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Abstract

Determining whether an imprecise dataset is imbalanced is not immediate. The vagueness in the data
causes that the prior probabilities of the classes are not precisely known, and therefore the degree of
imbalance can also be uncertain. In this paper we propose suitable extensions of different resampling
algorithms that can be applied to interval valued, multi-labelled data. By means of these extended prepro-
cessing algorithms, certain classification systems designed for minimizing the fraction of misclassifica-
tions are able to produce knowledge bases that are also adequate under common metrics for imbalanced
classification.
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1. Introduction

The prevalent criterion for measuring the quality of
a classifier is the expected misclassification rate. As
it is widely known, the optimal solution of this prob-
lem is the so called minimum error Bayes rule2,
which is defined in terms of the conditional prob-
abilities of the classes. Nonetheless, a system ob-
taining the minimum error rate is not well suited to
certain tasks21,34. Common examples include medi-
cal diagnosis or fraud detection, where the false neg-
atives do not incur the same cost as false positives.

Imbalanced classification is arguably a particular
case of this cost sensitive classification14,13. These
problems are characterized because the prior prob-
abilities of the classes are much different among
them. Given that the minimum error Bayes rule
does not necessarily equalize the misclassification

rate for the different classes, it might happen that
the false negative rate of the best classification sys-
tem (in terms of the global error) is so high that it
cannot be assumed. The methods of choice for these
last problems consist in finding the classifiers that
optimize a cost function different than the expected
error rate, as done for instance with the the minimum
risk Bayes rule2 or resampling the available data for
equalizing the prior probabilities of the classes39.

Genetic Fuzzy Systems (GFSs) are not an ex-
ception to this. For using a GFS with an imbal-
anced dataset, the standard fitness function has to
be altered, or else changes must be effected on the
dataset for raising the importance of misclassify-
ing objects of the minority class. Both techniques
have been well studied in the context of GFSs:
there are works that deal with the use of costs in
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fuzzy classifiers for imbalanced datasets11,38,41,42,46,
and other studies suggest employing a preprocess-
ing step in order to balance the training data be-
fore the training1,16,17,18,19. In this last respect,
we can highlight the re-sampling procedure named
“Synthetic Minority Oversampling Technique” or
SMOTE4; it has been shown that SMOTE is one the
most efficient preprocessing algorithms for imbal-
anced data in relation with Fuzzy Rule Based Sys-
tems (FRBS)16.

Notwithstanding, the learning of Fuzzy Rule-
based Systems (FRBSs) from datasets that are both
imprecisely perceived and imbalanced has not yet
been addressed from the perspective of the prepro-
cessing of the training data. In this paper we are
chiefly interested in mechanisms for preprocessing
these low quality imbalanced dataset and in studying
the properties of GFSs applied to imprecise data that
has been rebalanced. In this regard, observe that it is
easy to estimate the prior probabilities of the classes
from the training data in crisp datasets, however in
interval or fuzzy datasets there is imprecision in the
perception of the classes, thus these prior probabili-
ties cannot be precisely determined. In certain cases
it cannot be decided whether a dataset is imbalanced
or not; a low specificity in the output variable easily
leads to a possibly imbalanced dataset, as we will
show in the sections that follow.

We have studied and extended different prepro-
cessing stages, organized in three categories: under-
sampling, over-sampling and hybrid1,16. For extend-
ing these preprocessing mechanisms to fuzzy data
we have taken into account different fuzzy arith-
metic operators6,10, and different rankings of fuzzy
numbers. Ranking methods play a crucial role in this
work; the concept was first introduced for ordering
fuzzy numbers22,23, however ranking or comparing
fuzzy numbers has been given many different inter-
pretations; in this paper we will focus on the cen-
troid index ranking method8,9,12,28,37,43 which is a
common technique for ranking numbers36. More-
over, the extension of these preprocessing mecha-
nisms to imprecise data poses additional problems
because, as we have just mentioned, an inaccurate
perception of the classes means that the percentage
of the instances that belong to each class is also im-

precise. Therefore, we can obtain, for example, that
the frequency of the class “A” is between [0.3,0.7]
and for “B” is also between [0.3,0.7] so, if fA = 0.3
and fB = 0.7 the minority class will be represented
by the class “A” but also can happen that fA = 0.7
and fB = 0.3 where the minority class now is “B”.
That is to say, when the data is imprecise it might
happen that either alternative can be regarded as the
minority class.

The structure of this paper is as follows: in
Section 2 we introduce the problem of imbalanced
datasets and discuss from a theoretical point of view
the impact of preprocessing data for solving im-
balanced problems. In Section 3 we generalize
the imbalanced classification problem to imprecise
data, review some preprocesing techniques, focus-
ing on SMOTE4, ENN45, NCL27 and CNN20 algo-
rithms, and propose new algorithms for re-balancing
low quality imbalanced datasets, taking into account
the possibly imprecise outputs. In Section 4 we
introduce a metric of evaluation for these impre-
cisely perceived datasets. After describing these
new algorithms for balancing datasets, we will an-
alyze the behaviour of GFS for imprecise data31

when the data is preprocessed before the learning
phase, and compare the results obtained in several
real-world problems about the diagnosis of dyslexic
children32 and the future performance of athletes in
a competition31. In Section 5 we show these results.
The paper finishes with the conclusions and future
works, in Section 6.

2. A statistical characterization of the
imbalanced classification problem

The problem of imbalanced datasets in classification
occurs when the number of instances of one class is
much lower than that of the other classes5. Some
authors have named this problem “datasets with rare
classes44”. The minority class often represents the
concept of interest24,29,33.

According to certain authors44,35 optimizing the
average error leads to erroneous conclusions in im-
balanced problems, since the minority or positive
class has very little impact on the accuracy as com-
pared to the majority or negative class. The answer
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to that concern, as we have mentioned before, con-
sists in determining a suitable set of misclassifica-
tion costs and in solving a cost sensitive classifi-
cation problem14,13, or alternatively, in preprocess-
ing the training data, resampling it for equalizing
the prior probabilities of the classes1,16. In this sec-
tion we propose a theoretical justification of these
preprocessing algorithms, and study the relation be-
tween them and certain cost sensitive classifications.

2.1. Notation for two-classes problems

Many concepts in imbalanced classification are orig-
inated in two-classes problems. First and foremost,
the confusion matrix, an example of which is shown
in Table 2, divides the results of classifying a set of
instances into four different categories: True Posi-
tives (TP), True Negatives (TN), False Positives (FP)
and False Negatives (FN). Data in the first class are
labelled “positives” or “minority”, and the second
class is labelled “negatives” or “majority”.

The error in a test set is defined by total number
of misclassified examples divided by the available
examples,

Err =
FP+FN

TP+TN+FP+FN
(1)

and the accuracy is 1− Err. We will also use the
terms

TPrate =
TP

TP+FN
FNrate =

FN
TP+FN

(2)

TNrate =
TN

TN+FP
FPrate =

FP
TN+FP

. (3)

2.2. Metrics for two classes problems

As we will explain in the next section, minimizing
the global error in imbalanced problems might be bi-
ased towards the majority class. In other words, the
instances that belong to the minority class might be
misclassified more often than the other classes.

For preventing this, the cost of a mistake should
depend on the class of the object. There is a wide
agreement about the fact that the benefits of classi-
fiers in similar domains must be assessed by more
appropriate criteria than the average classification

error26. Commonly used metrics for two classes
problems16,17,18 include the arithmetic and geomet-
ric means of the sensitivity acc+ = TPrate and the
specificity acc = TNrate. In particular, the geometric
mean of both values is an interesting indicator of the
quality of a classifier for imbalanced data, because
it is high when both acc+ and acc are high or when
the difference between acc+ and acc is small25. Op-
timizing the geometric mean is a compromise in-
tended for maximizing the accuracy on both classes
while keeping these accuracies balanced26. These
criteria will be studied in depth and extended to mul-
ticlass problems in the next subsection.

2.3. Statistical characterization: costs and
resampling in imbalanced problems

In this subsection we illustrate the mechanisms
through which preprocessing the data, or using
costs, influences the quality of a classification sys-
tem for imbalanced data.

Let (x,c) be a random variable pair taking values
in Rd ×C , where the continuous random vector x is
the feature or input vector, and the discrete variable
c ∈ C = {c1,c2, . . . ,cC} is the class. Let f (x) be the
density function of the random vector x, and f (x|c)
the density function of this vector, conditioned on
the class is c = c. P(ci) is the a priori probability
of class ci, i = 1, . . . ,C. P(ci|x) is the a posteriori
probability of ci, given that x = x.

A classifier Φ is a mapping Φ : Rd → C , where
Φ(x)∈C denotes the class that an object is assigned
when it is perceived through the feature vector x.
A classifier defines so many decision regions Di as
classes,

Di = {x ∈ Rd |Φ(x) = ci}, i = 1,2, . . .C. (4)

The performance of a classifier can be measured
by the expected fraction of correct classifications

T (Φ) =
C

∑
i=1

∫
Di

P(ci|x) f (x)dx. (5)

It is widely known that the decision rule maximizing
this rate is

ΦB(x) = argmax
c∈C

P(c|x), (6)
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Positive class (C0) Negative class (C1)
Positive prediction (C0) True Positive (TP) False Positive (FP)
Negative prediction (C1) False Negative (FN) True Negative (TN)

Table 1: Confusion matrix for two classes problems

the so called “minimum error Bayes rule2”. The
same value in Eq. (5) can also be expressed as

T (Φ) =
C

∑
i=1

P(ci)
∫

Di

f (x|ci)dx

=
C

∑
i=1

P(ci)Ti(Φ)
(7)

where the term

Ti(Φ) =
∫

Di

f (x|ci)dx (8)

is the expected fraction of elements of the i-th class
that are correctly classified by Φ. That is to say,
the expected fraction of correct classifications is
the weighted average of successes restricted to each
class, Ti(Φ), i = 1, . . . ,C. Observe that, for two
classes problems, T1 is the expected value of TPrate
and T2 is the expected value of TNrate.

This design is optimal in the sense that no other
classification system can improve its expected suc-
cess rate, but it is not without problems. In particu-
lar, in this paper we are interested in the case where
the proportion of individuals of the interest class is
very small. If a value of a P(ci) is near zero, its asso-
ciated rate Ti(ΦB) can also be low while at the same
time T (ΦB) can still be high. In words, it is pos-
sible that the percentage of failures in the minority
classes, or “false negatives” of the minimum error
Bayes rule is not admissible for certain applications.

This question is solved by minimizing a different
criteria than the misclassification rate. For instance,
one can search for the classifier Φavg maximizing the
unweighted mean

T avg(Φ) =
C

∑
i=1

1
C

Ti(Φ) (9)

which is a generalization to multiclass problems of
the arithmetic mean of sensitivity and accuracy that

we have mentioned in the preceding section. We can
also regard it as a multiclass generalization of the
Bradley’s approximation to the area under the ROC
curve3

E(1−FAUC(Φ)) = E(
TPrate−FPrate

2
)

=
1
2

+
1
2
(T1(Φ)+T2(Φ)).

(10)

The classifier ΦGM generalizing the geometric mean
also seen before is assessed by the value

T GM(Φ) =
C

∏
i=1

Ti(Φ)
1
C . (11)

In this paper we enclose these two metrics and
many others in a common framework, and propose
that the imbalanced classification is regarded as a
multicriteria optimization problem, where the ob-
jective vector of a classifier Φ comprises its success
rates for all classes,

(T1(Φ), . . . ,TC(Φ)) (12)

and the dominance between two classifiers, whose
success rates are (t1 . . . tc) and (u1 . . .uc), is given by

(t1 . . . tc)� (u1 . . .uc) ⇐⇒
ti > ui for all i and ti > ui for some i.

(13)

Let φ be the Pareto front of this problem,

φ(T1(Φ), . . . ,TC(Φ)) = 0. (14)

Observe that the different solutions to the imbal-
anced problems (including the minimum error clas-
sifier, as a particular case) are points in this Pareto
front.

For proving this assert, suppose that there exists
a scalar metric M whose maximum is used for find-
ing the best classifier (for instance, M can be the
AUC criterion, or the geometric mean mentioned
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before). Imagine also that there exists a classi-
fier Φ′ such that the maximum value of this met-
ric is M(Φ′) and φ(T1(Φ′), . . . ,TC(Φ′)) 6= 0. That
classifier Φ′ would be dominated by at least one
element Φ′′ in the Pareto front (because if not,
φ(T1(Φ′), . . . ,TC(Φ′)) = 0, by definition). There-
fore, there would exist a classifier Φ′′ for which
M(Φ′′) < M(Φ′) and at the same time the success
rate of Φ′′ in both the minority and the majority
classes would be better or equal than that of Φ′,
which makes not sense.

Therefore, the best classifier Φ0 with respect to
any coherent scalar metric M must be a point of the
Pareto front. Now we want to determine whether
there exists a convex combination of the functions
Ti(Φ) whose minimum is also Φ0, when constrained
to φ(T1(Φ), . . . ,TC(Φ)) = 0. In particular, let us con-
sider the scalar metric that follows:

Mw(Φ) =
C

∑
i=1

wiTi(Φ). (15)

Introducing a Lagrange multiplier, the best classifier
for Mw is the maximum of

Mw(Φ)+λφ(T1(Φ), . . . ,TC(Φ)) (16)

and the first order Karush-Kuhn-Tucker conditions
in this maximum are

∂Mw

∂Ti
(Φ0)+λ

∂φ

∂Ti
(Φ0) = 0. (17)

We want to know whether there is a set of weights
wi such that the maximum of Eq. (16) is the same
classifier that maximizes the arbitrary scalar metric
M mentioned at the beginning of this paragraph. The
answer is positive, as it is well known that the con-
vex part of a Pareto front can be reached by mini-
mizing weighted combinations of the objectives. For
instance, the assignment

wi =
∂φ

∂Ti
(Φ0)

∑
C
j=1

∂φ

∂Tj
(Φ0)

(18)

makes that the equations

∂φ

∂Ti
(Φ0)

∑
C
j=1

∂φ

∂Tj
(Φ0)

+λ
∂φ

∂Ti
(Φ0) = 0 (19)

are fulfilled in Φ0, and the value of the Lagrange
multiplier is

λ =−(
C

∑
j=1

∂φ

∂Tj
(Φ0))−1. (20)

Now we will show that Mw can be regarded as the
dual of the risk of a classifier for a given cost ma-
trix. Let B = [bi j] ∈ RC×C, where bi j = cost(ci,c j)
is the cost of deciding that an object is of class ci
when its actual class is c j. Cost sensitive classifiers
minimize the risk function

R(Φ) =
C

∑
i=1

∫
Di

C

∑
j=1

bi jP(c j|x) f (x)dx. (21)

Let wi the value defined in Eq. (18), and let also be

K = max
k=1...C

{
wk

P(ck)

}
, (22)

and let the cost matrix be

bi j =


K− wi

P(ci)
for i = j

K else.
(23)

The risk Rw(Φ) associated to this particular cost ma-
trix is computed as follows:

Rw(Φ) = Rw1−Rw2 (24)

where

Rw1(Φ) =
C

∑
i=1

∫
Di

C

∑
j=1

KP(c j|x) f (x)dx

= K
∫

Rd

C

∑
j=1

P(c j|x) f (x)dx
(25)

does not depend on the classifier, and

Rw2(Φ) =
C

∑
i=1

∫
Di

wi

P(ci)
P(ci|x) f (x)dx

=
C

∑
i=1

wi

P(ci)

∫
Di

P(ci|x) f (x)dx

=
C

∑
i=1

wiTi(Φ)

= Mw(Φ)

(26)
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thus finding the classifier Φ that minimizes Rw1 −
Rw2 is equivalent to finding the classifier maximiz-
ing Mw, as desired.

As a consequence of this, it is also possible
to find solutions to imbalanced classification prob-
lems by resampling the training set. Such re-
sampling should be designed for obtaining a new
dataset, ideally a random sample from an hypothet-
ical population with the same densities f (x|ci) and
f (x), but whose prior probabilities of the classes are
Presample(ci) = wi. It is immediate that the best clas-
sifier for this hypothetical population, according to
the minimum error based criterion, is

Φresample(x) = arg max
i=1...C

wi
P(ci)

P(ci|x)

∑
C
k=1

wk
P(ck)

P(ck|x)

= arg max
i=1...C

wi

P(ci)
P(ci|x)

(27)
and this classifier also minimizes the risk associated
to the cost matrix in Eq. (23) for the original prob-
lem.

The consequences of these results can be sum-
marized in the following two points:

1. Any criteria for defining the quality of imbal-
anced classifiers fulfilling Eq. (13) can be re-
placed by a cost-sensitive classification sys-
tem with the cost matrix defined by Eq. (23).
Observe that this cost matrix is not unique.

2. The minimum risk solution to an imbalanced
classifier can also be obtained by applying
the minimum error Bayes rule to a resampled
dataset whose prior probabilities are wi.

Observe also that our arguments in this section sup-
port the fact that for each scalar quality measure
(i.e, average of sensitivity and specificity, geomet-
ric mean, AUC, etc.) there is a cost matrix for which
the minimum risk classifier is the same as the imbal-
anced classifier, but we have not provided a method
for obtaining the values of the elements of this cost
matrix in the general case.

3. Preprocessing possibly imbalanced datasets

According to the results in the preceding section,
an imbalanced dataset problem can be dealt with by
altering the objective function of the classifier, for
making it to depend on a cost matrix that better takes
into account the minority class, or else we can leave
the classification system as is, but equalize the data
in advance, in order to minimize the effect caused
by their class imbalance. In this last respect, there
are three categories of preprocessing methods in the
literature1,16:

• Under-sampling methods: Obtain a subset of
the original dataset by eliminating some of the
examples of the majority class. This category
comprises the Condensed Nearest Neighbour rule
(CNN)20, Tomek links40, One-sided selection
(OSS)26, Neighbourhood cleaning rule (NCL)27

based on the Wilson’s Edited Nearest Neighbour
(ENN)45 and the random under-sampling.

• Over-sampling methods: Obtain a superset of the
original dataset by replicating some of the exam-
ples of the minority class or creating new ones
from the original minority class instances. These
methods are Synthetic Minority Over-sampling
Technique (SMOTE)4 and random over-sampling.

• Hybrid methods: These combine over-sampling
and under-sampling, and obtain a set by com-
bining the two previous methods. For instance,
SMOTE+Tomek Link and SMOTE+ENN.

3.1. Possibly imbalanced datasets

When a dataset contains imprecision in the output
variables, the degree of imbalance is also uncertain.
For instance, if an instance is labeled as “class {A,
B}” or, in words, if we do not know whether the
true class of certain instance is A or B, then the
total number of instances of types “A” and “B” in
the training set is also an imprecise value and the
same can be said about the imbalance ratio of that
dataset. To this we can add that, if the specificity
of these imprecise labels is low, most datasets will
be possibly imbalanced. For instance, imagine a
problem with three classes where, after computing
the ranges of the relative frequencies of the classes,
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we obtain that fA ∈ [0.05,0.25], fB ∈ [0.05,0.35]
and fC ∈ [0.4,0.9]. This means that the actual fre-
quencies might be 0.25, 0.35 and 0.4, which is not,
strictly speaking, an unbalanced problem, but it is
also possible that they are 0.05, 0.05 and 0.9. In this
last case, it is widely admitted that a classification
system might not perform well on classes A and B
unless we equalize the training set. Since we cannot
precise whether the actual imbalance ratio is as low
as 0.4/0.25 or as high as 0.9/0.05, it seems reason-
able to us to adapt those techniques used for prepro-
cessing imbalanced crisp datasets to low quality data
and use them also in problems that, at a first sight,
would have not been regarded as umbalanced. Be-
cause of this fact, new algorithms based on SMOTE,
NCL, ENN and CNN will be explained in this sec-
tion.

3.2. Catalog of methods to be extended: ENN,
NCL, CNN and SMOTE

As we have mentioned before, there are different
categories of preprocessing mechanisms. All of
them are susceptible of being extended to interval
and fuzzy data. Our selection of methods is chosen
as follows:

Under-sampling: In this category we have consid-
ered NCL, ENN and CNN. This is because both
CNN and OSS have worse performance (in the
framework of FRBCS) than the straight use of
the unprocessed data, but CNN is known to im-
prove OSS. In turn, applying NCL is better than
not applying a preprocessing mechanism but it is
not expected to improve SMOTE, being compa-
rable to the “Tomek links” algorithm16. We have
also extended the ENN algorithm because this al-
gorithm not only removes elements from the ma-
jority class, but also discard instances from the re-
maining classes. Given that the concept of “mi-
nority class” is not precise under our assumptions,
this behavior is more convenient for us than that of
these algorithms discarding elements of a unique,
pre-selected class.

Over-sampling: We apply SMOTE because this al-
gorithm consistently obtains better results than
the random-over-sampling in the context of

FRBCS16.
Hybrid method: We have selected SMOTE+ENN

because both this and SMOTE+Tomek links ob-
tain similar results, near to those obtained with
SMOTE. In addition to this, ENN tends to remove
more examples than the Tomek links does, so it is
expected to produce a deeper data cleaning16.

3.3. Outline and generalization of the
preprocessing methods

Since there are many parts in common among the
methods that will be generalized, we describe all of
them first, and then detail the common parts in a sep-
arate subsection later.

SMOTE: In the SMOTE algorithm, the minority
class is over-sampled. Each minority class exam-
ple is selected, and new synthetic examples are
introduced along the line segments joining any or
all of its nearest neighbors of the minority class.
Depending on the amount of over-sampling re-
quired, some of these nearest neighbors are ran-
domly chosen4. For example, if the implementa-
tion uses four nearest neighbors and the amount of
over-sampling needed is 200%, only two neigh-
bors from the four nearest neighbors are chosen
and one sample is generated in the direction of
each. In Figure 1 an example is shown where xi
is the selected point, xi1 to xi4 are some of the se-
lected nearest neighbors and r1 to r2 are the syn-
thetic data points created by the randomized inter-
polation.
For generating synthetic samples, the difference
between the feature vector of the sample under
consideration and its nearest neighbor is taken.
This difference is multiplied by a random number
between 0 and 1, and added to the initial feature
vector. This causes that a random point along the
line segment between two specific features is se-
lected. This approach effectively forces the deci-
sion region of the minority class to become more
general4. A numerical example of this procedure
is detailed in Table 2.

ENN: This preprocessing mechanism is a data clean-
ing method that removes any example whose class
label differs from the class of at least two of its
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Figure 1: Creation of synthetic data points in the SMOTE algorithm.

Table 2: Example of the SMOTE method.
Consider an instance (6,4) and let (4,3) be its nearest neighbor.
(6,4) is the instance for which the nearest neighbors are being identified.
(4,3) is one of its k-nearest neighbors.
Let:
f1 1 = 6 f2 1 = 4 f2 1 - f1 1 = -2
f1 2 = 4 f2 2 = 3 f2 2 - f1 2 = -1
The new samples will be generated as
(f1’,f2’) = (6,4) + rand(0-1) * (-2,-1)
rand(0-1) generates a random number between 0 and 1.

three nearest neighbors45. The steps of this algo-
rithm are:

1. For each instance of the training set, their
nearest neighbors are found.

2. The class represented or associated with the
largest number of these nearest neighbours
is selected.

3. If the class of the instance is different than
the class found in the preceding step, the in-
stance is removed.

NCL: This preprocessing mechanism is a under-
sampling method based on ENN that removes ex-
amples from the majority class:

1. For each input of the training set, their near-
est neighbors are found.

2. The class represented or associated with the
largest number of nearest neighbours is se-
lected.

3. If the class of the instance belongs to the
majority class and is different than the class
fond in the preceding step, the instance is re-
moved. In addition to this, if the class of the
instance belongs to the minority class and
the class fond in the preceding step is not
the same as the class of the instance then all
the instances among the nearest neighbours
that belong to the majority class are also re-
moved.

CNN: This method is used to find a consistent subset
of examples. The concept of a consistent subset
of a training set was proposed in reference20, in
combination with the algorithm “Condensed NN
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rule”. To determine this consistent subset from
the training set, this algorithm uses two additional
sets S and T in the following way:

• S is initialized with examples of the training set.
There are different procedures for this inicial-
ization. For instance, the first examples of the
training set can be chosen20.

• T is initialized with those instances of the train-
ing set that are not in S.

• A nearest-neighbor classifier is defined using
the contents of S. Each instance in T is clas-
sified with this nearest-neighbor system. If the
actual class of an object in T does not match
the output of the S-based classifier, this object
is added to S.

To this we can add that some authors defend
that objects of the minority class should not be
removed15, thus in this case the initialization of
S consists in inserting one example of the major-
ity class of the training set and all the elements of
the minority class.

3.4. Generalization of SMOTE to Low Quality
Data: SMOTE-LQD

There are three aspects in our generalization of
SMOTE to low quality data that deserve a detailed
study:

1. Selection of the minority class and the amount
of synthetic examples. Given that the imbal-
ance ratio is not precisely known, it might
happen that more than one class can be re-
garded as the minority class.

2. Computation of the nearest neighbors of any
example. The implementation applied in this
work uses the euclidean distance to select the
nearest neighbors and it also uses fuzzy arith-
metic operators and a fuzzy ranking, as we
will explain later.

3. Generation of synthetic examples from the
minority class. We will use fuzzy arithmetic
operators, and control the values that may be
out of range for the different attributes.

3.4.1. Selection of the minority class

The inputs to the SMOTE algorithm4 are the minor-
ity classes and the amount of synthetic examples that
will be generated for each class. In our extension,
the minority class is the set of all classes but the
most frequent. Instances with more than one label
are not considered in this step.

Suppose that the features and the classes of the
objects in the dataset cannot be accurately perceived,
but we are given intervals that contain them:

D = {(Xk,Yk)}N
k=1 (28)

where Xk ⊂ Rd and Yk ⊂ {1, . . . ,C}. Let us define
the vector (m1, . . . ,mC) of absolute frequencies of
the classes in the dataset, whose components are

mi = #{k | Yk = {i}}. (29)

Let c∗ be the majority class, mc∗ = maxi=1,...,C mi.
We will consider that all classes but c∗ are minor-
ity classes. Each instance will be used to generate
a number of synthetic resamples that depends on its
class, and this number is(

mc∗

m1
, . . . ,

mc∗

mC

)
. (30)

3.4.2. Computation of the nearest neighbors

In a first step we collect all the examples that pos-
sibly belong to the minority class. This set includes
those whose class we know and those whose class
we cannot affirm is different than the minority:

{(Xk,Yk) | c∗ 6∈ Yk}. (31)

The second step consists in obtaining the k near-
est neighbors of the example, where the meaning of
“nearest” is given by a generalized euclidean dis-
tance and a certain method for ranking these dis-
tances. That is to say, the euclidean distance be-
tween two vectors of fuzzy numbers (Ãi1, . . . , Ãin)
and (B̃ j1, . . . , B̃ jn) is generalized as follows:

D̃i j =

[
n⊕

m=1

(Ãim	 B̃ jm)2

] 1
2

(32)

where all fuzzy numbers are trapezoidal, Ã =
(a,b,c,d) and all the arithmetic operators are also
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fuzzy6,10. We will consider that D̃i j is a generalized
trapezoidal fuzzy number.

We have used the operation “ranking” for de-
terming the k nearest neighbours of a given example.
It is well known36 that no single ranking method is
superior to all other methods; each ranking appears
to have some advantages as well as disadvantages.
In this proposal we use the method defined in43,12.

3.4.3. Generation of the synthetic examples

The generation of the synthetic examples consists in
taking the difference between the feature vector un-
der consideration and its nearest neighbor4. This dif-
ference is multiplied by a random number between
0 and 1, and added to the feature of the synthetic ex-
ample. It is remarked that these operations involve
fuzzy arithmetic and we have to control the values
that are out of range in the different attributes due to
these operations.

3.5. ENN LQD and NCL LQD

For both ENN LQD and NCL LQD, we have to
consider the following factors:

1. The computation of the three nearest neigh-
bors: As in SMOTE LQD we need to intro-
duce fuzzy arithmetic operators and a fuzzy
ranking for determining the nearest neighbors
of a given example.

2. Removal of the instances that differ in two of
its three neighbors: Having into account that
the instances may have more than one label,
the options are:

• If the instance has a precise output and at
least one of its neighbors has an imprecise
output, then all possible alternatives of the
set of elements are studied (see Figure 2).
If one of these alternatives prevents the re-
moval, the instance is not deleted from the
training set.

• If the instance is multilabelled and the most
frequent class among their nearest neigh-
bors is contained in the set of labels (see
Figure 3 for an example) then the instance

is not deleted. However, in this case the un-
certainty is removed and the element is as-
signed the most frequent class. In the exam-
ple in Figure 3, the instance labelled with
{1,0} is relabelled as {0}. In Figure 4 the
instance keeps its imprecise output.

In addition to this, the NCL LQD algoritm de-
fines the following directives:

1. The selection of the number of instances that
belong to each class, used for determining the
minority classes, always takes into account
the instances with imprecise outputs, applying
Eq. (29).

2. If the instance (Xk,Ck) is part of the minority
classes and its class differs at least in two of
its three nearest neighbors, it can happen that
(see Figure 5):

• None of the neighbours belongs to the ma-
jority class: none is eliminated.

• The class of a multi-labelled neighbor con-
tains the majority class: this neighbour is
also kept.

3.6. CNN LQD

The generalization of this algorithm is as follows:

1. Computation of the nearest neighbours: As
done in SMOTE LQD we need to introduce
fuzzy arithmetic operators and a fuzzy rank-
ing for determining the nearest neighbors of a
given example.

2. Initialization of the set S: This set is com-
posed by C instances of the training set (where
C is the number of classes). Elements with
multiple labels are not allowed in this set.

3. Addition of imprecise instances to the set T : If
the label of any of the nearest neighbors is in-
cluded in the set of labels of the element being
classified, we will consider that this element
has been correctly classified and then we do
not include it in the set S (see Figure 6).
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Figure 2: Instance which is not removed because some of its neigbors are imprecise

Figure 3: Instance with imprecise output that is relabelled according to their neighbors

4. Metric of evaluation with low quality data
and imbalanced datasets

The multicriteria evaluation of the performance of a
classifier Φ is a numerical estimation of the values
Ti(Φ) seen before, or the scalar value of a suitable
metric M(Φ). Most of times, these metrics depend
of the terms of the confusion matrix. We have men-
tioned before that TPrate is an estimation of T1 and
TNrate is an estimation of T2.

Generally speaking, let D = {Xk,yk}k=1,...,N be a
crisp dataset and let S(Φ,D) = [si j] be the confusion
matrix of a classifier Φ on the dataset D . This ma-
trix comprises the elements si j, that are the number
of elements in the sample for which the output Φ(xk)
of the classifier is ci and j = yk (i.e. the class of the
k-th element is cyk ). Let us express this as follows:

si j =
N

∑
k=1

δci,Φ(xk)δ j,yk . (33)

In case that the features and the classes of the ob-
jects in the dataset cannot be accurately perceived,
but we are given intervals that contain them, the
dataset is

D = {(Xk,Yk)}N
k=1 (34)

where Xk ⊂Rd and Yk ⊂ {1, . . . ,C}. The most pre-
cise output of the classifier Φ for a set-valued input

X is
Φ(X ) = {Φ(x) | x ∈X }. (35)

In this case, the elements of the confusion matrix S
are also sets. Let us define, for simplicity in the
notation, the set-valued function δ : C ×P(C ) →
P({0,1})

δ a,A =


1 {a}= A

0 a 6∈A

{0,1} else.

(36)

With the help of this function, the confusion ma-
trix in the preceding subsection is generalized to an
interval-valued matrix S = [si j], as follows:

si j =
N

∑
k=1

δ ci,Φ(Xk)δ j,Yk . (37)

and the estimation of the values Ti with imprecise
data are

T̂i(Φ,D) =
si j

n j
(38)

where n j is an interval estimation of the number of
elements of the j-th class,

n j = [#{k | { j}= Yk}, #{k | j ∈ Yk}]. (39)

Observe that these last expressions make use of set-
valued addition and multiplication,

A +B = {a+b | a ∈A ,b ∈B} (40)
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Figure 4: Instance with imprecise output that is not relabelled.

Figure 5: Instance and neighbours kept in the training set. The classes are {0,1,2}, where the class “2” is the
majority.

A ·B = {ab | a ∈A ,b ∈B}. (41)

5. Numerical Results

In this section we will study some real-world prob-
lems; some of them are related to medical diagnosis
(the diagnostic of dyslexia in children32) while oth-
ers study the future performance of athletes in cer-
tain tests31. These datasets are summarized as fol-
lows:

• Athletism datasets: This experimentation is com-
posed by 8 datasets that are used to predict
whether an athlete will improve certain thresh-
old in the long jump, 100 meters and 200 meters,
given several relevant indicators of each event. All
the features are interval-valued.

• Dyslexia datasets: This subset is composed by 3
datasets that are used for diagnosing whether one
child has dyslexia or not. These datasets contain a
mix of interval and crisp data.

It is remarked that all these cases have a certain
degree of imbalance and vagueness in the perception
of the features and the class. With this experimenta-
tion we will compare the performance of GFSs de-
signed for being used with low quality data when ap-
plied to both unprocessed and preprocessed datasets.

5.1. Settings

The datasets comprising this experimentation have
been taken from previous works31,32 for an easier
reproducibility, and all of them have imprecise in-
puts and outputs. A brief descripcion of them is pro-
vided in Table 3, showing for each dataset the name,
the number of examples (Ex), number of attributes
(Atts), the classes and the percentage of patterns of
each class.

All the experiments have been run with a popula-
tion size of 100, probabilities of crossover and muta-
tion of 0.9 and 0.1, respectively, and limited to 100
generations. The fuzzy partitions of the labels are
uniform and their size is 5 in athletism datasets and
4 in datasets of dyslexia. All the imprecise exper-
iments were repeated 100 times with bootstrapped
resamples of the training set. The preprocess-
ing methods applied in this work (SMOTE LQD,
SMOTE+ENN LQD, ENN LQD and NCL LQD)
use the three nearest neighbors, except CNN LQD
that only uses one, and balance all the classes tak-
ing into account the imprecise outputs, where the
number of duplicates of the minority instances is
estimated by the algorithms, when necessary. All
the methods have been used for preprocessing 100
bootstrapped resamples of the training set, where the
“out of the bag” instances are the test sets.
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Figure 6: Classification of the instances with imprecise outputs.

Dataset Ex. Atts. Classes %Classes
Long-4 25 4 (0,1) ([0.36,0.64],[0.36,0.64])

BLong-4 25 4 (0,1) ([0.36,0.64],[0.36,0.64])
100ml-4-I 52 4 (0,1) ([0.44,0.63],[0.36,0.55])
100ml-4-P 52 4 (0,1) ([0.44,0.63],[0.36,0.55])
B100ml-I 52 4 (0,1) ([0.44,0.63],[0.36,0.55])
B100ml-P 52 4 (0,1) ([0.44,0.63],[0.36,0.55])
B200ml-I 19 4 (0,1) ([0.47,0.73],[0.26,0.52])
B200ml-P 19 5 (0,1) ([0.47,0.73],[0.26,0.52])

Dyslexic-12 65 12 (0,1,2,4) ([0.32,0.43],[0.07,0.16],
[0.24,0.35],[0.12,0.35])

Dyslexic-12-01 65 12 (0,1,2) ([0.44,0.53],[0.24,0.35],
[0.12,0.30])

Dyslexic-12-12 65 12 (0,1,2) ([0.32,0.43],[0.32,0.52]
[0.12,0.30])

Table 3: Summarized descriptions of the datasets.

Lastly, it is remarked that we have used two
different metrics: the arithmetic and the geometric
means of the values Ti mentioned in the preceding
sections. These metrics have been labelled AccTst
and GMTst. Observe that we have only included the
upper bound of GM, which is the most pessimistic
estimation, as the lower bound is less informative,
and tends to be an overly optimistic lower bound of
the results.

5.2. Athletic’s Datasets

The behaviour of the GFS able to use low quality
data when applied to both unprocessed and prepro-
cessed Athletic’s datasets is shown in Table 4. This
Table is composed by several columns. The first col-
umn, “Dataset”, contains the name of the datasets.
The second one, “GFS”, shows the accuracy ob-
tained by the GFS with the original datasets (unpro-

cessed). The rest of the columns show the accuracy
of the GFS when the datasets are preprocessed with
different preprocessing mechanisms.

The datasets are divided in two groups. On the
one hand, those based on the long run and 200 me-
ters. On the other hand, 100 meters run. This divi-
sion responds to the fact that the events in the first
group have a higher imprecision in the number of
instances in each class, because the number of mul-
tilabelled instances is also higher. We have used this
property for comparing the different behavior of the
algorithms in datasets with low and high imprecision
in the output variable.

We have observed that SMOTE LQD is the al-
ternative of choice in both cases, and applying this
preprocessing algorithm is, generally speaking, bet-
ter than leaving the data unprocessed even for those
datasets where their imbalance is not self-evident.
On the contrary, we have found cases where the use
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of NCL LQD is not recommended: this last algo-
rithm should not be applied to those datasets where
the imprecision is high and the number of instances
low, as happens in 100 meters. The removal of in-
stances loses relevant information and this difficults
the convergence of the GFS.

Summarizing the results in Table 4, we have de-
tected a different behavior of the preprocessing algo-
rithms as a function of the imprecision in the output
variable. These differences are as follows:

• Using SMOTE LQD improves the convergence of
GFS for imprecise data in all the problems.

• The use of SMOTE+ENN LQD is our sec-
ond best choice. There are differences be-
tween SMOTE LQD and SMOTE+ENN LQD
that make us to prefer the first alternative, but ei-
ther algorithm is better than leaving the data un-
processed.

• The use of NCL LQD has a quality coherent with
the findings of other authors16 but too many in-
stances may be removed (this effect is clearly per-
ceived in the 100 meters problem). When the size
of the dataset is large, NCL LQD improves the re-
sults of ENN LQD and CNN LQD.

• Using CNN LQD is not recommended as leav-
ing the data unprocessed can outperform this pre-
processing, again confirming the results in the
literature16.

• ENN LQD cleans both majority and minority in-
stances, improving CNN LQD, as expected. The
results of this algorithm are intermediate between
NCL LQD and CNN LQD, however the need for
applying this algorithm is not justified, as their re-
sults do not significantly improve those obtained
when the GFS uses the raw data.

We can conclude that our results corroborate
the expected properties of the crisp versions of the
algorithms16. In Figure 7 we have pictured the dif-
ferences among these algorithms according to the
degree of imprecision in the data. Lastly, in Figure
8 we have displayed the same results with respect
to the Bradley’s approximation to the AUC metric
mentioned before. As we have shown, these are sim-
ilar to the average of the success rates. The highest
improvements are obtained through the use of the al-

gorithm SMOTE LQD: in our experimentation, the
mean improvement in the most pessimistic estima-
tion of GM was near 7%, and these improvements
were significant in about 65% of our cases. The
highest improvements were measured in the datasets
whose imprecision in the output variable is higher.

It is also interesting that in the dataset “B200ml-
P” the preprocessing of the data seems to be irrele-
vant if the averaged accuracy is the metric of choice.
Notwithstanding, there is a measurable gain if the
GM metric is used: 61.91% for SMOTE LQD, with
respect to 40.70% without preprocessing. In Table 5
we have shown that the number of successful classi-
fications is indeed similar, however the preprocess-
ing has equalized the number of correct classifica-
tions for all the classes, from 3973 in the majority
class and 571 in the minority class to near 2000 in
either class (2518 and 2084 successes). Also in this
Table 5 we can check how FN and FP decrease in
some datasets, with benefits in long run and 200 me-
ters.

5.3. Dyslexic’s Datasets

The behaviour of the GFS able to use low quality
data in the Dyslexia datasets is shown in Table 6,
where the accuracy of the GFS is shown when the
datasets are unprocessed or preprocessed with dif-
ferent mechanisms. In the first column of the ta-
ble we have shown the names of the datasets and
the values of the majority class and the number of
extra instances needed for balancing the datasets
either with SMOTE LQD or SMOTE+ENN LQD.
These two parameters have been obtained through
the study of the confusion matrix obtained with
the original datasets. In the same column of the
same table we display the behavior of the GFS
without preprocessing the data, and the remaing
part of that table contains the performances of the
GFS with and without preprocessing the impre-
cise data with SMOTE LQD, SMOTE+ENN LQD,
ENN LQD, NCL LQD and CNN LQD.

As it happened with athletism datasets, we detect
that using SMOTE LQD uniformly improves the re-
sults of all the algorithms in our selection. The qual-
ity of the results is mostly coherent with the results
in the preceding subsection and also in the crisp ver-
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Table 4: Means of 100 repetitions of the GFS from the low quality Athletic’s datasets with 5 labels/variable with
the original dataset and preprocessed with several preprocessing mechanism.

GFS GFS+SMOTE LQD GFS+SMOTE+ENN LQD
Dataset AccT st GMT st AccT st GMT st AccT st GMT st

Long-4 [0.408,0.677] 52.52 [0.486,0.755] 59.16 [0.417,0.686] 49.69
BLong-4 [0.375,0.674] 50.45 [0.446,0.746] 57.55 [0.443,0.742] 57.06
B200ml-I [0.524,0.768] 45.21 [0.630,0.875] 61.82 [0.590,0.834] 57.62
B200ml-P [0.520,0.738] 40.70 [0.521,0.739] 61.91 [0.516,0.734] 54.51

Mean [0.457,0.715] 47.22 [0.521,0.779] 60.11 [0.492,0.749] 54.72
100ml-4-I [0.622,0.824] 67.50 [0.625,0.826] 68.94 [0.623,0.824] 66.78
100ml-4-P [0.645,0.824] 69.03 [0.653,0.832] 70.15 [0.650,0.829] 69.60
B100ml-I [0.631,0.828] 67.80 [0.633,0.831] 69.42 [0.583,0.781] 62.20
B100ml-P [0.651,0.84] 69.78 [0.65,0.839] 70.41 [0.645,0.834] 68.72

Mean [0.638,0.829] 68.53 [0.641,0.832] 69.73 [0.626,0.817] 66.83
Total Mean [0.547,0.772] 57.87 [0.581,0.806] 64.92 [0.559,0.783] 60.77

GFS+ENN LQD GFS+NCL LQD GFS+CNN LQD
Dataset AccT st GMT st AccT st GMT st AccT st GMT st

Long-4 [0.395,0.664] 52.21 [0.422,0.69] 54.17 [0.377,0.645] 47.27
BLong-4 [0.373,0.673] 50.13 [0.374,0.674] 50.14 [0.373,0.673] 42.65
B200ml-I [0.513,0.757] 45.44 [0.526,0.771] 49.19 [0.476,0.720] 43.45
B200ml-P [0.505,0.723] 39.64 [0.502,0.720] 44.78 [0.517,0.735] 41.36

Mean [0.447,0.705] 46.85 [0.456,0.713] 49.57 [0.436,0.694] 43.68
100ml-4-I [0.591,0.792] 65.83 [0.604,0.805] 66.90 [0.564,0.765] 62.98
100ml-4-P [0.652,0.830] 68.63 [0.644,0.822] 68.44 [0.497,0.676] 54.33
B100ml-I [0.603,0.8] 66.18 [0.609,0.806] 66.92 [0.561,0.759] 62.32
B100ml-P [0.635,0.824] 68.26 [0.641,0.830] 69.28 [0.534,0.723] 57.51

Mean [0.621,0.812] 67.22 [0.624,0.815] 67.88 [0.539,0.731] 59.28
Total Mean [0.534,0.758] 57.04 [0.54,0.764] 58.72 [0.488,0.712] 51.48
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Behaviour of the GFS respect to several preprocessing mechanism
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Figure 7: Behaviour of low quality data in the GFS respect to several preprocessing mechanisms (upper bound
of GM metric)
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Figure 8: Behaviour of low quality data in the GFS respect to several preprocessing mechanisms. (upper bound
of AUC metric)
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GFS GFS+SMOTE LQD
Long-4

Class 0 Class 1 Class 0 Class 1
Class 0 2591 3168 3098 2661
Class 1 2186 3463 1974 3675
BLong-4

Class 0 Class 1 Class 0 Class 1
Class 0 2379 3720 3307 2792
Class 1 2005 3764 2245 3524
100ml-4-I

Class 0 Class 1 Class 0 Class 1
Class 0 9352 2867 8044 4175
Class 1 4346 6393 2986 7753
100ml-4-P

Class 0 Class 1 Class 0 Class 1
Class 0 9135 2974 9005 3104
Class 1 3863 6626 3549 6940
B100ml-4-I

Class 0 Class 1 Class 0 Class 1
Class 0 9286 2693 8009 3970
Class 1 4298 6261 2949 7610
B100ml-4-P

Class 0 Class 1 Class 0 Class 1
Class 0 9164 2945 8618 3491
Class 1 3754 6775 3195 7334
B200ml-I

Class 0 Class 1 Class 0 Class 1
Class 0 3983 696 4093 586
Class 1 2355 744 1745 1354
B200ml-P

Class 0 Class 1 Class 0 Class 1
Class 0 3973 686 2518 2141
Class 1 2368 571 855 2084

Table 5: Confusion matrix obtained in the low quality dasates of Athletics with unprocessed and preprocessed
data (SMOTE LQD).

sion of the algorithms16. SMOTE LQD improves
SMOTE+ENN LQD, but the difference is not too
relevant. On the contrary, the use of NCL LQD is
not justified for this data, and it was expected to be.
This can be explained by the fact that the datasets
studied here are multiclass problems, but the con-
clusions in the literature were intended for binary
problems. It also worths mentioning that the results
of ENN LQD are near to those of NCL LQD (see
the maximum of the optimistic estimations and the
minimum of the pessimistic estimations in Table 6).
ENN LQD is worse than NCL LQD in Dyslexic-12
and Dyslexic-12-01 For the last part, remark that

CNN LQD obtains, as it did in athletism datasets,
the worst results.

6. Conclusions and Future Works

In this work we have considered the use of low qual-
ity imbalanced datasets in combination with certain
GFSs that are able to use low quality data. The re-
sults have shown us that the behavior of a GFS for
imprecise data can be improved with suitable gen-
eralizations of preprocessing algorithms for imbal-
anced data. This is because the uncertainty in the
output label causes that many datasets become pos-
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GFS GFS+ GFS+SMOTE+ GFS+ GFS+ GFS+
SMOTE LQD ENN LQD ENN LQD NCL LQD CNN LQD

Dataset AccT st AccT st AccT st AccT st AccT st AccT st
Dyslexic-12
M=[0,1,2,4]

[0.410,0.557] [0.453,0.578] [0.434,0.568] [0.411,0.540] [0.425,0.551] [0.393,0.508]N=[1,2,2,1]
Dyslexic-12-01
M=[0,1,2]

[0.524,0.656] [0.550,0.663] [0.551,0.670] [0.493,0.595] [0.521,0.62] [0.472,0.556]N=[1,2,1]
Dyslexic-12-12
M=[0,1,2]

[0.443,0.614] [0.484,0.645] [0.477,0.642] [0.418,0.674] [0.445,0.577] [0.388,0.516]N=[2,1,2]
Mean [0.459,0.609] [0.496,0.629] [0.488,0.627] [0.441,0.603] [0.463,0.582] [0.418,0.527]

Table 6: Means of 100 repetitions of the GFS from low quality datasets of Dyslexic with 4 labels/variable with
the original dataset and preprocessed with several preprocessing mechanism.

sibly imbalanced datasets, as there exist imbalanced
selections of the imprecise data that are compatible
with our incomplete knowledge of the problem.

Our experimentation concludes that the
generalizations called SMOTE LQD and
SMOTE+ENN LQD are a balanced choice for a
vast majority of problems, as they tend to improve
the results of the classification and rarely degrade
the results obtained if the preprocessing stage is
obviated. Furthermore, we have shown that the
ranking of the different generalized alternatives is
coherent with the ranking obtained by other authors
for crisp data and GFS for binary problems. Also
in multiclass problems this ranking holds to a cer-
tain degree, being remarkable the good behavior of
SMOTE LQD and SMOTE+ENN LQD.

In future works, we intend to incorporate infor-
mation about the confusion matrix of the minimum
error-based GFS into the preprocessing algorithm.
This information can be used to fine tune the syn-
thesis of instances in combination with a particular
GFS. We have also observed that multiclass datasets
might be better suited for an internal approach that
takes into account the cost of misclassification for
each pair of classes (i.e. a minimum risk-based ap-
proach). In the last place, we think possible that, in
those cases where the output variable is vague with
high probability, and therefore we are not sure that
the dataset is imbalanced, some techniques used in

semi-supervised learning can be introduced in the
preprocessing stage.
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