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Abstract

Trust networks are social networks in which users can assign trust scores to each other. In order to estimate these scores for agents
that are indirectly connected through the network, a range of trust score aggregators has been proposed. Currently, none of them
takes into account the length of the paths that connect users; however, this appears to be a critical factor since longer paths generally
contain less reliable information. In this paper, we introduce and evaluate several path length incorporating aggregation strategies
in order to strike the right balance between generating more predictions on the one hand and maintaining a high prediction accuracy
on the other hand.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Trust is an important factor in many online social networks. For example, consumer websites like Epinions 1 include
a recommendation feature where product reviews written by reliable (trusted) peers are suggested to users. The effec-
tiveness of these recommendations relies on the principle that users are more interested in information from people they
know, and that users that know each other often have common interests [11]. As another example, in CouchSurfing, 2

which allows users to find or offer free hosting, members can explicitly state their trust or distrust in each other by
completing an online form.

Trust networks, designed to model trust relationships between users (called agents in this context), have been studied
extensively in scientific literature (see e.g., [1,2,5,9,12,13,16,17,19,20]). In this paper, we model computational trust
using the bilattice-based approach of Victor et al. [15], which considers both gradual trust and distrust.
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As trust networks may be huge, most agents in the network do not know each other. In [16], four kinds of problems
related with computational trust are considered:

1. Estimate a trust score between two agents x and y, i.e., determine the level to which x may trust y.
2. Find all agents that are most trusted or distrusted by a given agent.
3. Establish as many trust scores as possible between pairs of agents in a trust network.
4. Find a measure of trustworthiness of an agent x based on the opinions of other agents about x.

In our work, we focus on the first problem. Various algorithms have been proposed to solve this problem including,
among others, TidalTrust [2], Sunny [8] and CloseLook [17]. In the case where trust and distrust are considered
simultaneously, seminal contributions were made by Guha et al. [4] and Jøsang et al. [6,7], who worked within a
gradual, respectively a probabilistic trust model. More recently, within the bilattice-based approach Victor [13] set up
a comprehensive framework that computes trust–distrust estimations for agent pairs in the network using trust metrics
[23]: given two agents in the trust network, we can search for a path between them and propagate the trust scores
along this path to obtain an estimation. When more than one path is available, we may single out the most relevant
ones (selection), and aggregation operators can then be used to combine the propagated trust scores into one final
trust score. 3 In particular, [15] introduced four families of trust score propagation operators, while in [14], a set of
reasonable properties for trust score aggregation was introduced, along with a number of aggregation operators that
satisfy them.

In this paper, we take this study one step further, by considering also the length of the paths that connect two agents; in
general, as the path gets longer, it may be considered less trustworthy since more propagation steps are needed to obtain
an estimation. This idea of “trust decay” is often implemented in trust metrics, e.g., by incorporating a spreading factor
[23], taking into account only shortest paths [3], or paths whose length does not exceed a given horizon [10]. On the
other hand, dismissing longer paths altogether may negatively impact the coverage of the trust metrics, i.e., the fraction
of agent pairs for which an estimation can be obtained. Therefore, in this paper we develop two kinds of mechanisms
to optimize the trade-off between coverage and accuracy; first, we propose various weighted aggregation strategies that
incorporate path length, and secondly we modify the trust estimation algorithm to include a “(semi)-dynamic” horizon,
such that longer paths are only considered for those agent pairs which are not connected by a shorter path. We test the
usefulness of these strategies on the CouchSurfing network.

The remainder of this paper is structured as follows. In Section 2 we introduce necessary concepts on trust networks,
while in Section 3 we introduce our path length incorporating trust aggregation strategies. The experimental evaluation
is described in Section 4. Finally, we conclude in Section 5.

2. Trust networks

Trust networks are social networks in which agents can express their opinion about other agents. Formally, a trust
network is a pair (A, R), with A a set of agents and R a function A × A → T . For a pair of agents x and y, R(x, y) is
called the trust score of x in y. The particular structure of the elements in T refers to the nature of the opinion that the
agents can have about each other.

2.1. Bilattice-based approach

In this paper, we follow the bilattice approach from [15], which defines trust scores as pairs (t, d) ∈ [0, 1]2 = T ,
where t and d represent the degree of trust and distrust respectively. This approach considers trust and distrust as separate
and gradual concepts, and can therefore adequately model the amount of knowledge that is available in expressing a
trust opinion. The trust score space is embedded in a bilattice

BL� = (T, ≤td , ≤k, ¬)

3 Note that in [16], the propagation operation is called composition.
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Fig. 1. Bilattice BL� for trust scores.

where

∀(t1, d1), (t2, d2) ∈ [0, 1]2

(t1, d1)≤td (t2, d2) ⇔ t1≤t2 and d1≥d2

(t1, d1)≤k(t2, d2) ⇔ t1≤t2 and d1≤d2

¬(t1, d1) = (d1, t1)

The bilattice BL� is illustrated in Fig. 1. The trust scores are ordered from (0, 1) (full distrust) to (1, 0) (full trust)
by the trust ordering ≤td . The knowledge ordering ≤k orders the trust scores from (0, 0) (total ignorance) to (1, 1)
(total inconsistency). We define the knowledge degree of a trust score (t, d) as t + d . Trust scores (t, d) ∈ T for which
t + d < 1 holds lack information and are called incomplete, while trust scores (t, d) ∈ T for which t + d > 1 holds
contain conflicting information and are therefore called inconsistent. For more details, we refer to [15].

2.2. Trust metrics

Assume x and y are two agents which are connected by the trust network, but for which there is no direct link. In
this case, we estimate the trust score of x in y using the trust metrics propagation, selection and aggregation. That is,
we consider trust scores on paths between agents x and y and combine them to obtain an estimation.

Consider a sequence of agents z1, . . . , zm−1 between x and y, such that x assigns trust score (t1, d1) to z1, zi assigns
a trust score (ti+1, di+1) to zi+1 for all i ∈ 1, . . . , m − 2 and zm−1 assigns trust score (tm, dm) to y. A propagator
Propm : ([0, 1]2)m → [0, 1]2 combines these trust scores to Propm((t1, d1), . . . , (tm, dm)) = (t, d), an estimation of
the extent to which x trusts y, based on a single path connecting them.

Typically, there are several paths connecting agents x and y, all of which generate a propagated trust score, we
represent this set of paths by Px,y . In practice, only a subset of Px,y is taken into account, for reasons of computational
complexity and/or to eliminate less informative paths. This step is performed by a selection operator Sel, which maps
a couple (x, y) of agents to a subset of Px,y .
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Suppose n paths between x and y are considered; propagation along these n paths results in n trust scores (t1, d1), . . . ,
(tn, dn), which can be combined using an aggregator Aggn : ([0, 1]2)n → [0, 1]2, which yields a final estimation of the
trust score of x in y.

2.2.1. Trust propagation
Various propagation operators for trust scores in BL� are discussed in [15]. In this paper, we define the propagation

operation by, for (t1, d1), (t2, d2) ∈ [0, 1]2:

Prop((t1, d1), (t2, d2)) = (max(min(t1, t2), min(d1, d2)), max(min(t1, d2), min(d1, t2)))

Our choice is motivated by the fact that this operator, which actively incorporates distrust, showed the best performance
in the experiments in [13].

Since Prop is not associative, we have to fix a propagation order when we need to establish an opinion on y using
more intermediate third parties. Here, we assume that a right-to-left evaluation order (backward propagation) is used,
i.e., we recursively define, for m > 2,

Propm((t1, d1), . . . , (tm, dm)) = Prop2((t1, d1), Propm−1((t2, d2), . . . , (tm, dm)))

2.2.2. Trust selection
A common way to reduce the number of paths used for generating a trust estimation is to impose an upper limit h

on their length, called horizon [9]. For instance, in the experiments in [14], h = 2 was used, meaning that only trust
scores resulting from one-step propagation were considered, and consequently all paths have the same length.

A selection strategy which applies specifically to the bilattice-based trust model is the elimination of paths whose
propagated trust score is (0, 0). Note that since (0, 0) represents total ignorance, these trust scores can be safely removed
beforehand.

2.2.3. Trust aggregation
We recall the following basic trust aggregators from [14]: for (t1, d1), . . ., (tn, dn) ∈ [0, 1]2,

K -MAX((t1, d1), . . . , (tn, dn)) = (max(t1, . . . , tn), max(d1, . . . , dn))

T -MAX((t1, d1), . . . , (tn, dn)) = (max(t1, . . . , tn), max(t1 + d1, . . . , tn + dn) − max(t1, . . . , tn))

D-MAX((t1, d1), . . . , (tn, dn)) = (max(t1 + d1, . . . , tn + dn) − max(d1, . . . , dn), max(d1, . . . , dn))

The definition of these aggregators is motivated by a set of boundary conditions, which state that the final trust
(resp., distrust) degree should be bounded by the minimum and the maximum of all trust (resp., distrust) degrees,
and that the resulting trust score should not contain less knowledge than the maximum knowledge degree of all trust
scores. However, since these basic trust aggregators are min/max-based, they are not very flexible. In order to mitigate
their behaviour, they can be softened using ordered weighted average (OWA) operators so as to take into account not
just the border trust scores. 4 Therefore, in [14], the following OWA-based 5 variation on K-MAX was proposed, for
(t1, d1), . . ., (tn, dn) ∈ [0, 1]2 \ {(0, 0)}, mt , md ∈ [1, n]:

K -OWAmt ,md ((t1, d1), . . . , (tn, dn)) = (OW AWmt
(t1, . . . , tn), OW AWmd

(d1, . . . , dn))

where the decreasing weight vector Wm = 〈w1, . . . , wn〉 is defined by

wi =
max

(
0,

⌈ n

m

⌉
− i + 1

)
⌈ n

m

⌉ (⌈ n

m

⌉
+ 1

)
2

4 As discussed in [14], this goes at the expense of some of the boundary conditions.
5 The ordered weighted average (OWA, [21]) operator associates weights to the ordered positions of the scalar values 〈a1, . . . , an〉 that have to be

aggregated. Let W = 〈w1, . . . , wn〉 a weight vector such that ∀i ∈ {1, . . . , n}, wi ∈ [0, 1] and
∑n

i=1 wi = 1. Then the OWA-operator associated

with W is defined as OW AW (a1, . . . , an ) = ∑n
i=1 wi bi , where bi is the i-th largest element in 〈a1, . . . , an〉.
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It can easily be verified that when mt = md = n, K -OWAmt ,md = K -MAX, i.e., only the maximal trust and distrust
degree among the participating trust scores are taken into account. When mt and mn are smaller than 1, the strict
behaviour of the maximum operator is softened, allowing other trust scores to influence the result as well, albeit to a
smaller extent. In this paper, we consider mt = md = 1, implying that all wi > 0, in other words all participating trust
scores are taken into account.

2.3. Evaluation of trust metrics

The performance of a given (Prop, Sel, Agg) triple is typically tested using leave-one-out experiments: in each such
experiment, a directly available trust score (t, d) between a pair of agents x and y is removed from the trust network,
and the given trust estimation strategy is used on the remaining trust network to predict this trust score. The generated
trust estimations can then be evaluated by means of their accuracy. To measure accuracy, we may use the following
two variations [14] on mean absolute error (MAE) and root mean squared error (RMSE), with (t1, d1), . . . , (tp, dp) and
(t ′1, d ′

1), . . . , (t ′p, d ′
p) the original and estimated trust scores, respectively (T -MAE ∈ [0, 2] and T -RMSE ∈ [0,

√
2]):

T -MAE =
∑p

i=1 |ti − t ′i | + |di − d ′
i |

p
, T -RMSE =

√∑p
i=1(ti − t ′i )2 + (di − d ′

i )
2

p

Another commonly used evaluation criterion for trust metrics is coverage, which refers to the fraction of trust scores for
which a prediction can be generated. In our setting, coverage is directly influenced by the selection operator Sel; indeed,
some agents may be linked through the network, such that in principle it is possible to generate a trust estimation for
them, but if the selection step eliminates all paths between them, the coverage of the corresponding trust estimation
strategy will be reduced.

Note that coverage and accuracy should always be considered together: it makes no sense to have an algorithm that
can perfectly predict trust scores if its corresponding coverage is unacceptably low, or vice versa. Ideally, a trust score
estimation strategy should have maximal coverage and minimal T-MAE and T-RMSE.

3. Path length incorporation strategies

A problem that arises when aggregating trust scores is that some trust scores might be more reliable than others
because they were aggregated along shorter paths. This was also argued by Golbeck [2] in the case of trust-enhanced
recommender systems; she therefore chooses to consider only shortest paths linking two agents; in a similar vein, Massa
and Avesani [9] only take into account paths shorter than a predefined threshold length. In this section, we propose a
number of refinements to these strategies in order to make better use of the information contained in longer paths.

3.1. Aggregation operators dependent on path length

Consider n trust scores (t1, d1), . . . , (tn, dn), all different from (0, 0), obtained by propagating p1, . . . , pn trust scores,
respectively. We call pi the path length of the trust score.

3.1.1. Path length dependent weighted average
A first method consists of defining weights that depend on the path length of the propagated trust scores: trust scores

propagated along longer paths get lower weights than trust scores propagated along shorter paths. Suppose we have
such a path length weight vector Wp, then we can define a weighted average 6 trust aggregator P-W A:

P-W A((t1, d1), . . . , (tn, dn)) = (W AWp (t1, . . . , tn), W AWp (d1, . . . , dn))

6 Let W = 〈w1, . . . , wn〉 a weight vector such that ∀i ∈ {1, . . . , n}, wi ∈ [0, 1] and
∑n

i=1 wi = 1. Then the WA-operator associated with W is

defined by W AW (a1, . . . , an ) = ∑n
i=1 wi ai .
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An easy way to obtain Wp is to define it as Wp = 〈w1, . . . , wn〉, such that ∀i, j = 1, . . . , n,

wi =
1

pi∑n
j=1

1

p j

However, this approach has the disadvantage of being very sensitive to the number of paths connecting two agents, as
the following example illustrates.

Example 1. Suppose there are two paths of length 2 and nine paths of length 3. Then both paths of length 2 will get a
weight 1/8, and the nine paths of length 3 each get weight 1/12. The difference between the weights is small, so shorter
paths receive little benefit.

The advantage of being on a shorter path diminishes as the number of trust scores on longer paths increases. Since it
can usually be expected that there will be much more longer than shorter paths, this is a serious drawback. To alleviate
this problem we introduce a parameter � > 1 in order to penalize higher path lengths, defining

wi =
1

p�
i∑n

j=1
1

p�
j

The corresponding path length dependent aggregation operator is called P-W A�.

Example 2. Suppose � = 2. In the case of Example 1, the paths of length 2 now get a weight of 1/6 while those of
length 3 get a weight of 2/27. This is clearly an improvement, as a path of length 2 now counts for more than the double
of a path of length 3.

Another solution is to take into account N (p), the number of paths of length p. Specifically, we first compute a global
weight T (p) attributed to paths of length p by the recursive formula (p = 2, 3, . . .) 7

T (p) =
(

N (p)

N (p) + 1

)�

∗
⎛
⎝1 −

p−1∑
q=2

T (q)

⎞
⎠

This formula expresses that the larger the N (p), the less weight remains for trust scores on longer paths. The parameter
� ≥ 0 can be tuned to either strengthen (� < 1) or weaken (� > 1) this effect. The weight vector Wp = 〈w1, . . . , wn〉
is then finally computed by

∀i ∈ {1, . . . , n} : wi =
T (pi )

N (pi )∑n
j=1

T (p j )

N (p j )

We call the corresponding path length dependent aggregation operator P-W A∗
�.

Example 3. Suppose � = 1. For the data of Example 1, T (2) = 2/3 and T (3) = 3/10. As a result, the paths of length
2 will get weight 20/121 and the nine paths of length 3 each get weight 9/121; these weights are similar to the ones
obtained in Example 2.

7 Note that this formula can also be expressed using primitive recursion: for p = 2, 3, . . .,

T (p + 1) = �p+1 ∗ T (p) ∗ 1 − �p

�p

where T (2) = �2 and �p = (N (p)/(N (p) + 1))�.
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3.1.2. Path length dependent ordered weighted average
The path length weight vector Wp can also be combined with the OWA-based aggregator K-OWA from the previous

section. Note that path length weights Wp are associated with fixed trust score arguments, whereas the OWA weights
Wmt and Wmd correspond to ordered positions. To deal with this, we introduce the combined OWA operator OW Ac

U,V ,
with OWA weight vectors U = 〈u1, . . . , un〉 and V = 〈v1, . . . , vn〉. Given a vector 〈a1, . . . , an〉 of scalar values to
aggregate, we can always find a permutation � of {1, . . . , n} such that a�(1)≥ · · · ≥a�(n). We then define the combined
weight vector W = 〈w1, . . . , wn〉 by wi = uiv�(i)/

∑n
i=1 uiv�(i), and put OW Ac

U,V = OW AW . Applying this operator
to combine the path length weight vector Wp and the OWA weight vectors Wmt and Wmd , we obtain K P-OWA:

K P-OWAmt ,md ((t1, d1), . . . , (tn, dn)) = (OW Ac
Wt ,Wp

(t1, . . . , tn), OW Ac
Wd ,Wp

(d1, . . . , dn))

Different parameters mt and md for trust and distrust can be chosen, but the path length weights are equal for the trust
and distrust component.

3.1.3. Induced OWA path length incorporation
Another strategy to incorporate path length is to use IOWA operators. 8 Since the order inducing variables appearing

in the IOWA approach do not need to be scalar (as long as a suitable linear order can be imposed upon them),
further flexibility can be introduced in the trust aggregation process. In particular, we consider the combination of
trust/distrust degrees and path length as inducing variables. Let Vt = 〈vt1, . . . , vtn〉 and Vd = 〈vd1, . . . , vdn〉, such that
vti = (pi , ti ), vdi = (pi , di ), and define the linear order ≤p by (p1, r1)≤p(p2, r2) ⇔ (p1 > p2) ∨ (p1 = p2 ∧ r1≤r2).
Using this definition we can define the path length incorporating aggregator P-IOWA as follows:

P-IOWAmt ,md ((t1, d1), . . . , (tn, dn)) = (IOWAWmt
(t1, vt1), . . . , (tn, vtn), IOWAWmd

(d1, vd1), . . . , (dn, vdn))

The idea of P-IOWA is that trust scores are ordered according to their path length, and then fixed decreasing weights
are associated to these ordered positions such that trust scores propagated along shorter paths get higher weights.

3.2. Dynamic horizon search strategy

As mentioned before, when paths from x to y are searched, an upper limit called horizon will be imposed on the
length of these paths, both for reasons of computational complexity and in order to avoid excessively long paths. The
choice of the horizon is crucial for the effectiveness of aggregation. If h is chosen too small, the number of agent pairs
for which a trust estimation can be made may be reduced drastically (low coverage); on the other hand, if h is too high,
the presence of a large number of long paths may muddle the predicted trust score (low accuracy).

To tackle this problem, instead of using a fixed horizon, we propose a path search strategy involving a dynamically
changing horizon. This is set, for a pair of agents, to the length s of the shortest path connecting them, as long as s does
not surpass a global horizon h. In other words, only minimal length paths between x and y are considered, provided
s ≤ h. Note that the dynamic horizon search strategy coincides with the path length dependent weighted average
aggregator P-W A∗

0 from Section 3.1.1: indeed, in this case T (p) = 1 if p is equal to the length of the shortest path,
and T (p) = 0 otherwise.

The fact that all considered paths have the same length also implies that the path length dependent trust aggregators
from Section 3.1 normally cannot be used in conjunction with this search strategy. It is however possible to combine
the ideas behind both path length incorporating strategies in a meaningful way: if the number of trust scores (ti , di ) for
which the path length pi is larger than a given threshold t, then only these paths are considered. In the opposite case, all
paths for which the length does not exceed the fixed horizon h are considered. In other words, in this semi-dynamical
strategy we work only with the shortest paths, provided there are enough of them.

8 The Induced Ordered Weighted Average (IOWA, [22]) operator associates weights to the ordered positions of the values of an order inducing
variable. Let W = 〈w1, . . . , wn〉 be an OWA weight vector, and 〈v1, . . . , vn〉 a vector of values drawn from a linearly ordered space (V, ≤V ). Then
the IOWA-operator associated with W is defined by IOWAW (〈a1, v1〉, . . . , 〈an , vn〉) = ∑n

i=1 wi bi where bi = a j iff v j is the i-th largest element

in {v1, . . . , vn}.
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Table 1
Overview of trust aggregators used in experiments.

T -MAX Maximizes trust degree for given knowledge degree
D-MAX Maximizes distrust degree for given knowledge degree
K -MAX Maximizes knowledge degree
K -OWA Extends K-MAX using OWA weight vector
AV Computes classical average of trust and distrust degrees
P-W A Computes weighted average of trust and distrust degrees

based on path length dependent weight vector
KP-OWA Extends K -OWA using path length dependent weight vectors
P-IOWA Uses path length dependent order to rank trust scores

before applying OWA weight vector to them

Table 2
Translation of trust and knowledge statements in the CouchSurfing data set.

Trust statements Knowledge statements

Label t ′ Label k

Don’t know 0 Not at all 0
Don’t trust 0 A little bit 0.25
Somewhat trust 0.25 Somewhat 0.5
Generally trust 0.5 Fairly well 0.75
Highly trust 0.75 Very well 1
Trust with my life 1 Extremely well 1

Couldn’t know any better 1

4. Experimental evaluation

In this section, we evaluate the path length incorporating aggregation strategies from the previous section, and
compare them to their classical counterparts from [14]. Table 1 lists all aggregators used in the experiments. Apart
from the four basic operators T -MAX, D-MAX, K -MAX and K -OWA, we also used the classical average AV, which
serves as a baseline for the path length dependent weighted average P-W A.

4.1. Data set

The data set we used in our experiments was obtained from CouchSurfing.org, an organization that offers travelers
a platform to offer and find an overnight place (couch) to stay. 9 Trust is an important factor for this organization, as
people only want to offer or accept a couch from people they can trust. Registered users of CouchSurfing can fill out
an online form where they can express, using two linguistic scales, how much they trust each other and how well they
know each other. In [14], a heuristic method to map this information into trust scores was proposed: first, the trust and
knowledge statements are translated into [0, 1] as in Table 2. The available trust and knowledge information are then
mapped to trust scores according to the following formula: (t, d) = (k · t ′, k · (1 − t ′)), with t ′ (k) the translation of the
trust (knowledge) statement. 10 The resulting trust network consists of 397 471 users and 2 697 705 trust statements.

4.2. Setup

To evaluate the different strategies, we performed a series of 10 000 leave-one-out experiments, in which each time
we remove a trust score (t, d) from the trust network and try to predict it using a given aggregator and search strategy

9 The data set can be obtained from the authors on request, pending consent of CouchSurfing.org.
10 Records that contain a “not at all” knowledge statement or a “don’t know well enough to decide” trust statement are translated to (0, 0).

http://CouchSurfing.org
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Fig. 2. T-RMSE and T-MAE for basic, path length independent, trust aggregators for h = 2 and 3.

(fixed, or dynamic horizon). The propagation strategy is fixed, in all cases, to the Prop operator defined in Section 2.
We used only horizons h = 2 and 3, since larger horizons incur computational problems for this dataset. For h = 3, we
also tested dynamic horizon (only shortest paths are considered) and semi-dynamic horizon with t = 1 (only shortest
paths are considered, provided there is more than one such path). Note that if h = 2, the dynamic horizon strategy
coincides with the fixed horizon strategy, since all considered paths have the same length.

As mentioned in Section 2, trust estimations are evaluated by means of coverage and accuracy. Whereas in our setup
coverage depends only on the used horizon (regardless of whether it is fixed or dynamic), different strategies normally
lead to different T-MAE and T-RMSE values; apart from comparing their absolute values, we also use Wilcoxon’s
signed-rank statistical test [18], with a significance level � = 0.01, to be able to verify whether the observed differences
are significant.

4.3. Results

First, we compare the behaviour of the basic trust aggregators introduced in [14] in the situation when paths of
maximal length h = 2, resp. h = 3 are considered. 11 In the former case, the coverage is 57.46%: this means that for
5746 out of the 10 000 trust scores, at least one path of length 2 exists, which allows a prediction to be made. When
h = 3, more paths become available and the coverage rises to 66.83%.

However, this increase in coverage also leads to a general decrease in accuracy, as can be seen in Fig. 2 which shows
the corresponding T-RMSEs and T-MAEs for the different trust aggregators. Note that the difference is smallest for
K -OWA, which also performs the best among the basic operators (T-RMSE=0.2972 and T-MAE=0.2893 for h = 2;
and T-RMSE=0.2977 and T-MAE=0.2943 for h = 3).

Next, we study the behaviour of the path length dependent trust aggregators. Note that when h = 2, P-W A = AV ,
and K P-OWA = P-IOWA = K -OWA, i.e., path length incorporation has no effect. Hence, we focus on their effect
when h = 3. In Fig. 3, T-RMSEs and T-MAEs are shown for the weighted average operators P-W A� and P-W A∗

�, and
compared to AV. From these graphs, it can be inferred that the simple AV can be improved by using the P-W A operators.
For P-W A�, better results are obtained for higher �, with � = 10 being close to the optimum (T-RMSE=0.3012,
T-MAE=0.2910). On the other hand, P-W A∗

� performs better for smaller �, but slightly deteriorates when � < 0.1.
Overall, its results are slightly better than P-W A�, with the optimum for � = 0.1 (T-RMSE=0.2992, T-MAE=0.2902).

These observations confirm that it is a good idea to attribute a lot of weight to the shortest paths, but also to take into
account the number of those shortest paths.

Similar observations can be made for the results of K P-OWA vs. K -OWA in Fig. 4. In this case the optimal value
of � is a bit smaller for the variant K P-OWA� (� = 6; T-RMSE=0.2942 and T-MAE=0.2891) and a bit higher for
K P-OWA∗

� (� = 0.3; T-RMSE=0.2925 and T-MAE=0.2886). The results are slightly better than those obtained with
their P-W A counterparts; this demonstrates that the benefits of K -OWA’s fixed weight vector are further enhanced by
introducing path length dependent weights.

11 Note that [14] only studied the case h = 2.
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Fig. 3. T-RMSE and T-MAE for path length dependent weighted average operators P-W A� and P-W A∗
� , compared to the classical average AV,

for h = 3.

The figure also shows the results for P-IOWA. Unfortunately, neither its T-RMSE (0.3061) nor T-MAE (0.2999)
improves that of K -OWA. So, the path length dependent order and the path length independent weight vector do not
reinforce each other.

Globally, the T-MAE and T-RMSE differences between the classical strategies AV and K -OWA and their path length
incorporating extensions are small. However, the Wilcoxon test confirms that the differences AV vs. P-W A10, AV vs.
P-W A∗

0.1, K -OWA vs. K P-OWA6, and K -OWA vs. K P-OWA∗
0.3 are all significant at the 0.01 level; in other words,

our proposed strategies consistently outperform the classical ones.
In order to get a better understanding of the types of trust score estimations that benefit from path length incorporation,

in the left hand graph in Fig. 5, we show a split-up of the T-RMSE results for K -OWA and K P-OWA∗
� (� = 0.3) according

to the number n of paths leading from the source to the target agent (i.e., the number of trust scores to be aggregated). 12

From this, we learn that for small values of n, the two approaches differ very little, but as n > 10, a more or less
constant difference can be observed. For the latter group of experiments, we made a further distinction based on the
ratio r = N (3)/(N (2) + N (3)), i.e., the fraction of paths that have length 3. In the right hand graph of Fig. 5, we show
the difference between K -OWA and K P-OWA∗

�’s T-RMSEs according to this split-up. We can infer that the lower the r,
the higher the observed difference; this means that K P-OWA∗

� performs better when there are more paths with different
length to aggregate. It can also be seen that only a very small portion of the data have less than 4 times as many paths
of length 3 than paths of length 2.

12 Similar observations can be made for the T-MAEs, as well as for the other operators we considered.
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Fig. 4. T-RMSE and T-MAE for path length dependent (induced) ordered weighted average operators K P-OWA� and K P-OWA∗
� and P-IOWA,

compared to K -OWA, for h = 3.

Fig. 5. (a) T-RMSE for K -OWA and K P-OWA∗
� (� = 0.3) for h = 3, according to the number n of aggregated trust scores; (b) difference between

T-RMSE for K -OWA and K P-OWA∗
� (� = 0.3) for h = 3, according to the ratio of paths of length 3 to the total number of paths. The bars denote

the number of elements in each class.
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Fig. 6. T-RMSE and T-MAE for basic, path length independent, trust aggregators for fixed and dynamic horizon h = 3.

Fig. 7. T-RMSE and T-MAE for path length independent K -OWA with dynamic horizon h = 3, and path length dependent K P-OWA∗
� with fixed

and semi-dynamic horizon h = 3.

Next, we study the effect of using a dynamic horizon search strategy in Fig. 6. It can be seen that this path length
incorporating strategy is beneficial for all basic trust aggregators. This confirms the importance of using shorter paths
when they are available.

Comparing with Fig. 2, the T-RMSE results of all operators for dynamic horizon 3 are slightly better even than those
for fixed horizon 2; this is a valuable result, which shows that coverage and accuracy can be increased simultaneously.
The overall best result with dynamic search is obtained for K -MAX: T-RMSE=0.2970 and T-MAE=0.2896.

Finally, we investigate whether the advantages of both path length incorporating strategies can be combined by using
the semi-dynamic search strategy. To this aim, in Fig. 7, we compare K -OWA to K P-OWA∗

�, the best of the path length
dependent trust aggregators. K -OWA is evaluated using dynamic horizon h = 3, while for K P-OWA∗

� we use both a
fixed horizon h = 3, as well as a semi-dynamical horizon h = 3 with threshold t = 1. In practice the latter strategy
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Fig. 8. T-RMSE and T-MAE for path length independent K -OWA with dynamic horizon h = 3, and path length dependent K P-OWA∗
� with fixed

and semi-dynamic horizon h = 3. The numbers in brackets on the X-axis denote the number of elements in each class.

implies the following:

• If there is exactly one path of length 2 connecting two agents, then K P-OWA∗
� is executed in the same way as with

a fixed horizon. In particular, all paths of length 3 are used in the calculation and get a lower weight than the single
length 2 path.

• In the other cases, only shortest paths are considered. Since all paths used in the calculation have equal length,
K P-OWA∗

� reduces to K -OWA in this case.

The graphs show that a fixed horizon K P-OWA∗
� already obtains lower T-RMSE and T-MAE than dynamic K -OWA

over part of �’s range. However, the Wilcoxon test reveals that even for the optimal value � = 0.3 these differences
are not statistically significant. On the other hand, when a semi-dynamic horizon is used, the results can be further
improved, and in this case the T-RMSE and T-MAE of K P-OWA∗

� are significantly better than those of dynamic
K -OWA according to the Wilcoxon test.

The benefit of using the semi-dynamic horizon strategy can also be seen in Fig. 8, which shows the split-up of
K P-OWA∗

0.3’s the results according to the number of paths of length 2 used in the aggregation. It can be seen that if
there is exactly one path of length 2, using the dynamic horizon more often results in large errors (larger T-RMSE)
than using the fixed or semi-dynamic strategies, which are equal in this case. On the other hand, if there are several
2-length paths, it is better to use dynamic horizon (equal to the semi-dynamic strategy in this case) than fixed horizon.
This gives us a very nice proof that a thoughtful use of path length incorporating strategies can yield more and more
accurate trust score predictions.

5. Conclusion

In this paper, we have introduced several aggregation strategies for trust scores with variable path lengths. Since
less propagation errors are involved in trust scores propagated along shorter paths, they should be considered more
important than other trust scores during the trust aggregation process.

In order to make this distinction, we have introduced two general types of methods. First, we attach weights to
trust scores that depend on the number of propagations needed to obtain them. We have defined such weights on the
basis of the inverses of the path lengths of the trust scores, such that trust scores propagated along longer paths get
lower weights. As this approach is sensitive to the number of trust scores that have a given path length, we have also
introduced a method that reserves a total weight for all trust scores with a certain path length, dependent on the number
of trust scores of this path length. Both approaches can be enhanced with a factor that determines to which extent path
length is taken into account.

Secondly, we have introduced a dynamic horizon search strategy: trust scores with a certain path length are dismissed
whenever there are others available that were propagated along shorter paths. We also introduced a modification of this
method, the semi-dynamic horizon search strategy, that only considers trust scores of higher path lengths if the number
of trust scores with shortest path length does not exceed a threshold.
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We have performed an experimental study on the CouchSurfing trust network, which confirmed that trust scores
propagated along longer paths indeed contain more errors than others. Furthermore, we learned that both using path
length weights and using a dynamical horizon search strategy improve the aggregation result. Path length weights that
depend on the number of trust scores of each path length lead to the best results. On the other hand, the semi-dynamic
horizon strategy can be combined with trust aggregators that use path length depending weights. The results for this
combination are the best ones overall.

As part of our future work, we will consider the refinement of trust aggregators using other information about the
paths that connect agents besides their length. For example, the quality of a path is also determined by the authority
each node on the path enjoys.
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