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1. Introduction

In [32], we introduced interval-valued monoidal logic2 (IVML). As its name suggests, the intended semantics of this logic
are algebras of intervals. The idea behind interval-valued truth degrees is that they provide a way to express incomplete as well
as graded knowledge (see e.g. [5,9,15,25,26,31,32]). In fact, interval-valued fuzzy sets and truth degrees are a special case of
type-2 fuzzy sets and Z-numbers, which were introduced in [35,36]. It was proven in [32] that IVML is sound and complete
w.r.t. triangle algebras, and that triangle algebras are equivalent with IVRLs (which are residuated lattices that have intervals
as elements; the precise definition is in Definitions 4 and 5). These intervals can be taken in any residuated lattice. Residuated
lattices form the semantics of Höhle’s monoidal logic (ML) [20], which explains the second part of the name IVML. Numerous
axiomatic extensions of IVML can be defined. All of them are sound and complete w.r.t. the corresponding subvarieties of the
variety of triangle algebras. An interesting example is interval-valued monoidal t-norm based logic3 (IVMTL), because it was
proven in [34] that this logic (and its extensions) is pseudo-chain complete. This means that the semantics can be restricted
to IVRLs in which the exact intervals form a chain. This is the analogue of the chain completeness of Esteva and Godo’s MTL
[11]. Jenei and Montagna have proven that MTL is not only chain complete, but also standard complete [23]. In the present pa-
per, we will show that also IVMTL (and some of its extensions) is standard complete. Moreover, we will prove a local deduction
theorem that holds for IVML and its extensions.

In Section 2 we recall the basic definitions and properties of fuzzy logics and their interval-valued counterparts. In Sec-
tion 3 we introduce a number of specific interval-valued logics, corresponding to the commonly used (non-IV) fuzzy logics.
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And in Section 4 we investigate which of these logics are standard complete, and which not. Moreover, we prove a local
deduction theorem. In Section 5 we prove similar results for a specific expansion of IVMTL, IVMTLD (and its expansions).
2. Preliminaries

IVML is basically monoidal logic (ML) [20] enriched with two unary connectives h and e (representing ‘necessity’ and
‘possibility’) and a constant �u (representing ‘uncertainty’). So the language of IVML consists of countably many propositional
variables (p1,p2, . . .), the constants �0 and �u, the unary operators h, e, the binary operators ^, _, &, ?, and finally the auxiliary
symbols ‘(’ and ‘)’. IVML-formulas are defined inductively: propositional variables, �0 and �u are IVML-formulas; if / and w are
IVML-formulas, then so are (/ ^w), (/ _ w), (/ & w), (/ ? w), (h/) and (e/).

Remark that the set of ML-formulas is contained in the set of IVML-formulas.
The following notations are used: �1 for �0! �0; :/ for /! �0; /2 for / & /, /n (with n = 3,4,5, . . .) for (/n � 1) & / (more-

over, /0 is �1 and /1 is /), and / M w for (/ ? w) ^ (w ? /), for formulas / and w.
The axioms4 of IVML are those of ML, i.e.,
4 Som
names
called ‘

5 In [
6 In t

general
ðML:1Þ ð/! wÞ ! ððw! vÞ ! ð/! vÞÞ;
ðML:2Þ /! ð/ _ wÞ;
ðML:3Þ w! ð/ _ wÞ;
ðML:4Þ ð/! vÞ ! ððw! vÞ ! ðð/ _ wÞ ! vÞÞ;
ðML:5Þ ð/ ^ wÞ ! /;

ðML:6Þ ð/ ^ wÞ ! w;

ðML:7Þ ð/ & wÞ ! /;

ðML:8Þ ð/ & wÞ ! ðw & /Þ;
ðML:9Þ ð/! wÞ ! ðð/! vÞ ! ð/! ðw ^ vÞÞÞ;
ðML:10Þ ð/! ðw! vÞÞ ! ðð/ & wÞ ! vÞ;
ðML:11Þ ðð/ & wÞ ! vÞ ! ð/! ðw! vÞÞ;
ðML:12Þ �0! /;
complemented with
ðIVML:1Þ �/! /; ðIVML:10Þ /! �/;
ðIVML:2Þ �/! ��/; ðIVML:20Þ ��/! �/;
ðIVML:3Þ ð�/ ^�wÞ ! �ð/ ^ wÞ; ðIVML:30Þ ð�/ ^ �wÞ ! �ð/ ^ wÞ;
ðIVML:4Þ �ð/ _ wÞ ! ð�/ _�wÞ; ðIVML:40Þ �ð/ _ wÞ ! ð�/ _ �wÞ;
ðIVML:5Þ :��u; ðIVML:50Þ ��u;

ðIVML:6Þ �/! ��/; ðIVML:60Þ ��/! �/;

ðIVML:7Þ �ð/! wÞ ! ð�/! �wÞ;
ðIVML:8Þ ð�/$ �wÞ & ð�/$ �wÞ ! ð/$ wÞ;
ðIVML:9Þ ð�/! �wÞ ! �ð�/! �wÞ:
The deduction rules are modus ponens (MP, from / and / ? w infer w), h-necessitation5 (G, from / infer h/) and monoto-
nicity of e (Me, from / ? w infer e/ ? ew). Proofs and the provability relation ‘IVML are defined in the usual way.

IVML is a logic which has interval-valued structures as its (general) semantics (hence its name). To see this, we recall the
following definitions and results from [32].

ML is sound and complete w.r.t. the variety of residuated lattices6 [7], which are structures L ¼ ðL;u;t; �;);0;1Þ in which
u, t, ⁄ and ) are binary operators on the set L and

� (L,u,t) is a bounded lattice with 0 as smallest and 1 as greatest element,
� ⁄ is commutative and associative, with 1 as neutral element, and
� x ⁄ y 6 z iff x 6 y) z for all x, y and z in L (residuation principle).
e of these axioms are referred to by a specific name. In [20], ML.1 is called ‘syllogism law’, while Hájek uses ‘transitivity of implication’ in [18]. Other
in [18] are ‘commutativity of &-conjunction’ for ML.8, ‘ex falso quodlibet’ for ML.12 and ‘residuation’ for the combination of ML.10 and ML.11 (which are
importation law’ and ‘exportation law’ in [20]).
32,34], h-necessitation was called generalization.
he literature (e.g. in [20]), the name residuated lattice is sometimes used for more general structures than what we call residuated lattices. In the most
terminology, our structures would be called bounded integral commutative residuated lattices.
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ML is the basis for a number of well-known stronger formal fuzzy logics, such as Esteva and Godo’s monoidal t-norm
based logic (MTL) [11], Hájek’s basic logic (BL) [18], Łukasiewicz logic (LL) [24], intuitionistic logic (IL) [19] and Gödel logic
(GL) [8,16]. These logics are sound and complete w.r.t. MTL-algebras, BL-algebras, MV-algebras (or, equivalently, Wajsberg
algebras [14]), Heyting-algebras and G-algebras, respectively. Below, we recall the definitions of these concepts, along with
some other important notions. We refer to [4,12,17] for a comprehensive overview of these and other logics.

All these extensions of ML satisfy the following local deduction theorem:

Proposition 1. Let C [ {/,w} be a set of ML-formulas, and L be an extension of ML.
Then the following are equivalent:

� C [ {/} ‘L w.
� There is an integer n such that C ‘L /n ? w.

ML and its axiomatic extensions can be expanded with a unary connective D, called Baaz’s Delta [1]. The formulas of these
logics will be called MLD-formulas. The logic MLD is defined as ML extended with the following axioms7 and deduction rule
for D:
7 Not
8 Stro
9 Res
ðD1Þ D/ _ :D/;

ðD2Þ Dð/ _ wÞ ! ðD/ _ DwÞ;
ðD3Þ D/! /;

ðD5Þ Dð/! wÞ ! ðD/! DwÞ;
and D-necessitation (N, from / infer D/).
For MLD and its extensions, we have the following deduction theorem.

Proposition 2. Let C [ {/,w} be a set of MLD-formulas, and L be an extension of MLD.
Then the following are equivalent:

� C [ {/} ‘L w,
� C ‘L D/ ? w.

Axiomatic extensions of MTL (which is ML extended with the axiom (/ ? w) _ (w ? /)) are specific kinds of core fuzzy
logics (see [4] for more details). Axiomatic extensions of MTLD are specific kinds of D-core fuzzy logics. In core fuzzy logics
and D-core fuzzy logics, the language is allowed to have more connectives than the ones we use in this paper (but at most a
countable amount).

Definition 3. We will use the notations :x for x) 0; x() y for (x) y) u (y) x) and xn for x � x � � � � � x|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n times

. Moreover, we
assume x0 = 1.

� An MTL-algebra [11] is a prelinear residuated lattice, i.e., a residuated lattice in which (x) y) t (y) x) = 1 for all x and y
in L.
� A BL-algebra [18] is a divisible MTL-algebra, i.e., an MTL-algebra in which x u y = x ⁄ (x) y) for all x and y in L. The weaker

property x u y = (x ⁄ (x) y)) t (y ⁄ (y) x)) is called weak divisibility [31,32] and holds in all MTL-algebras.
� An MV-algebra [2,3] is a BL-algebra in which the negation is an involution, i.e., (x) 0)) 0 = x for all x in L.
� A Heyting-algebra, or pseudo-Boolean algebra [30], is a residuated lattice in which x ⁄ x = x for all x in L, or, equivalently, in

which x ⁄ y = x u y for all x and y in L.
� A G-algebra [18] is a prelinear Heyting-algebra.
� A Boolean algebra is an MV-algebra that is also a Heyting-algebra.

By adding a unary operator D satisfying D1 ¼ 1; Dx t :Dx ¼ 1; Dðx t yÞ 6 Dx t Dy; Dx 6 x and D(x) y) 6 Dx) Dy, for
all x and y, we can define the ‘D-companions’ of these algebras (e.g. MTLD-algebra, GD-algebra, . . .). If a residuated lattice
satisfies x t y = ((x) y)) y) u ((y) x)) x), for all x and y in L, then it is called t-definable [11,12]. The stronger property
x t y = (x) y)) y is called strong t-definability8 [31,32]. Other interesting properties are the law of excluded middle9

(x t :x ¼ 1), pseudocomplementation (x u :x ¼ 0), cancellation (:x t ððx) ðx � yÞÞ ) yÞ ¼ 1), weak cancellation
(:ðx � yÞ t ððx) ðx � yÞÞ ) yÞ ¼ 1) and weak nilpotent minimum (:ðx � yÞ t ððx u yÞ ) ðx � yÞÞ ¼ 1).
e that we left out (D4). In Section 5 we shall show that D/ ? DD/ (which is known as (D4)) is provable from MLD.
ng t-definable residuated lattices are exactly MV-algebras [20].

iduated lattices satisfying the law of excluded middle are exactly Boolean algebras.
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Definition 4. Given a lattice L ¼ ðL;u;tÞ, its triangularization TðLÞ is the structure TðLÞ ¼ ðIntðLÞ;u;
F
Þ defined by

� IntðLÞ ¼ f½x1; x2�jðx1; x2Þ 2 L2 and x1 6 x2},
� [x1,x2] u [y1,y2] = [x1 u y1,x2 u y2],
� [x1,x2]

F
[y1,y2] = [x1 t y1,x2 t y2].

The set DL ¼ f½x; x�jx 2 Lg is called the diagonal of TðLÞ.
In particular, the triangularization of ([0,1],min,max) is denoted as LI ¼ ðLI;u;tÞ.

Definition 5. An interval-valued residuated lattice (IVRL) is a residuated lattice ðIntðLÞ;u;
F
;�;)�; ½0;0�; ½1;1�Þ on the

triangularization TðLÞ of a bounded lattice L, in which the diagonal DL is closed under � and)�, i.e., ½x; x� � ½y; y� 2 DL and
½x; x� )� ½y; y� 2 DL for all x, y in L.
Example 6 [6]. If T is a left-continuous t-norm on ([0,1],min,max), a 2 [0,1] and the mapping T T;a is defined, for x = [x1,x2]
and y = [y1,y2] in LI, by the formula
10 An
T T;aðx; yÞ ¼ ½Tðx1; y1Þ;maxðTða; Tðx2; y2ÞÞ; Tðx1; y2Þ; Tðx2; y1ÞÞ�; ð1Þ
then ðLI;u;t; T T;a; IT T ;a ; ½0;0�; ½1;1�Þ is an IVRL, in which IT T;a is the residual implicator of T T;a:
IT T;aðx; yÞ ¼ ½minðITðx1; y1Þ; ITðx2; y2ÞÞ;minðITðTðx2;aÞ; y2Þ; ITðx1; y2ÞÞ�:

In [32], we introduced the notion of triangle algebra, a structure that serves as an equational representation for an inter-

val-valued residuated lattice. Triangle algebras form the link between IVRLs and IVML.
Definition 7. A triangle algebra is a structure A ¼ ðA;u;t; �;); m;l;0;u;1Þ, in which (A,u,t,⁄,),0,1) is a residuated lattice,
m and l are unary operators, u a constant, and satisfying the following conditions:
ðT:1Þ mx 6 x; ðT:10Þ x 6 lx;

ðT:2Þ mx 6 mmx; ðT:20Þ llx 6 lx;

ðT:3Þ mðx u yÞ ¼ mx u my; ðT:30Þ lðx u yÞ ¼ lx u ly;
ðT:4Þ mðx t yÞ ¼ mx t my; ðT:40Þ lðx t yÞ ¼ lx t ly;

ðT:5Þ mu ¼ 0; ðT:50Þ lu ¼ 1;
ðT:6Þ mlx ¼ lx; ðT:60Þ lmx ¼ mx;

ðT:7Þ mðx) yÞ 6 mx) my;

ðT:8Þ ðmx() myÞ � ðlx() lyÞ 6 ðx() yÞ;
ðT:9Þ mx) my 6 mðmx) myÞ:
A triangle algebra (A,u,t,⁄,),m,l,0A,uA,1A) is called a standard triangle algebra iff ðA;u;tÞ ¼ LI .
In a standard triangle algebra (LI,u,t,⁄,),m,l,0A,uA,1A), 0A = [0,0], 1A = [1,1], u = [0,1], m[x1,x2] = [x1,x1] and

l[x1,x2] = [x2,x2] for all [x1,x2] in LI. This is a consequence of Propositions 19 and 21 in [32].
In [32], we also established a one-to-one correspondence between interval-valued residuated lattices (IVRLs) and triangle

algebras. The correspondence is shown in Fig. 1. The unary operators m and l correspond with the mappings that map [x1,x2]
to [x1,x1] and [x2,x2] respectively. We call these mappings in IVRLs the vertical and horizontal projection (pv and ph). The con-
stant u corresponds to [0,1]. Theorem 8 gives this connection in more detail:

Theorem 8 [32]. There is a one-to-one correspondence between the class of IVRLs and the class of triangle algebras. Every
extended IVRL10 is a triangle algebra and conversely, every triangle algebra is isomorphic to an extended IVRL.

In [32], it was verified that IVML is sound and complete w.r.t. triangle algebras. Because of Theorem 8, this implies that
IVML is sound and complete w.r.t. extended IVRLs. Axiomatic extensions of IVML are sound and complete w.r.t. the corre-
sponding subclasses of the class of extended IVRLs.

Definition 9 [32]. Let A ¼ ðA;u;t; �;); m;l;0;u;1Þ be a triangle algebra. An element x in A is called exact if mx = x. The set of
exact elements of A is denoted by EðAÞ.

Using the isomorphism in Fig. 1, the set of exact elements of a triangle algebra corresponds to the diagonal of the isomor-
phic (extended) IVRL. In this paper we will sometimes use the term ‘diagonal’ for triangle algebras as well.

It was proven in [32] that EðAÞ is closed under all the defined operations on A. So ðEðAÞ;u;t; �;);0;1Þ is a residuated
lattice, that we will denote as EðAÞ. Every property in Definition 3 (prelinearity, divisibility, . . .) can therefore be weakened,
by imposing it on EðAÞ (instead of A) only. We will denote this with the prefix ‘pseudo’. For example, a triangle algebra is said
extended IVRL is simply an IVRL in which the two mentioned projections are defined and the constant [0,1] is fixed.



Fig. 1. The isomorphism v from a triangle algebra to an IVRL.

B. Van Gasse et al. / Information Sciences 189 (2012) 63–76 67
to be pseudo-linear if its set of exact elements is linearly ordered (by the original (restricted) ordering). Another example: a
triangle algebra is pseudo-divisible if mx u my = mx ⁄ (mx) my) for all x and y in A ðEðAÞ consists exactly of the elements of the
form11 mx).

For any x in a triangle algebra, it holds that x = mx t (lx u u) (see [33]). Therefore, x is completely determined by mx and lx
(which are elements of EðAÞ): if mx = my and lx = ly, then x = y.

In [33] we proved that

Theorem 10. In a triangle algebra A ¼ ðA;u;t; �;); m;l;0;u;1Þ, the implication) and the product ⁄ are completely determined
by their action on EðAÞ and the value of l(u ⁄ u). More specifically:

� m(x) y) = (mx) my) u (lx) ly),
� l(x) y) = (lx) (l(u ⁄ u)) ly)) u (mx) ly),
� m(x ⁄ y) = mx ⁄ my,
� l(x ⁄ y) = (mx ⁄ ly) t (lx ⁄ my) t (lx ⁄ ly ⁄ l(u ⁄ u)).

Because of Theorem 10, Example 6 gives all standard triangle algebras (i.e., all IVRLs on LI).

Proposition 11 [34]. For any residuated lattice L and a 2 L, there is a triangle algebra A ¼ ðA;u;t; �;); m;l;0;u;1Þ such that
(up to isomorphism) EðAÞ is L and l(u ⁄ u) = a.

In the interval-valued setting, evaluations and models are defined in the same way as in the known fuzzy setting.

Definition 12 [32]. Let A ¼ ðA;u;t; �;); m;l;0;u;1Þ be a triangle algebra, C a theory (i.e., a set of (IVML-)formulas). An A-
evaluation is a mapping e from the set of IVML-formulas to A that satisfies, for each two formulas / and w:
eð/^wÞ¼eð/ÞueðwÞ; eð/_wÞ¼eð/ÞteðwÞ; eð/&wÞ¼eð/Þ�eðwÞ; eð/!wÞ¼eð/Þ)eðwÞ; eð�/Þ¼með/Þ; eð�/Þ¼leð/Þ; eð�0Þ¼0
and eð�uÞ¼u. If an A-evaluation e satisfies e(v) = 1 for every v in C, it is called an A-model for C.

We write C �A / if e(/) = 1 for all A-models e for C.
We conclude this section with the definition of the different kinds of completeness an axiomatic extension of IVML can

enjoy. These are comparable to the different kinds of completeness for fuzzy logics (see, e.g., [4,22]).

Definition 13. Let L be an axiomatic extension of IVML.
An L-algebra is a triangle algebra that satisfies the properties corresponding to the axioms that were added to IVML in

order to obtain L.12

L is called pseudo-chain complete if the following equivalence holds for all IVML-formulas /: ‘L / iff �A / for all pseudo-
linear L-algebras A.
11 Remark that EðAÞ also consists exactly of the elements of the form lx. So pseudo-divisibility might as well be expressed by lx u ly = lx ⁄ (lx) ly) or
lx u my = lx ⁄ (lx) my), for all x and y in A. And similarly for other properties (pseudo-prelinearity, pseudo-cancellation, . . .), of course.

12 For example, if L is IVML extended with the axiom scheme ::/! /, then an L-algebra is a triangle algebra satisfying ::x) x ¼ 1, in other words a triangle
algebra with an involutive negation.



Table 1
Some axioms in interval-valued fuzzy logics.

Axiom Name

(h/ ? hw) _ (hw ? h/) Pseudo-prelinearity (PP)
((h/ ? hw) ? hw) ? (h/ _hw) Pseudo-strong _-definability (PS_)
�/ _ :�/ Pseudo-law of excluded middle (PLEM)
h/ ? (h/& h/) Pseudo-contraction (PCon)
:ð�/ & �wÞ _ ðð�/ ^�wÞ ! ð�/ & �wÞÞ Pseudo-weak nilpotent minimum (PWNM)
::�/! �/ Pseudo-involution (PInv)
:ð�/ ^ :�/Þ Pseudo-pseudocomplementation (PPC)
:ð�/ & �wÞ _ ðð�/! ð�/ & �wÞÞ ! �wÞ Pseudo-weak cancellation (PWCan)
:�/ _ ðð�/! ð�/ & �wÞÞ ! �wÞ Pseudo-cancellation (PCan)
(h/ ^hw) ? (h/ & (h/ ? hw)) Pseudo-divisibility (PDiv)

13

14

15
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L is called finite strong pseudo-chain complete if the following equivalence holds for all finite sets C [ {/} of IVML-for-
mulas: C ‘L / iff C �A / for all pseudo-linear L-algebras A.
L is called strong pseudo-chain complete if the following equivalence holds for all sets C [ {/} of IVML-formulas: C ‘L /
iff C �A / for all pseudo-linear L-algebras A.
L is called standard complete if the following equivalence holds for all IVML-formulas /: ‘L / iff �A / for all standard L-
algebras A.
L is called finite strong standard complete if the following equivalence holds for all finite sets C [ {/} of IVML-formulas:
C ‘L / iff C �A / for all standard L-algebras A.
L is called strong standard complete if the following equivalence holds for all sets C [ {/} of IVML-formulas: C ‘L / iff
C �A / for all standard L-algebras A.
3. Axiomatic extensions of IVML

Now we introduce some extensions of IVML, by adding well-known13 axiom schemes. They are listed in Tables 1 and 2.
Remark that these axiom schemes are applied to formulas of the form h/ and not to all formulas (as usual). As the image of
a triangle algebra (A,u,t,⁄,),m,l,0,u,1) under m is the set EðAÞ of exact elements,14 this means that the axioms schemes do
not hold for all truth values, but only for exact truth values. This is not a drawback. On the contrary, it is precisely what we
want because the exact truth values are easier to interpret and handle. Moreover, using Theorem 10, for all axiom schemes
equivalent axiom schemes can be found that only involve formulas of the form h/ and e/.

All these extensions of IVML are sound and (strong) complete w.r.t. their corresponding subvariety of the variety of tri-
angle algebras [32]. For example, IVSBL is sound and complete w.r.t. the variety of triangle algebras satisfying
(mx) my) t (my) mx) = 1, mx u my 6 mx ⁄ (mx) my) and ðmx u :mxÞ ¼ 0.

Moreover, they are all15 extensions of IVMTL and therefore all these logics are also strong complete w.r.t. their correspond-
ing subclass of the class of pseudo-linear triangle algebras (in other words, they are strong pseudo-chain complete [34]).

For some of these logics, we can use these completeness results and use known algebraic properties of triangle algebras
[34] to derive alternative defining axiom schemes. For example, IVCPC can also be defined as IVML extended with the axiom
scheme (/ ? w) _ (w ? /) (because a triangle algebra satisfies the pseudo-law of excluded middle iff it is prelinear); and
IVBL can also be defined as IVMTL extended with the axiom scheme (/ ^w) ? ((/ & (/ ? w)) _ (w & (w ? /))) (because a
pseudo-prelinear triangle algebra is pseudo-divisible iff it is weak divisible).

In the next section we will prove that IVMTL and some of its extensions are strong standard complete and a fortiori also
standard complete. For the other defined extensions we will prove that they are not strong standard complete. We will also
give a local deduction theorem for all these logics.

4. Main results

In [4] it is shown that strong standard completeness of a propositional fuzzy logic is equivalent with the real-chain
embedding property of that logic, and that MTL, G, WNM, IMTL, NM and SMTL satisfy this property. We will use these results
in the next theorem to show that their interval-valued counterparts also satisfy strong standard completeness.

Theorem 14 (Strong standard completeness). For each set of IVML-formulas C [ {/}, the following four statements are
equivalent:

(1) / can be deduced from C in IVMTL (C ‘IVMTL /),
(2) for every pseudo-prelinear triangle algebra A; C �A / (i.e., for every A-model e of C, e(/) = 1),
For a more detailed overview, we refer to [4,12].
Note that the image under l is also EðAÞ. All axioms schemes in Table 1 can also be given in an equivalent way by changing h/ to e/ and/or hw to ew.
Indeed, also in IVŁ and IVCPC, (h/ ? hw) _ (hw ? h/) can be proven.



Table 2
Some axiomatic extensions of IVML obtained by adding the corresponding
axioms.

Logic Additional axioms

IVMTL (PP)
IVŁ (PS_)
IVCPC (PLEM)
IVG (PP) and (PCon)
IVWNM (PP) and (PWNM)
IVIMTL (PP) and (PInv)
IVNM (PP), (PWNM) and (PInv)
IVSMTL (PP) and (PPC)
IVWCMTL (PP) and (PWCan)
IVPMTL (PP) and (PCan)
IVBL (PP) and (PDiv)
IVP (PP), (PDiv) and (PCan)
IVSBL (PP), (PPC) and (PDiv)
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(3) for every pseudo-linear triangle algebra A; C �A /,
(4) for every standard triangle algebra A; C �A /.
Proof. The equivalence of the first three statements was already proven in [32,34]. We will now prove that (4) implies (3).
This suffices to prove the theorem, as (3) obviously implies (4).

Suppose (3) does not hold. Thus there exists a pseudo-linear triangle algebra A ¼ ðA;u;t; �;); m;l;0A;u;1AÞ and an A-
model e of C such that e(/) < 1A. Clearly, only evaluations of subformulas of C [ {/} are relevant, therefore we can assume,
without loss of generality, that A is at most countably generated (as the set of IVML-formulas is countable), and therefore at
most countable. Because EðAÞ ¼ ðD;uD;tD; �D;)D;0A;1AÞ, in which D ¼ EðAÞ and uD, tD, ⁄D and)D are the restrictions of u,
t, ⁄ and) to D, is an MTL-chain (i.e., a linearly ordered MTL-algebra), we know from [23] that there exists an embedding i
from EðAÞ into a standard MTL-algebra ([0,1],min,max,	,)	,0,1).

Now we define a standard triangle algebra A0 and a mapping j from A to A0 in the following way:
A0 :¼ ðLI; inf; sup;�;,; pv ; ph; ½0;0�; ½0;1�; ½1;1�Þ, with

� inf([x1,x2], [y1,y2]) = [min(x1,y1),min(x2,y2)],
� sup([x1,x2], [y1,y2]) = [max(x1,y1),max(x2,y2)],
� [x1,x2] � [y1,y2] = [x1 	 y1,max(x1 	 y2,x2 	 y1,x2 	 y2 	 i(l(u ⁄ u)))],
� [x1,x2] [ [y1,y2] = [min(x1)	 y1,x2)	 y2),min(x1)	 y2, (x2 	 i(l(u ⁄ u))))	 y2)],
� pv([x1,x2]) = [x1,x1],
� ph([x1,x2]) = [x2,x2] and
� j(x) = [i(mx), i(lx)].

To verify that A0 is indeed a standard triangle algebra, note that ({[x,x]jx 2 [0,1]}, inf, sup,�, [, [0,0], [1,1]) is a subalgebra
of A0 isomorphic to ([0,1],min,max,	,)	,0,1) and check Example 6 and Theorem 8. Now we show that j is an embedding
from A into A0:
jðuÞ ¼ ½iðmuÞ; iðluÞ� ¼ ½ið0AÞ; ið1AÞ� ¼ ½0;1�
(and similarly for j(0A) = [0,0] and j(1A) = [1,1]),
jðx u yÞ ¼ ½iðmðx u yÞÞ; iðlðx u yÞÞ� ¼ ½iðmx u myÞ; iðlx u lyÞ� ¼ ½iðmxuDmyÞ; iðlxuDlyÞ�
¼ ½minðiðmxÞ; iðmyÞÞ;minðiðlxÞ; iðlyÞÞ� ¼ infð½iðmxÞ; iðlxÞ�; ½iðmyÞ; iðlyÞ�Þ ¼ infðjðxÞ; jðyÞÞ
(and similarly for x t y),
jðmxÞ ¼ ½iðmmxÞ; iðlmxÞ� ¼ ½iðmxÞ; iðmxÞ� ¼ pvð½iðmxÞ; iðlxÞ�Þ ¼ pvðjðxÞÞ
(and similarly for lx),
jðx � yÞ ¼ ½iðmðx � yÞÞ; iðlðx � yÞÞ�
¼ ½iðmx � myÞ; iððmx � lyÞ t ðlx � myÞ t ðlx � ly � lðu � uÞÞÞ�
¼ ½iðmx �D myÞ; iððmx �D lyÞ tD ðlx �D myÞ tD ðlx �D ly �D lðu � uÞÞÞ�
¼ ½iðmxÞ 	 iðmyÞ;maxðiðmxÞ 	 iðlyÞ; iðlxÞ 	 iðmyÞ; iðlxÞ 	 iðlyÞ 	 iðlðu � uÞÞÞ�
¼ ½iðmxÞ; iðlxÞ� � ½iðmyÞ; iðlyÞ�
¼ jðxÞ � jðyÞ;
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jðx) yÞ ¼ ½iðmðx) yÞÞ; iðlðx) yÞÞ�
¼ ½iððmx) myÞ u ðlx) lyÞÞ; iððmx) lyÞ u ððlx � lðu � uÞÞ ) lyÞÞ�
¼ ½iððmx)D myÞ uD ðlx)D lyÞÞ; iððmx)D lyÞ uD ððlx�Dlðu � uÞÞ )D lyÞÞ�
¼ ½minðiðmxÞ)	iðmyÞ; iðlxÞ )	 iðlyÞÞ; minðiðmxÞ )	 iðlyÞ; ðiðlxÞ 	 iðlðu � uÞÞÞ )	 iðlyÞÞ�
¼ ½iðmxÞ; iðlxÞ�, ½iðmyÞ; iðlyÞ�
¼ jðxÞ, jðyÞ
and
jðxÞ ¼ jðyÞ iff ðiðmxÞ ¼ iðmyÞ and iðlxÞ ¼ iðlyÞÞ
iff ðmx ¼ my and lx ¼ lyÞ
iff x ¼ y:
Now remark that e0, defined by e0(w) = j(e(w)), is an A0-model of C such that e0(/) < 1, which concludes the proof. h

This theorem can also be used, mutatis mutandis, for IVG, IVWNM, IVIMTL, IVNM and IVSMTL, because G, WNM, IMTL,
NM and SMTL satisfy the real-chain embedding property, just like MTL.

Remark 15. Remark that basically what we do in the proof is applying the real-chain embedding property to the diagonal of
a (countable) pseudo-linear triangle algebra, which gives us an embedding of this diagonal in a standard MTL-chain. This
embedding can be extended to an embedding of the whole triangle algebra in a standard triangle algebra. This interval-
valued counterpart of the real-chain embedding property might be called ‘pseudo-real-chain embedding property’ and
enables us to prove the strong standard completeness.
� Theorem 14 does not only hold for IVMTL, IVG, IVWNM, IVIMTL, IVNM and IVSMTL, but for every interval-valued compan-
ion IVL (defined in the same way as the examples in Table 2) of a core fuzzy logic L without extra connectives that satisfies
strong standard completeness (or, equivalently, the real chain embedding property). In short: if a core fuzzy logic L without
extra connectives16 is strong standard complete, then its interval-valued companion IVL is strong standard complete.
� In fact, Theorem 14 can be generalized even a bit more. Indeed, also for other kinds of strong completeness (i.e., not

necessarily strong standard completeness), we have a connection between a core fuzzy logic L without extra connectives
and its interval-valued companion IVL: if L is strong complete w.r.t. a class K of L-chains, then IVL is strong complete w.r.t.
the class TAðKÞ (and vice versa), with TAðKÞ the class of IVL-algebras whose subreduct of exact elements is isomorphic to
an L-algebra in K. This is because the connection between the strong standard completeness of a core fuzzy logic L and
the real-chain embedding property is only a particular case of the connection between the strong completeness w.r.t. K of
a core fuzzy logic L and the ‘K-chain embedding property’. The proof for strong completeness of IVL w.r.t. TAðKÞ therefore
remains completely similar to the proof for strong standard completeness of IVL.
Remark 16. In the previous remark we noted that for core fuzzy logics there is connection between the strong completeness
w.r.t. a class K of L-chains and the ‘K-chain embedding property’, which was used to demonstrate the strong completeness
of IVL w.r.t. TAðKÞ (under the condition that L is strong complete w.r.t. K). For core fuzzy logics L in a finite language (e.g., all
axiomatic extensions of MTL), we have a similar equivalence between the finite strong completeness w.r.t. a class K of
L-chains and the ‘K-chain partial-embedding property’. Completely similarly as for strong completeness, we can use this
equivalence to show the finite strong completeness of IVL w.r.t. TAðKÞ (under the condition that IVL is the interval-valued
companion of a core fuzzy logic L without extra connectives (and thus in a finite language) which is finite strong complete
w.r.t. K).

In particular, for a finite strong standard complete core fuzzy logic L without extra connectives, we find that its interval-
valued companion IVL is finite strong standard complete. Because Ł, WCMTL, PMTL, BL, P and SBL are all finite strong
standard complete core fuzzy logics in a finite language (see [4,18,21,22,28]), IVŁ, IVWCMTL, IVPMTL, IVBL, IVP and IVSBL
are all finite strong standard complete (and therefore also standard complete). This makes that all logics in Table 2, apart
from IVCPC (and IVML), are finite strong standard complete.

As witnessed in [10], it can occur that a core fuzzy logic L is complete w.r.t. a class K of L-chains, but not finite strong
complete w.r.t. K. In this case we do not know of a suitable characterization of completeness (in terms of a kind of
embedding property). For such a core fuzzy logic L, the completeness of IVL remains an open problem.

For ML, Ł, CPC, WCMTL, PMTL, BL, P and SBL it is known [4,18,21,22,28] that they are not strong standard complete. The
next proposition implies that their interval-valued counterparts cannot be strong standard complete either. First we mention
some notations that will be used.
core fuzzy logics with extra connectives, this remains an open problem. But not for D-core fuzzy logics, see Section 5.
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Suppose K is a class of residuated lattices. Recall from Remark 15 that we defined the class TAðKÞ of triangle algebras as
follows: a triangle algebra A is an element of TAðKÞ iff EðAÞ is isomorphic to a residuated lattice in K. Because of Proposition
11, TAðKÞ is not empty if K is not empty.

Furthermore, for every ML-formula /, we define the IVML-formula /0 as follows: /0ðpi1 ; . . . ; pin Þ ¼ /ð�pi1 ; . . . ;�pin Þ, where
pi1 ; . . . ; pin are the propositional variables occurring in /. For example, if / is the ML-formula ððp6 _ p3Þ ! p12Þ & ðp3 ! �0Þ,
then /0 is the IVML-formula ðð�p6 _�p3Þ ! �p12Þ & ð�p3 ! �0Þ.

Also, if v is an ML-formula, we denote the function corresponding to v in an expansion B of a residuated lattice by f Bv . For
example, if v is the ML-formula (p2 ? p4) ^ p2 (which we denote by v(p2,p4)) and A ¼ ðA;u;t; �;); m;l;0;u;1Þ is a triangle
algebra, then f Av is the binary function in A defined by f Av ðx; yÞ ¼ ðx) yÞ u x, for all x and y in A.

Proposition 17. Suppose C [ {/} is a set of ML-formulas and K is a class of residuated lattices. Then C �K / iff C0 �TAðKÞ /
0, where

C0 = {v0jv 2 C}.
Proof. Suppose C0 �TAðKÞ /
0. Now take any residuated lattice L in K and L-model v of C. We want to prove that v (/) = 1. Take

any triangle algebra A in TAðKÞ such that EðAÞ is isomorphic to L. Because of Proposition 11 such a triangle algebra always
exists. Let i be the mapping from L to A that maps L isomorphically on EðAÞ. Then the values i(v (p1)), i(v (p2)), i(v (p3)), . . .

are well-defined, and we can extend this mapping of propositional variables in A to an A-evaluation v0 of all IVML-formulas,
in a unique way. So v0 (pj) = i(v (pj)) for all propositional variables pj. Remark now that v0 (v0) = i(v (v)) for all ML-formulas
v. Indeed, if pi1 ; . . . ; pin are the propositional variables occurring in v, then we find v 0ðv0ðpi1 ; . . . ; pin ÞÞ ¼
v 0ðvð�pi1 ; . . . ;�pin ÞÞ ¼ fAv ðmv 0ðpi1 Þ; . . . ; mv 0ðpin ÞÞ ¼ fAv ðmiðvðpi1 ÞÞ; . . . ; miðvðpin ÞÞÞ ¼ fAv ðiðvðpi1 ÞÞ; . . . ; iðvðpin ÞÞÞ ¼ iðf Lv ðvðpi1 Þ; . . . ;

vðpin ÞÞÞ ¼ iðvðvðpi1 ; . . . ; pin ÞÞÞ. In particular, for all w in C, we have v0(w0) = i(v (w)) = i(1) = 1. Our assumption C [ {/} ensures
that v0(/0) = 1. We conclude 1 = v0(/0) = i(v (/)), which implies v (/) = 1.

Now suppose C �K /, and take any triangle algebra A in TAðKÞ and A-model v0 of C0. We want to prove that v0(/0) = 1.
Therefore we consider the EðAÞ-evaluation v determined by v (pi) = v0(hpi), for all propositional variables pi. Then for all ML-
formulas v, we have v (v) = v0(v0). Indeed, if pi1

; . . . ; pin are the propositional variables occurring in v, then we find
vðvðpi1 ; . . . ; pin ÞÞ ¼ f EðAÞv ðvðpi1 Þ; . . . ; vðpin ÞÞ ¼ f EðAÞv ðv 0ð�pi1

Þ; . . . ; v 0ð�pin
ÞÞ ¼ fAv ðv 0ð�pi1

Þ; . . . ; v 0ð�pin
ÞÞ ¼ v 0ðvð�pi1 ; . . . ;�pin ÞÞ ¼

v 0ðv0ðpi1
; . . . ; pin ÞÞ. In particular, for all w in C, we have v (w) = v0(w0) = 1. Our assumption ensures that v (/) = 1. We conclude

1 = v (/) = v0(/0). h

Proposition 17 enables us to show some negative completeness results for extensions of IVML.
For example, if we choose K to be the class of all BL-algebras, then TAðKÞ is the class of all triangle algebras A for which

EðAÞ is a BL-algebra. In other words, TAðKÞ is the class of all triangle algebras A ¼ ðA;u;t; �;); m;l;0A;u;1AÞ satisfying
(mx) my) t (my) mx) = 1 and mx u my = mx ⁄ (mx) my) for all x and y in A. So TAðKÞ is the class of all IVBL-algebras. The cor-
responding logic is IVBL: IVML extended with the axiom schemes (h/ ? hw) _ (hw ? h/) and (h/ ^hw) ? (h/ & (h/
? hw)). It is known that BL is not strong standard complete, so there exists a set of formulas C [ {/} such that C �L /
for every standard BL-algebra L, but not for every BL-algebra L. Proposition 17 then allows us to deduce that C0 �A /0 for
every pseudo-divisible standard triangle algebra A, but not for every pseudo-divisible pseudo-prelinear triangle algebra
A. Because IVBL is sound and complete w.r.t. pseudo-divisible pseudo-prelinear triangle algebras, this means exactly that
this logic is not strong standard complete.

Because ML, Ł, CPC, WCMTL, PMTL, P (and every schematic extension between PMTL and P) and SBL are not strong stan-
dard complete [4], we can reason in the same way as for BL and conclude that IVML, IVŁ, IVCPC, IVWCMTL, IVPMTL, IVP and
IVSBL are not strong standard complete either. We give an overview of the completeness results in Table 3. Between brackets
are the known completeness results for the non-IV counterparts. We note that for a core fuzzy logic L that is standard com-
Table 3
Completeness of several extensions of IVML.

Logic Standard complete Finite strong standard complete Strong standard complete

IVML No (No) No (No) No (No)
IVMTL Yes (Yes) Yes (Yes) Yes (Yes)
IVŁ Yes (Yes) Yes (Yes) No (No)
IVCPC No (No) No (No) No (No)
IVG Yes (Yes) Yes (Yes) Yes (Yes)
IVWNM Yes (Yes) Yes (Yes) Yes (Yes)
IVIMTL Yes (Yes) Yes (Yes) Yes (Yes)
IVNM Yes (Yes) Yes (Yes) Yes (Yes)
IVSMTL Yes (Yes) Yes (Yes) Yes (Yes)
IVWCMTL Yes (Yes) Yes (Yes) No (No)
IVPMTL Yes (Yes) Yes (Yes) No (No)
IVBL Yes (Yes) Yes (Yes) No (No)
IVP Yes (Yes) Yes (Yes) No (No)
IVSBL Yes (Yes) Yes (Yes) No (No)
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plete but not finite strong standard complete, the result for IVL would be ‘‘Unknown No No’’ (for standard, finite strong stan-
dard and strong standard completeness, respectively).

Now we will show a local deduction theorem for IVML and its extensions. Let L be an extension of IVML.
From the definition of a proof of C ‘L /, we immediately obtain the following property (which is actually a property of all

logical systems).

Lemma 18. Let C1 [ C2 [ {/,w} be a set of IVML-formulas, and L be an extension of IVML.
If C1 ‘L / and C2 [ {/} ‘L w, then C1 [C2 ‘L w.
Proof. Observe that putting the proof of C2 [ {/} ‘L w after the proof of C1 ‘L /, gives a proof of C1 [ C2 ‘L w. h
Proposition 19. Let C [ {/} be a set of IVML-formulas, and L be an extension of IVML. Then C ‘L / iff C ‘L h/.
Proof. On the one hand, we can apply Lemma 18 with C2 = ; and w = h/, because {/} ‘L h/ (application of the h-neces-
sitation rule).

On the other hand, we can apply Lemma 18 to C ‘L h/ and {h/} ‘L / (application of the modus ponens to IVML.1). h

In a similar way we can prove the following proposition.

Proposition 20. Let C [ {/,w} be a set of IVML-formulas, and L be an extension of IVML. Then C [ {/} ‘L w if and only if
C [ {h/} ‘L w.
Proof. In one direction, apply Lemma 18 to {/} ‘L h/ and C [ {h/} ‘L w. In the other direction, apply the lemma to {h/
} ‘L / and C [ {/} ‘L w. h

Now we prove a so-called local deduction theorem for IVML (and its extensions), which gives a connection between ‘L

and ?.

Proposition 21. Let C [ {/,w} be a set of IVML-formulas, and L be an extension of IVML.
Then the following are equivalent:

� C [ {h/} ‘L w,
� There is an integer n such that C ‘L (h/)n ? w.
Proof. SupposeC ‘L (h/)n ? w, which is equivalent withC ‘L h/ ? ((h/)n � 1 ? w) because of ML.11. Then by an application
of modus ponens we obtain C [ {h/} ‘L (h/)n � 1 ? w. Proceeding like this, we get C [ {h/} = C [ {h/} [ {h/} ‘L (h/)n � 2 ?
w, . . . and finally C [ {h/} ‘L h/ ? w and C [ {h/} ‘L w.

Now suppose C [ {h/}‘Lw. This means that there is a proof of w, in which every line is an axiom, an element of C [ {h/},
or an application of modus ponens, h-necessitation or monotonicity of e to previous lines in the proof. We will show by
induction that for all the formulas c in the proof, there exists an integer n such that C ‘L (h /)n ? c. This will imply C ‘L (h/
)n ? w for some integer n, as w is the last line of the proof. Remark that we can use soundness and completeness of IVML
w.r.t. triangle algebras. So we know that ‘L/ if / holds in every triangle algebra.

We have to consider the following possibilities:

� c is an axiom or an element of C. Then we have C ‘L c, which is equivalent with C ‘L (h/)0 ? c.
� c is h/. In this case, we have C ‘L (h/) ? c.
� c is the result of an application of modus ponens. So there are two formulas a and a ? c earlier in the proof. By induction

hypothesis, we know that there are integers k and l such that C ‘L (h/)k ? a and C ‘L (h/)l ? (a ? c). Combining these,
we find C ‘L (h/)k+l ? (a & (a ? c)). As we also have ‘L (a & (a ? c)) ? c, we obtain C ‘L (h/)k+l ? c.
� c is the result of an application of h-necessitation. This means c is of the form ha, where a is a formula occuring earlier in

the proof. So by induction hypothesis, there is an integer k such that C ‘L (h/)k ? a. Applying h-necessitation, IVML.7
and modus ponens, we get C ‘L h((h/)k) ? ha. This is equivalent with C ‘L (h/)k ? ha.
� c is the result of an application of monotonicity of e. This means c is of the form ea ? eb, with a ? b a formula earlier in

the proof. The induction hypothesis assures that there is an integer k such that C ‘L (h/)k ? (a ? b). Then similarly as for
h-necessitation, we find C ‘L (h/)k ? h(a ? b). Because by Theorem 10 we also know ‘L h(a ? b) ? (ea ? eb),
C ‘L (h/)k ? (ea ? eb). h
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Summarizing the previous propositions, we see that all of the following statements are equivalent.

� There is an integer n such that C ‘L (h/)n ? w,
� C [ {/} ‘L w,
� C [ {/} ‘L hw,
� there is an integer n such that C ‘L (h/)n ? hw,
� C [ {h/} ‘L hw,
� C [ {h/} ‘L w.

Remark that in IVG h/ and (h/)n (n P 1) are provably equivalent, so for IVG and its extensions we have a stronger deduc-
tion theorem: C [ {/} ‘L w iff C ‘L h/ ? w.

5. The expansion of IVML and its axiomatic extensions with Baaz’s Delta

In this section we introduce IVMLD and show that the deduction theorem holds for this logic and its extensions. For
IVMTLD and its extensions, we argue that similar completeness results hold as in Section 4.

We start by proving that (D4) is superfluous.

Proposition 22. Let (L,u,t,⁄,),D, 0,1) be an MLD-algebra.17 Then DDx = Dx and D(x ⁄ y) = Dx ⁄ Dy = Dx u Dy = D(x u y), for all
x and y in L.
Proof. On one hand, we have DDx 6 Dx. On the other hand, we have 1 ¼ D1 ¼ DðDx t :DxÞ 6 DDx t D:Dx 6 DDx t :Dx, and
therefore Dx ¼ Dx � 1 ¼ Dx � ðDDx t :DxÞ ¼ Dx � DDx t Dx � :Dx ¼ Dx � DDx t 0 6 DDx. To prove D(x ⁄ y) = Dx ⁄ Dy = Dx u
Dy = D(x u y), we first note that it is already known (see e.g. [18]) that Dx ⁄ Dx = Dx and Dx ⁄ Dy = D(x ⁄ y) are valid for
all x and y in L. Using these properties, we find DðxuyÞ¼DðxuyÞ �DðxuyÞ6Dx�Dy6DxuDy¼ðDxuDyÞ� ðDyt:DyÞ¼
ððDxuDyÞ �DyÞtððDxuDyÞ�:DyÞ6Dx�Dyt0¼Dðx�yÞ6DðxuyÞ. h

Because the implicative logic (in the sense of Rasiowa [29], which can be verified easily) MLD is sound w.r.t. the variety of
MLD-algebras, it is also strong complete w.r.t. it [13]. Therefore Proposition 22 implies that ‘MLD

D/! DD/.

Definition 23. Let L be an axiomatic expansion of MLD. Then we define its interval-valued companion IVL as the logic
with the following axioms and deduction rules: the union of the axioms of IVML and the axioms of MLD and the union
of the deduction rules of IVML and the deduction rules of MLD (in other words, MP, G, Me and N), plus the ‘box
translations’18 of all extra19 axioms of L, plus two axioms f(h/1, . . . ,h/n) ? hf(h/1, . . . ,h/n) and D((/1 M w1) & � � � &
(/n M wn)) ? (f(/1, . . . ,/n) M f(w1, . . . ,wn)) for every extra n-ary connective f in L.

L-algebras and IVL-algebras are defined in the usual way.

In particular, an IVMLD-algebra is an algebra (A,u,t,⁄,),m,l,D,0,u,1) in which (A,u,t,⁄,),m,l,0,u,1) is a triangle
algebra and the unary operator D satisfies D1 ¼ 1; Dx t :Dx ¼ 1; Dðx t yÞ 6 Dx t Dy; Dx 6 x and D(x) y) 6 Dx) Dy, for all
x and y in L.

Note that IVMTLD is IVMLD + pseudoprelinearity, IVBLD is IVMTLD + pseudodivisibility, . . . (similarly as for IVBL, IVMTL,
IVML, . . .), and IVMTLD-algebra are pseudo-prelinear IVMLD-algebras, IVBLD-algebras are pseudo-divisible pseudo-prelinear
IVMLD-algebras, . . .

As a slightly more complex example, consider the axiomatic expansion L1 of MLD with a new connective
 and the axioms
(/ ? w) _ (w ? /), 

 / ? / and D(/ ? w) ? D(
w ? 
/). Then IVL1 is determined by the axioms and deduction rules
of IVMLD, plus (h/ ? hw) _ (hw ? h/), 

h/ ? h/ and D(h/ ? hw) ? D(
hw ? 
h/), plus 
h/ ? h
h/ and
D(/ M w) ? (
/M 
w) (for the new connective 
).

An L1-algebra is an algebra (L,u,t,⁄,),D,
,0,1) in which (L,u,t,⁄,),D,0,1) is an MLD-algebra and such that
(x) y) t (y) x) = 1, 

 x) x = 1 and D(x) y)) D(
y)
x) = 1 hold for all x and y in L.

An IVL1-algebra is an algebra (A,u,t,⁄,),m,l,D,
,0,u,1) in which (A,u,t,⁄,),m,l,D,0,u,1) is an IVMLD-algebra and such
that (mx) my) t (my) mx) = 1, 

mx) mx = 1, D(mx) my)) D(
my)
mx) = 1, 
mx) m
mx = 1 and Dðx() yÞ ) ð
x()

yÞ ¼ 1 hold for all x and y in A.

Similarly as for IVML (see [32]) we can show that interval-valued companions of axiomatic expansions of MLD are impli-
cative logics and conclude that such a logic is sound and strong complete w.r.t. the variety of the corresponding algebras. The
part of the proof not yet considered in [32] is C ‘ D/ M Dw if C ‘ / M w (which is proven exactly as for h) and, for every
17 We mean that (L,u,t,⁄,),0,1) is a residuated lattice and that D satisfies D1 ¼ 1; Dx t :Dx ¼ 1; Dðx t yÞ 6 Dx t Dy; Dx 6 x and D(x) y) 6 Dx) Dy, for all
x and y in L.

18 Similarly as in Table 2. For example, the box translation of prelinearity is pseudo-prelinearity, the box translation of divisibility is pseudo-divisibility, and so
on.

19 With extra axioms of L, we mean the axioms of L that are different from those in MLD.
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extra (n-ary) connective f, C ‘ f(/1, . . . ,/n) M f(w1, . . . ,wn) if C ‘ /1 M w1, . . .and C ‘ /n M wn (which is proven using D-neces-
sitation, the axiom D((/1 M w1) & � � � & (/n M wn)) ? (f(/1, . . . ,/n) M f(w1, . . . ,wn)), and modus ponens).

Proposition 24. Let (A,u,t,⁄,),m,l,D, 0,u,1) be an IVMLD-algebra. Then DDx = Dx, D(x t y) = Dx t Dy,
D(x ⁄ y) = Dx ⁄ Dy = Dx u Dy = D(x u y), Dx ⁄ Dx = Dx, Dx 6 mx, mDx = Dx = Dmx and Dðx() yÞ ¼ Dðmx() myÞ� Dðlx() lyÞ
for all x and y in A.
Proof. The first four properties hold in each MLD-algebra and thus a fortiori also in each IVMLD-algebra. Now we prove that
Dx 6 mDx. First note that 1 ¼ m1 ¼ mðDx t :DxÞ ¼ mDx t m:Dx 6 mDx t :Dx. Therefore Dx ¼ Dx � 1 ¼ Dx � ðmDx t :DxÞ ¼
Dx � mDx t Dx � :Dx ¼ Dx � mDx t 0 6 mDx. As the converse inequality holds as well, Dx = mDx. We also find Dx = mDx 6 mx,
and Dx = DDx 6Dmx (which implies Dx = Dmx because Dmx 6 Dx).

Furthermore Dðx() yÞ ¼ Dððx) yÞ u ðy) xÞÞ ¼ Dðx) yÞ �Dðy) xÞ ¼ Dmðx) yÞ �Dmðy) xÞ ¼ Dððmx) myÞ u ðlx) lyÞÞ�
Dððmy) mxÞ u ðly) lxÞÞ ¼ Dðmx) myÞ �Dðlx) lyÞ �Dðmy) mxÞ& Dðly) lxÞ ¼ Dðmx() myÞ �Dðlx()lyÞ. h

As a corollary, the image of an element x under D is always an exact element. In particular, the subset of exact elements of
an IVMLD-algebra is closed under D. For each IVMLD-algebra A ¼ ðA;u;t; �;); m;l;D;0;u;1Þ, the subreduct
ðEðAÞ;u;t; �;);D; 0;1Þ is an MLD-algebra. Moreover, because Dx = Dmx, the action of D on the IVMLD-algebra is determined
by its action on the subset of exact elements.

As another corollary, in the definition of a pseudo-linear IVL-algebra A (with L an axiomatic expansion of MLD), the
conditions Dððx1 () y1Þ � � � � � ðxn () ynÞÞ ) ðf ðx1; . . . ; xnÞ () f ðy1; . . . ; ynÞÞ ¼ 1 (for every extra n-ary connective f in A) are
automatically fulfilled (if all other conditions do hold, of course). Indeed, if x1 ¼ y1,. . .and xn ¼ yn then
f ðx1; . . . ; xnÞ () f ðy1; . . . ; ynÞ ¼ 1, thus Dððx1 () y1Þ � � � � � ðxn () ynÞÞ ) ðf ðx1; . . . ; xnÞ () f ðy1; . . . ; ynÞÞ ¼ 1. If xi – yi for some i
in f1; . . . ;ng, then mxi – myi or lxi – lyi and thus mxi () myi – 1 or lxi () lyi – 1. Because mxi () myi and lxi () lyi are exact
elements (which are linearly ordered by assumption), we find20 Dðmxi () myiÞ ¼ 0 or Dðlxi () lyiÞ ¼ 0 and therefore
Dðxi () yiÞ ¼ Dðmxi () myiÞ � Dðlxi () lyiÞ ¼ 0. Thus also in this case, Dððx1 () y1Þ � � � � � ðxn () ynÞÞ ) ðf ðx1; . . . ; xnÞ ()
f ðy1; . . . ; ynÞÞ ¼ 1.

Now we can prove the deduction theorem for IVMLD and its axiomatic expansions.

Proposition 25. Let L be an axiomatic expansion of IVMLD and C [ {/,w} a set of formulas in the language of L. Then the
following are equivalent:

� C [ {/} ‘L w,
� C ‘L D/ ? w.
Proof. Suppose C ‘L D/ ? w. Because {/} ‘L D/, by an application of modus ponens we obtain C [ {/} ‘L w.
Now suppose C [ {/} ‘L w. This means that there is a proof of w, in which every line is an axiom, an element of C [ {/}, or

an application of modus ponens, h-necessitation, monotonicity of e or D-necessitation to previous lines in the proof. We
will show by induction that for all the formulas c in the proof, C ‘L D/ ? c. This will imply C ‘L D/ ? w, as w is the last line
of the proof. Remark that we can use soundness and completeness of IVMLD w.r.t. IVMLD-algebras. So we know that ‘L/ if /
holds in every IVMLD-algebra.

We have to consider the following possibilities:

� c is an axiom or an element of C. Then we have C ‘L c, which implies C ‘L D/ ? c.
� c is /. In this case, we have C ‘L D/ ? c.
� c is the result of an application of modus ponens. So there are two formulas a and a ? c earlier in the proof. By induction

hypothesis, we know that C ‘L D/ ? a and C ‘L D/ ? (a ? c). Combining these, we find C ‘L (D/ & D/) ? (a & (a ? c)).
As we also have ‘L (a & (a ? c)) ? c and D/ & D/ is equivalent with D/, we obtain C ‘L D/ ? c.
� c is the result of an application of h-necessitation. This means c is of the form ha, where a is a formula occuring earlier in

the proof. So by induction hypothesis, C ‘L D/ ? a. Applying h-necessitation, IVML.7 and modus ponens, we get
C ‘L hD/ ? ha. This is equivalent with C ‘L D/ ? ha (because hD/ is equivalent with D/).
� c is the result of an application of monotonicity of e. This means c is of the form ea ? eb, with a ? b a formula earlier in

the proof. The induction hypothesis assures that C ‘L D/ ? (a ? b). Then similarly as for h-necessitation, we find
C ‘L D/ ? h(a ? b). Because by Theorem 10 we also know ‘L h(a ? b) ? (ea ? eb), C ‘L D/ ? (ea ? eb).
� c is the result of an application of D-necessitation. This means c is of the form Da, where a is a formula occuring earlier in

the proof. So by induction hypothesis, C ‘L D/ ? a. Applying D-necessitation, (D5) and modus ponens, we get C ‘L DD/
? Da. This is equivalent with C ‘L D/ ? Da (because DD/ is equivalent with D/). h
20 Here we use Dx ¼ 0 if x < 1, which holds in linear MLD-algebras.
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Let L be an axiomatic expansion of IVMTLD (for example, an interval-valued companion of a D-core fuzzy logic). Similarly
as in [34], we can use filters to show that every L-algebra is isomorphic to a subalgebra of the direct product of a system of
pseudo-linear L-algebras. The idea behind the approach is the same as in [34], but there are some practical differences (com-
parable to the differences between BL and BLD in [18]), which we mention here.

� A filter of an L-algebra is a non-empty subset F that is upward closed, and closed under ⁄ and D. To show that the cor-
responding relation 
F is a congruence on an L-algebra, the properties (one for each new connective)
Dððx1 () y1Þ � � � � � ðxn () ynÞÞ ) ðf ðx1; . . . ; xnÞ () f ðy1; . . . ; ynÞÞ ¼ 1 are needed.
� The smallest filter of an L-algebra A containing a given filter F and a given element z is {v 2 Aj($w 2 F)(w ⁄ Dz 6 v)}. The

proof is straightforward and similar to the proof in [34] and the proof of Theorem 2.4.12 in [18].
� The proof that w1 ⁄ w2 6 a if w1 ⁄ D(mx) my) 6 a and w2 ⁄ D(my) mx) 6 a, is as follows: w1 ⁄ w2 = w1 ⁄ w2 ⁄

D((mx) my) t (my) mx)) = w1 ⁄ w2 ⁄ (D(mx) my) t D(my) mx)) = w1 ⁄ w2 ⁄ D(mx) my) t w1 ⁄ w2 ⁄ D(my) mx) 6 w1 ⁄
D(mx) my) tw2 ⁄ D(my) mx) 6 a t a = a.

This decomposition theorem for IVMTLD-algebras allows us to strengthen the (general) strong completeness of IVMTLD

(and its axiomatic extensions) to pseudo-chain strong completeness.
For several interval-valued companions of D-core fuzzy logics, we can prove strong standard completeness in an analo-

gous way as explained in Theorem 14 and Remark 15.

Theorem 26. Let L be a D-core fuzzy logic (with21 k extra connectives f1, . . . , fk) that is strong complete w.r.t. a class K of L-chains.
Then its interval-valued companion IVL is strong complete w.r.t. TAðKÞ (as defined in Remark 15).

Note that the case of strong standard completeness is obtained by choosing K as the class of standard L-chains.

Proof. Suppose C [ {/} is a set of formulas in the language of IVL, and C =‘IVL /. We need to prove that there exists an IVL-
algebra C in TAðKÞ and a C-model e of C such that e(/) < 1C.

By the strong pseudo-chain completeness of IVL, we already know there exists a pseudo-linear IVL-algebra A in TAðKÞ and
an A-model e of C such that e(/) < 1A. Similarly as in Theorem 14, we can assume it is at most countably generated. The
subreduct EðAÞ consisting of the exact elements of A is a linear L-algebra (here, the properties f(h/1, . . . ,h/n) ?
hf(h/1, . . . ,h/n) are used). Because L is a D-core fuzzy logic that is strong complete w.r.t. a class K, a countably generated
linear L-algebra is embeddable in an L-chain from K. Let i denote an embedding from the reduct EðAÞ ¼
ðD;uD;tD; �D;)D;DD; f1D; . . . ; fkD;0A;1AÞ, in which D ¼ EðAÞ, in the L-chain B ¼ ðB;min;max; 	;)	;DB; f 01; . . . ; f 0k;0;1Þ from K.

Now we define an IVL-algebra C in TAðKÞ and a mapping j from A to C in the following way:
C :¼ ðC; inf; sup;�;,; pv ; ph;DC ; f1C ; . . . ; fkC ; ½0;0�; ½0;1�; ½1;1�Þ, with

� C ¼ IntðBÞ
� inf([x1,x2], [y1,y2]) = [min(x1,y1),min(x2,y2)],
� sup([x1,x2], [y1,y2]) = [max(x1,y1),max(x2,y2)],
� [x1,x2] � [y1,y2] = [x1 	 y1,max(x1 	 y2,x2 	 y1,x2 	 y2 	 i(l(u ⁄ u)))],
� [x1,x2] [ [y1,y2] = [min(x1)	 y1,x2)	 y2),min(x1)	 y2, (x2 	 i(l(u ⁄ u))))	 y2)],
� pv([x1,x2]) = [x1,x1],
� ph([x1,x2]) = [x2,x2],
� DC([x1,x2]) = [DBx1,DBx1],
� j(x) = [i(mx), i(lx)], and
� flCðjðx1Þ; . . . ; jðxnl

ÞÞ ¼ jðflðx1; . . . ; xnl
ÞÞ for elements in the image of j (for other elements in C, there are two possibilities:

flCð½x1; x1�; . . . ; ½xnl
; xnl
�Þ ¼ f 0l ðx1; . . . ; xnl

Þ; f 0l ðx1; . . . ; xnl
Þ

� �
; for l-tuples not of this form, the value can be chosen freely).

Similarly as in Theorem 14, we can prove that j is injective and that it is an homomorphism for inf, sup, �, [, pv and ph.
Now we show that it is also a homomorphism for D and the extra connectives. Indeed, j(Dx) = [i(mDx), i(lDx)] = [i(Dm-
(Dx) = [i(mDx), i(lDx)] = [i(Dmx), i(Dmx)] = [DBi(mx),DBi(mx)] = DC([i(mx), i(lx)]) = DC(j(x)). For the extra connectives, j is a
homomorphism by definition. Remark that C is an IVL-algebra even though the image of some elements was chosen
freely. This is because in a pseudo-linear IVL-algebra, the conditions on the extra connectives involve only elements on the
diagonal.

Now remark that e0, defined by e0(w) = j(e(w)), is a C-model of C such that e0(/) < 1, which concludes the proof. h

With a completely similar proof, we can also show the following theorem.

Theorem 27. Let L be a D-core fuzzy logic (with22 k extra connectives f1, . . . , fk) that is finite strong complete w.r.t. a class K of L-
chains. Then its interval-valued companion IVL is finite strong complete w.r.t. TAðKÞ (as defined in Remark 15).
21 The number of extra connectives can also be infinite (but countable). The proof is exactly the same.
22 The number of extra connectives cannot be infinite in this case, because the language has to be finite.



76 B. Van Gasse et al. / Information Sciences 189 (2012) 63–76
We can prove Proposition 17 also in the case for axiomatic expansions of MLD.

Proposition 28. Let L be an axiomatic expansion of MLD, C [ {/} a set of formulas in the language of L and K is a class of L-
algebras. Then C �K / iff C0 �TAðKÞ /

0, where C0 = {v0jv 2 C} (where /0 is defined as before Proposition 17).
From Theorem 26 and Proposition 28, and using the fact that a core fuzzy logic is (finite) strong complete iff its D-expan-

sion is (finite) strong complete [4], we can conclude that Table 3 can be copied for the D-expansions of the included logics.

6. Conclusion and future work

In this paper, we have shown that the strong and finite strong standard completeness of MTL can be transferred succes-
fully to their interval-valued counterparts. More generally, if an axiomatic extension of MTL is (finite) strong standard com-
plete, then its interval-valued counterpart is also (finite) strong standard complete. Just like the classical standard
completeness theorems stress the importance of fuzzy logics on the unit interval, our results reveal that the triangularization
of the unit interval plays a similar role for interval-valued fuzzy logics, and can be endowed with analogous properties.

We also gave a local deduction theorem for IVML and its extensions.
In Section 5 we proved similar completeness results and a deduction theorem for interval-valued fuzzy logics expanded

with Baaz’s Delta.
An open problem for future work is to prove or disprove the standard completeness of the interval-valued counterparts of

core fuzzy logics that are standard complete but not finite strong standard complete. A possible approach may be to use gen-
eral methods like those in [27] and try to adapt them such that they can be used for interval-valued logics.
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