max g) per
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variable and uniform fuzzy partitions:

ω2 = αω2
·
AUCmax g

max g

with αω2
being a weighting percentage (αω2

= 1− ω1). In our case max g = 7.

Let see an example of the fitness value calculation. Suppose we have a problem

with eight features and we choose ω1 = 0.6 (consequently, αω2
= 0.4). Suppose

we have run the RB generation method with all the variables selected and the

maximum number of labels (seven) in each fuzzy partition and we have calculated

the AUC (AUC = 0.8). Then, the value of ω2 can be calculated:

ω2 = 0.4 ·
0.8

7
= 0.04571

The former calculus is only performed once, before starting the GA. Suppose we

have the following chromosome:

C = (1, 0, 0, 1, 1, 1, 0, 0, 3, 2, 5, 6, 2, 7, 4, 2)

The features selected are 1,4,5 and 6 , each one of them with their correspondent

number of labels (3,6,2,7). So, we can calculate the Ng value (Ng = 3+6+2+7 =

18). We run the RB generation method with the former selected features and

labels, obtaining AUC = 0.74. Then, the fitness value of that chromosome is:

FC = 0.6 · (1− 0.74) + 0.04571 · (18/8) = 0.156 + 0.103 = 0.259

We must note that using the Ng value allows the following situations are consid-

ered as equivalent:

— Selection of 6 features of granularity 2

— Selection of 4 features of granularity 3

— Selection of 3 features of granularity 4

— Selection of 2 features of granularity 6

3.4. Genetic operators

The following operators are considered.

3.4.1. Selection

We will employ the tournament selection with k = 2, in which two chromosomes

are selected at random from the population, and the one with highest fitness is

taken to be included in the next population, after the application of the genetic

operators.

3.4.2. Crossover

The crossover works in the two parts of the chromosome at the same time. Therefore,

an standard crossover operator is applied over CV and CG. This operator performs
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as follows: a crossover point p is randomly generated and the two parents are crossed

at the p-th variable (the possible values for p are {2, . . . , N}). The crossover is

developed this way in the two chromosome parts, CV and CG, thereby producing

two meaningful descendants. Let us look at an example in order to clarify the

standard crossover application. Let

C1 = (v1, . . . , vp, vp+1, . . . , vN , g1, . . . , gp, gp+1, . . . , gN )

C2 = (v
′

1, . . . , v
′

p, v
′

p+1, . . . , v
′

N , g
′

1, . . . , g
′

p, g
′

p+1, . . . , g
′

N )

be the individuals to be crossed at point p, the two resulting offspring are:

C3 = (v1, . . . , vp, v
′

p+1, . . . , v
′

N , g1, . . . , gp, g
′

p+1, . . . , g
′

N )

C4 = (v
′

1, . . . , v
′

p, vp+1, . . . , vN , g
′

1, . . . , g
′

p, gp+1, . . . , gN )

3.4.3. Mutation

Two different operators are used, each one of them acting on different chromosome

parts. A brief description of them is given below:

• Mutation on CV : As this part of the chromosome is binary coded, a simple binary

mutation is developed, flipping the value of the gene.

• Mutation on CG: The mutation operator selected for CG performs a slight change

in the selected variable. Once a granularity level is randomly selected to be muted,

a local modification is developed by changing the number of labels of the variable

to the immediately upper or lower value (the decision is made at random). When

the value to be changed is the lowest (2) or highest one (7), the only possible

change is developed.

4. Experimental Study

In this section, we will first provide details of the imbalanced problems chosen for the

experimentation (Subsec. 4.1). Then, we will introduce the algorithms selected for

comparison and the configuration parameters (Subsec. 4.2). Next, we will describe

the statistical tests applied to compare the results obtained along the experimental

study (Subsec. 4.3). Finally, we show the results obtained for all the methods and

the statistical analysis (Subsec. 4.4).

4.1. Data-sets

We will study the performance of GA-FS+GL employing a large collection of im-

balanced data-sets with high IR, considering a threshold value of 9 (distribution

1:10). Specifically, we have considered twenty-two data-sets from KEEL data-set

repository33 with different IR, as shown in Table 2, where we denote the number of

examples (#Ex.), number of attributes (#Atts.), class name of each class (minority

and majority), class attribute distribution and IR. This table is in ascendant order
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Table 2. Summary description for imbalanced data-sets.

Data-set #Ex. #Atts. Class (min., maj.) %Class (min.; maj.) IR

Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08

Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35

Vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10

Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89, 91.11) 10.29

build-win-non float-proc,headlamps)

Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39

Ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84

Yeast1vs7 459 8 (vac; nuc) (6.72, 93.28) 13.87

Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87

Glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47

Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85

Abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68

Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11) 19.44

build-win-non float-proc,headlamps)

Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5

Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10

Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81

Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10

Yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41

Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56

Yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78

Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15

Yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15

Abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87

according to the IR. Multi-class data-sets are modified to obtain two-class imbalan-

ced problems, defining the joint of one or more classes as positive and the joint of

one or more classes as negative. In order to reduce the effect of imbalance, we will

employ the SMOTE preprocessing method34 for all our experiments, considering

only the 1-nearest neighbor to generate the synthetic samples, and balancing both

classes to the 50% distribution.

We have obtained the AUC metric estimates by means of a 5-fold cross-

validation. That is, the data-set was split into 5 folds, each one containing 20%

of the patterns of the data-set. For each fold, the algorithm is trained with the

examples contained in the remaining folds and then tested with the current fold.

The data partitions used in this paper can be found in KEEL data-set repository33

(http://www.keel.es/dataset.php), both for the original partitions and those

preprocessed data with the SMOTE method, so that any interested researcher can

reproduce the experimental study.

Finally, since a GA is a probabilistic method, three runs with different seeds for

the pseudo-random sequence are made for each data partition. For each data-set

we consider the average results of the five partitions per three executions.

http://www.keel.es/dataset.php
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4.2. Algorithms of comparison and parameters

We will analyze the influence of feature selection and granularity learning by means

of a comparison between the performance of GA-FS+GL and three other methods

with all the variables selected:

• The original Chi et al.’s method,27 that needs of the existence of a previous

definition for the DB, normally uniform fuzzy partitions with the same number

of labels in all the variables. Therefore, it is necessary to choose a number of

labels, being the usual values employed for any standard FRBCS approach in

the specialized literature 3, 5 and 7 labels per variable. According to this fact,

we include these three possibilities in the experimental study. In the latter, we

will refer these methods as G3-Chi, G5-Chi and G7-Chi.

• The method proposed in Ref. 18 (denoted GA-GL), that uses a GA (similar to

the used in GA-FS+GL) for granularity learning and the Chi et al.’s method to

derive the RB.

• C4.5,28 a method of reference in the field of classification with imbalanced data-

sets.29–32

The configuration for the FRBCSs approaches, GA-FS+GL, GA-GL, G3-Chi,

G5-Chi and G7-Chi is presented in Table 3 being “Conjuction operator” the oper-

ator used to compute the compatibility degree of the example with the antecedent

of the rule and the operator used to compute the compatibility degree and the

rule weight. This parameter selection has been carried out according to the results

achieved by the Chi et al.’s method in our former studies on imbalanced data-sets:12

Table 3. Configuration for the FRBCS.

Conjunction operator: Product T-norm

Rule Weight: Penalized Certainty Factor38

Fuzzy Reasoning Method: Winning Rule

The specific parameters setting for the GA of GA-FS+GL is listed below, being

N the number of variables:

• Number of evaluations: 500 ·N

• Population Size: 100 individuals

• Crossover Probability Pc : 0.6

• Mutation Probability Pm : 0.2

• Fitness function weights: (ω1 : 0.5, αω2
: 0.5)

The most important parameters are the weighting factors of the evalua-

tion function, that determining whether GA-FS+GL looks for more accurate

solutions or less complex solutions. We have tested several values for ω1

(1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3) with their correspondent values for αω2
(αω2

=
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1 − ω1). Since the feature selection ensures a significant reduction of the complex-

ity, we have chosen the values shown before as they obtain the best mean for the

AUC over the test data-set (high prediction ability). In the appendix, we show the

obtained results for all tested values of ω1 (Table 9).

4.3. Statistical tests for performance comparison

In this paper, we use the hypothesis testing techniques to provide statistical support

to the analysis of the results.37,59 Specifically, we will use non-parametric tests, due

to the fact that the initial conditions that guarantee the reliability of the parametric

tests may not be satisfied, making the statistical analysis to lose credibility with

these type of tests.35

In a first approach, we apply the Wilcoxon signed-rank test59 as non-parametric

statistical procedure for performing pairwise comparisons between two algorithms.

We will also compute the p-value associated to each comparison, which represents

the lowest level of significance of a hypothesis that results in a rejection. In this

manner, we can know whether two algorithms are significantly different and how

different they are.

Additionally, since this test cannot assume the symmetry in the population of

differences, to contrast our hypothesis we also perform a single significance test

for every pair of algorithms using a sign test59 on the win/draw/loss record of

the two algorithms across all data-sets. Specifically, this test does not assume any

commensurability of scores or differences nor does it assume normal distributions

and is thus applicable to any data.35 However, it has a lower asymptotic relative

efficiency than the Wilcoxon signed-ranks test and therefore it has an inferior power.

Furthermore, we consider the average ranking of the algorithms in order to

show graphically how good a method is with respect to its partners. This ranking is

obtained by assigning a position to each algorithm depending on its performance for

each data-set. The algorithm which achieves the best accuracy on a specific data-

set will have the first ranking (value 1); then, the algorithm with the second best

accuracy is assigned rank 2, and so forth. This task is carried out for all data-sets

and finally an average ranking is computed as the mean value of all rankings.

These tests are suggested in the studies presented in,35–37,60 where its use in the

field of machine learning is highly recommended. Any interested reader can find

additional information on the Website http://sci2s.ugr.es/sicidm/, together

with the software for applying the statistical tests.

4.4. Experimental analysis

Table 4 shows the results in performance (using the AUC metric) for GA-FS+GL

and the algorithms employed for comparison, that is, G3-Chi, G5-Chi, G7-Chi, GA-

GL and C4.5, being Tr the AUC over the training data-set and Tst the AUC over

the test data-set.

http://sci2s.ugr.es/sicidm/
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As it can be observed, the prediction ability obtained by GA-FS+GL is higher

than the obtained for the other methods, except for GA-GL, showing the significa-

tive influence of the joining of feature selection and granularity level in the behavior

of the classifier regarding to the classical way to proceed. A GA designed only for

granularity learning (GA-GL) obtains the best results in prediction ability but with

an increase of the model complexity. The number of rules is a typical measure used

to compare the complexity of the models. Table 5 show the average number of rules

obtained with each method. The number of rules of GA-FS+GL is always lower

by the feature selection process and very much lower compared with the other FR-

BCSs, reducing the complexity of the model. The reduction in the number of rules

is about 60% compared with C4.5, about 87% compared with G3-Chi, almost 90%

compared with GA-GL and greater than 92% in the other methods (G5-Chi and

G7-Chi) Therefore, the interpretability of the FRBCSs generated by GA-FS+GL

is much higher. GA-FS+GL obtains FRBCSs with similar prediction ability than

GA-GL but a great improvement in interpretability. In the appendix, we show the

average number of rules for all tested values of ω1 (Table 10) and another table

with the average run time of all the approaches compared in this paper (Table 11).

Table 5. Average number of rules for the different data-sets.

Data-set G3-Chi G5-Chi G7-Chi GA-GL GA-FS+GL C4.5

Yeast2vs4 43.00 164.80 246.80 45.00 2.20 20.40

Yeast05679vs4 63.40 191.20 343.60 78.80 9.40 30.00

Vowel0 323.20 694.60 798.80 396.60 4.40 11.80

Glass016vs2 32.60 65.20 111.00 70.00 3.60 15.20

Glass2 33.20 73.20 110.80 70.00 8.20 16.80

Ecoli4 46.80 116.80 196.00 42.80 58.20 9.20

shuttle0vs4 25.80 79.20 78.00 22.40 14.80 2.80

yeastB1vs7 70.80 156.80 323.40 70.60 6.80 33.20

Glass4 42.20 98.40 155.00 50.60 8.40 7.40

Page-Blocks13vs4 64.80 164.00 256.40 81.00 6.60 7.00

Abalone9-18 43.40 93.60 134.60 57.20 4.40 47.60

Glass016vs5 48.00 99.60 152.00 55.40 4.00 10.00

shuttle2vs4 11.00 33.00 46.40 15.20 4.20 4.00

Yeast1458vs7 80.20 181.00 401.00 169.20 3.80 47.80

Glass5 41.60 90.80 137.00 43.60 5.20 7.00

Yeast2vs8 40.80 110.00 190.00 39.40 5.00 14.60

Yeast4 86.20 197.20 446.80 61.60 6.40 40.40

Yeast1289vs7 78.00 160.80 350.20 100.80 13.80 58.40

Yeast5 101.40 206.60 480.80 73.60 4.80 11.60

Yeast6 87.40 198.80 434.60 54.20 5.00 21.60

Ecoli0137vs26 77.80 168.60 245.00 76.60 4.20 8.00

Abalone19 69.20 180.20 346.20 90.60 7.40 69.20

Mean 68.67 160.20 272.02 80.24 8.67 22.45
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Fig. 5. Ranking for the GA-FS+GL approach and the Chi et al.’s method with 3, 5 and 7 labels.

In order to validate these results, we show the ranking on precision of the di-

fferent models by means of the procedure described in Subsec. 4.3. Figure 5 shows

the average ranking computed for the three different fuzzy alternatives: the three

basic chi approaches with 3, 5 and 7 labels, and our GA-FS+GL proposal.

Next, we perform a sign test and a Wilcoxon test for detecting significant differ-

ences between the results of GA+FS+GL and the standard FRBCS approach with

3, 5 and 7 labels. The results of these tests are shown in Table 6 where, by columns,

it is represented the current comparison, the number of wins, ties and loses for the

GA-FS+GL approach versus the FRBCS, the sum of the ranks for GA-FS+GL

and the FRBCS respectively, and the p-values obtained, first by the sign test, and

second by the Wilcoxon test.

Specifically, in this table we observe that our GA-FS+GL model outperforms

the basic Chi et al.’s method for the ones with the highest granularity levels (5

and 7 fuzzy partitions) with a low p-value in both cases which, in other words,

implies that we can state, with a high degree of confidence, that our methodology

is statistically superior to Chi-5 and Chi-7. Regarding the remaining approach, we

may stress that the improvement of our proposal is not focused on the accuracy

performance but on the high interpretability, as we will discuss below.

Table 6. Sign and Wilcoxon tests to compare GA-FS+GL [R+] with the FRBCSs
(Chi with 3, 5 and 7 labels) [R−] regarding the AUC metric.

Comparison w/t/l R+ R− Sign p-value Wcx p-value

GA-FS+GL vs. Chi3 10/0/12 124.0 129.0 0.738 0.935

GA-FS+GL vs. Chi5 16/0/6 182.0 71.0 0.026 0.072

GA-FS+GL vs. Chi7 18/0/4 231.0 22.0 0.002 0.001
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Table 7. Sign and Wilcoxon tests to compare GA-FS+GL [R+] with GA-GL and
C4.5 [R−] regarding the AUC metric.

Comparison w/t/l R+ R− Sign p-value Wcx p-value

GA-FS+GL vs. GA-GL 13/0/9 84.0 169.0 0.262 0.168

GA-FS+GL vs. C4.5 16/0/6 186.0 67.0 0.026 0.053

In order to contrast the behaviour of GA-FS+GL with GA-GL (without feature

selection) and C4.5, we carry out again a sign test and Wilcoxon test (Table 7)

in which R+ corresponds to the sum of the ranks for the GA-FS+GL approach

and R− to GA-GL and C4.5 respectively. We observe a low p-value in both cases,

especially in the case of the comparison with C4.5, which allow us to determine the

good results of our approach with the support of statistical differences in favour

of our methodology. Furthermore, and as we have discussed before, the high level

of interpretability of the classification models generated with our methodology,

according to the low number of rules, the few number of antecedents/variables

in these rules, and the use of a linguistic approach, derives in a higher degree

of usefulness of our proposed approach with respect to the algorithms used for

comparison, namely Chi et al.’s, GA-GL and C4.5.

In fact, GA-FS+GL obtains precise and interpretable models by selecting a

reduced set of features and finding an appropriate granularity level in each selected

variable. Thus, we show in Table 8 the mean of selected variables (SV) in the first

column. The remaining columns show two values for each feature of the problem, the

first is the selection ratio of the variable, that is, the relation between the number

of occasions in that the variable was selected and the number of total executions

for each problem. The second value is the average of the number of labels for the

cases in which that variable was selected.

As it can be observed in Table 8, the number of selected variables is very low.

In all the problems the number of selected features is reduced, at least, to the half

of the original (with only one exception, the data-set “Yeast2vs8”). Moreover, in

18 problems, the number of selected variables in the average of the 15 executions

is less or equal than three deriving in a significant reduction in the length of the

antecedent of the rules as point before. Regarding to the granularity level mean,

there are significant differences among the variables of each data-set. This situation

is caused by the advantage of increasing or decreasing the granularity for a good

data representation in the fuzzy partition. Therefore, GA-FS+GL obtain FRBCSs

with high prediction ability and very reduced complexity, that was the main purpose

of this approach. Figures 6 and 7 show a representation of the KB obtained for GA-

FS+GL, GA-GL and C4.5 for the first partition of the Glass2 data-set illustrating

the high reduction of complexity of the models generated by GA-FS+GL.
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Fig. 6. Knowledge Bases for Glass2 dataset obtained by GA-FS+GL and GA-GL.
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Fig. 7. Knowledge Bases for Glass2 dataset obtained by C4.5.
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5. Conclusions

This contribution has described a methodology to design linguistic FRBCSs with

good accuracy and very reduced complexity for highly imbalanced data-sets. A GA

is used for feature selection and granularity learning, which is combined with an

efficient fuzzy classification rule generation method to obtain the complete KB of

the FRBCS.

Our proposal is compared with various classical and modern methods, obtaining

similar or better results in prediction ability with always a significant enhancement

in the interpretability of the model. The improvement in the interpretability is due

to the high reduction on the number of rules of the model and the fact that these

rules are simpler as they use less variables in their antecedent part.

We must remark that one advantage of our proposal is that the GA can be

combined with any rule generation method. We have used a simple algorithm for

efficiency but more accurate ones can be used, or another more suitable for a specific

data-set.
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Appendix: Complementary tables

In this appendix we include three tables, with the detailed results of GA-FS+GL

for all tested values of ω1 for the AUC (Table 9) and the average of the number of

rules (Table 10), apart from the table of the average run time of all the methods

compared (Table 11).
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Table 10. Average number of rules for the different weight values of GA-FS+GL.

ω1–αω2

Data-set 1.0–0.0 0.9–0.1 0.8–0.2 0.7–0.3 0.6–0.4 0.5–0.5 0.4–0.6 0.3–0.7

Yeast2vs4 105.60 88.60 56.20 5.00 2.20 2.20 2.40 3.20
Yeast05679vs4 299.40 145.80 46.20 9.40 9.40 9.40 9.40 9.40
Vowel0 138.20 50.80 15.40 12.80 5.40 4.40 4.20 4.40
Glass016vs2 99.60 81.80 43.00 21.00 5.40 3.60 3.40 3.80
Glass2 345.40 130.40 15.00 8.20 8.00 8.20 8.00 8.00
Ecoli4 682.20 178.00 125.20 137.60 87.40 58.20 17.20 15.80
shuttle0vs4 142.60 66.40 38.40 14.40 14.20 14.80 4.60 5.00
yeastB1vs7 107.00 41.60 28.60 28.20 21.60 6.80 7.40 5.60
Glass4 116.40 45.80 23.40 19.40 7.80 8.40 7.00 7.00
Page-Blocks13vs4 428.20 13.20 6.40 7.00 7.60 6.60 7.20 6.40
Abalone9-18 353.40 9.00 5.00 5.40 5.60 4.40 4.40 5.80
Glass016vs5 180.60 44.00 27.00 20.00 7.60 4.00 3.60 3.60
shuttle2vs4 36.80 4.20 4.80 4.20 5.80 4.20 5.20 5.20
Yeast1458vs7 251.60 216.40 113.20 14.40 4.00 3.80 4.00 3.40
Glass5 33.60 12.00 8.00 6.80 7.80 5.20 5.20 5.00
Yeast2vs8 97.60 81.00 43.60 28.60 11.40 5.00 5.20 5.60
Yeast4 126.20 53.80 32.20 20.00 7.00 6.40 7.20 7.20
Yeast1289vs7 149.60 37.60 38.80 37.40 32.20 13.80 6.40 5.20
Yeast5 327.20 188.20 28.20 7.40 6.60 4.80 5.00 5.00
Yeast6 277.40 257.40 67.60 4.80 5.00 5.00 5.00 5.60
Ecoli0137vs26 306.20 310.60 150.40 137.20 12.80 4.20 5.20 5.40
Abalone19 241.00 28.80 13.20 7.40 6.60 7.40 7.40 6.60

Mean 220.26 94.79 42.26 25.30 12.79 8.67 6.12 6.01

Table 11. Average training time for the different data-sets.

Data-set G3-Chi G5-Chi G7-Chi GA-GL GA-FS+GL C4.5

Abalone9-18 00:00:04 00:00:04 00:00:04 00:36:40 00:15:51 00:00:00
Abalone19 00:00:40 00:00:39 00:00:39 19:54:53 08:51:38 00:00:00
Ecoli4 00:00:02 00:00:02 00:00:02 00:05:41 00:04:08 00:00:00
Glass2 00:00:01 00:00:01 00:00:01 00:04:18 00:04:09 00:00:00
Yeast4 00:00:07 00:00:07 00:00:08 02:24:21 01:04:02 00:00:00
Vowel0 00:00:07 00:00:07 00:00:07 02:56:59 01:22:35 00:00:00
Yeast2vs8 00:00:02 00:00:02 00:00:02 00:14:50 00:11:57 00:00:00
Glass4 00:00:01 00:00:01 00:00:01 00:04:00 00:04:19 00:00:00
Glass5 00:00:01 00:00:01 00:00:01 00:04:01 00:04:26 00:00:00
Yeast5 00:00:07 00:00:08 00:00:08 02:17:06 01:00:08 00:00:00
Yeast6 00:00:07 00:00:07 00:00:08 02:18:38 01:08:09 00:00:00
Ecoli0137vs26 00:00:01 00:00:01 00:00:01 00:04:35 00:03:31 00:00:00
shuttle0vs4 00:00:07 00:00:07 00:00:07 04:11:19 01:35:05 00:00:00
yeastB1vs7 00:00:02 00:00:02 00:00:02 00:11:34 00:06:10 00:00:00
shuttle2vs4 00:00:00 00:00:00 00:00:00 00:01:28 00:02:44 00:00:00
Glass016vs2 00:00:01 00:00:01 00:00:01 00:03:23 00:03:38 00:00:00
Glass016vs5 00:00:01 00:00:01 00:00:01 00:03:14 00:03:47 00:00:00
Page-Blocks13vs4 00:00:03 00:00:03 00:00:03 00:24:09 00:13:31 00:00:00
Yeast05679vs4 00:00:03 00:00:02 00:00:03 00:17:20 00:08:09 00:00:00
Yeast1289vs7 00:00:05 00:00:05 00:00:05 01:02:56 00:25:03 00:00:00
Yeast1458vs7 00:00:03 00:00:03 00:00:03 00:35:05 00:14:15 00:00:00
Yeast2vs4 00:00:02 00:00:02 00:00:02 00:15:30 00:08:07 00:00:00

Mean 00:00:05 00:00:05 00:00:05 01:44:11 00:47:04 00:00:00


