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The k Nearest Neighbour (k NN) method is a widely used classification method that has proven to be very
effective. The accuracy of k NN can be improved by means of Prototype Selection (PS), that is, we provide
k NN with a reduced but reinforced dataset to pick its neighbours from. We use fuzzy rough set theory to
express the quality of the instances, and use a wrapper approach to determine which instances to prune.
We call this method Fuzzy Rough Prototype Selection (FRPS) and evaluate its effectiveness on a variety of
datasets. A comparison of FRPS with state-of-the-art PS methods confirms that our method performs
very well with respect to accuracy.
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1. Introduction

Classification methods aim to predict the class d(t) of a new
target instance t, based on the knowledge in the given decision
system (the training data X). That is, the attribute values
a(t),...,am(t) of t are given and d(t) needs to be determined,
making use of the instances X in the decision system and their
attribute and class values.

Many classification methods are available. In this work, we
focus on the use of k-Nearest Neighbours (k NN, [1]). It determines
the k instances in X closest to t and then assigns t to the class that
is best represented among these k neighbours. In case of ties, a
class is assigned at random from the candidate classes.

k NN is a simple classification method that does not impose
assumptions on the data. Due to its local nature it has low bias; more
specifically, the error rate of 1NN asymptotically never exceeds twice
the optimal Bayes error rate [2]. On the other hand, the local nature
also results in a high variance, that is, k NN is highly susceptible to
noisy data [3]. Furthermore, k NN needs high storage requirements
and has low efficiency caused by multiple computations of similarities
between the test and training samples.

A technique that deals with these weaknesses of k NN is
Prototype Selection (PS, [4]). It first selects a subset of instances
ScX and then classifies a new instance t using the k NN rule acting
over S instead of over X. PS should not be confused with instance
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selection [5]. Instance selection methods are designed to serve as a
general data reduction technique for all kinds of machine learning
methods, whereas PS methods are instance selection methods
specifically designed to improve k NN classification.

Rough set theory [6], initiated by Pawlak in the early 80s, is
a mathematical approach that deals with imperfect knowledge.
It has been used widely for feature selection [7-16]. Extending
rough sets to fuzzy rough sets [17] and using them for feature
selection has been explored extensively [18-28], but using fuzzy
rough sets for instance selection is still in its infancy.

A preliminary attempt to use fuzzy rough sets for instance
selection can be found in [29], presenting the Fuzzy Rough
Instance Selection (FRIS) technique. It uses fuzzy rough set theory
to express for each instance its membership to the fuzzy positive
region, that is, the extent to which instances indiscernible from it
belong to the same class. Only instances belonging to the positive
region more than a certain threshold are retained. As we will
discuss in Section 2.2, FRIS has some shortcomings.

The aim of this paper is to present a new PS method based on
fuzzy rough set theory that we call Fuzzy Rough Prototype
Selection (FRPS). First, the instances are ordered according to a
measure based on fuzzy rough set theory that evaluates the lack of
predictive ability of the instances, and the instances for which the
value exceeds a certain threshold are removed from the training
set. To determine this threshold, we consider the values of all
instances and use each of them as threshold. The final threshold is
the threshold for which applying 1NN to the corresponding
reduced training set results in the highest training accuracy.

In order to make our method more robust, we replace the
strict max operator in the fuzzy rough measure by the Ordered
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Weighted Average (OWA) operator. These aggregation operators,
introduced by Yager in [30], associate weights to the ordered
positions of the values and can hence be used to generalize the
max operator to a more robust operator.

The remainder of this work is structured as follows: in Section 2,
we summarize the related work on PS methods and fuzzy rough
approaches to data reduction. In Section 3, we introduce four
versions of our new algorithm, FRPS. In Section 4 we first select
the best performing method among these four versions and then
demonstrate its good performance by applying it on 58 real datasets
from the KEEL dataset repository, as in [31], and compare it to 21
state-of-the-art PS methods and FRIS. Finally, we conclude in
Section 5.

2. Related work

In this section we briefly present research related to the FRPS
method. In Section 2.1, we review the literature on Prototype
Selection methods, while in Section 2.2, we discuss data reduction
techniques based on (fuzzy) rough set theory.

2.1. Prototype Selection

In [31], an extensive taxonomy on PS methods can be found.
In this section we summarize the conclusions of that paper, recall
the FRIS algorithm and position our new approach FRPS in the
taxonomy.

2.1.1. Type of selection

Below, we list three types of PS methods that can be distin-
guished based on the sort of instances they select, together with
some important representatives.

1. A first class of techniques are editing methods. The main goal of
these techniques is not to reduce the size of the decision
system, but to improve the classification quality of the k NN
rule by removing noisy instances. A simple example of such a
technique is Edited Nearest Neighbours (ENN, [32]). It con-
siders every instance in the training set and removes it
whenever the class predicted by using the k NN rule over the
other instances in the training set is different from its true
class. Methods derived from ENN include the Modified Edited
Nearest Neighbour (MENN, [33]) method and the All k Nearest
Neighbour (AIIKNN, [34]) method. One of the most effective
editing techniques is the Relative Neighbourhood Graph (RNG,
[35]) method. The general idea is that after construction of a
proximity graph, instances misclassified by their neighbours in
this graph are removed. Another editing technique is the Model
Class Selection (MoCS, [36]) method that uses a feedback
system to incorporate knowledge about the dataset in a tree-
based classifier.

2. Condensation techniques try to remove superfluous instances. In
general, these methods are good at reducing the dimension-
ality of the decision system. A well-known condensation
technique designed specifically for 1NN is Condensed Nearest
Neighbours (CNN, [37]). This technique starts off with an empty
set S = ¢. Then it runs through all instances in the training set
and adds an instance to S if it is wrongly classified when
applying the 1NN rule over the current set of instances S. As a
result, all instances in the decision system will be classified
correctly when applying 1NN over S. A more advanced techni-
que is the Reduced Nearest Neighbour (RNN, [38]) technique.
This technique first applies CNN to the entire training set X,
resulting in a subset SCX. Next, all instances xS are considered
iteratively. The instance x is temporarily removed from S and it

is verified whether all instances in X are classified correctly
when applying the 1NN rule over the subset S. If at least one
instance is classified incorrectly, x is re-added to S, otherwise, x
is removed from S. This is repeated until all instances xS have
been considered. Other methods derived from CNN are the Fast
Condensed Nearest Neighbour (FCNN, [39]) and Modified
Condensed Nearest Neighbour (MCNN, [40]) method. Patterns
by Ordered Projections (POP, [41]) finds patterns in the training
dataset without calculating distances and eliminates instances
not satisfying these patterns. Modified Selective Subset (MSS,
[42]) retains a consistent subset of instances such that for each
instance in the original training set, there is an instance in this
subset closer than any other instance. Reconsistent [43] aims to
replace neighbouring instances by a single instance.

3. Finally, hybrid techniques aim to simultaneously remove noisy
and superfluous instances. They are designed to reduce the
dimensionality of the decision system and meanwhile improve
the classification using the k NN rule. Many of these techniques
are based on evolutionary algorithms. For instance, the Genera-
tional Genetic Algorithm (GGA, [44,45]), Random Mutation Hill
Climbing (RMHC, [46]), Steady-State Memetic Algorithm
(SSMA, [47]) and CHC Evolutionary Algorithm (CHC, [48]) are
genetic algorithms where the chromosomes correspond to the
instances currently selected, and the fitness function depends
both on the current reduction rate and the accuracy of the k NN
rule over the current chromosome. The Hit Miss Network
Edition Iterative (HMNEI, [49]) is a non-evolutionary hybrid
PS algorithm. It represents the decision system as a hit and
miss network, for which the structural properties correspond
to properties of the instances related to the decision of the
k NN rule, such as being a noisy or superfluous instance.
The Decremental Reduction Optimization Procedure (DROP, [50])
removes instances if this does not cause a decrease of the training
accuracy of the current (reduced) training set. The Class Condi-
tional Instance Selection (CCIS, [51]) method introduces the class
conditional nearest neighbour to remove instances. C-Pruner [52]
computes the order in which instances should be removed and
then removes them if this does not result in a drop of training
accuracy. The Instance Based 3 (IB3, [53]) method uses a wait and
see evidence gathering method to determine which of the saved
instances are expected to perform well during classification.
Iterative Case Filtering (ICF, [54]), starts off with the ENN algorithm
and then employs neighbours and associates to smooth the
decision boundaries.

2.1.2. Evaluation of search

Besides labelling PS methods based on the kind of instances
they remove, one can also distinguish between filter and wrapper
methods.

In the context of PS methods, filter techniques use the k NN rule
to decide for partial data if they should be removed or added to the
selected instances. CNN is such a filter method: an instance is
selected if the 1NN rule over the current subset of instances
classifies it wrong. ENN is also a filter method: an instance is
removed when k NN applied over the universe of instances
classifies it incorrectly.

Wrapper methods on the other hand use the k NN rule for the
complete training set: many subsets of instances are generated,
and each subset is evaluated using a leave-one-out validation
scheme. That is, given a subset of instances S, each instance x
in the training set X is classified as follows: In case the instance x is
in S, the k NN rule is applied over S without the instance x, that is,
the neighbours of x are looked up in S but have to be different
from x itself. In case x is not in S, the k NN rule is applied over the
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Fig. 1. Taxonomy of PS methods, including FRPS.

entire set S. The accuracy of this classification is then used to
evaluate the subset of instances S. Examples of such wrapper
methods are GGA and CHC.

As for each considered subset the k NN rule is applied to
classify each instance in the training dataset, wrapper methods
generally are computationally more expensive than filter methods.
On the other hand, wrapper methods make full use of the k NN
classifier model and are as a result typically more accurate.

2.1.3. Position of FRPS in the PS taxonomy

In Fig. 1, an overview of the PS taxonomy with the representa-
tive examples can be found, including FRPS.

The main goal of the FRPS algorithm is to improve the accuracy
of the k NN algorithm by removing instances without good
predictive ability. Hence, it can be considered as an editing
method.

We want to achieve a good accuracy by using a wrapper
method. On the other hand, we want to keep the running time
of the algorithm low. That is, we want to achieve an accuracy that
is better than that of the existing PS methods, such that the
running time is better than that of the hybrid PS methods (that
have the advantage of having a better reduction rate) and better
than the running time of the most accurate editing PS methods.

2.2. Fuzzy rough set based approaches to data reduction

In this section we discuss data reduction techniques based on
fuzzy rough set theory. Most of the work done in this field is on
feature selection.

Rough set theory [6] is an excellent tool for feature selection, as
it can express how features can discern between classes. There are
many ways to use rough set theory for feature selection, mostly
evolving around the notion of decision reducts, i.e., minimal
subsets of features that preserve the decision making power of
the original set of features.

One drawback of classical rough sets is that they cannot
appropriately handle continuous features, because rough set
theory assumes a crisp indiscernibility relation. One option is to
use discretization, but this comes with a loss of information.
Therefore, in [17], fuzzy rough sets where introduced, combining
fuzzy set theory [55] and rough set theory to obtain a hybrid
model. Fuzzy rough sets have been extensively used for feature
selection. Many approaches focus on redefining the instances’
indiscernibility [21,24,56], while others focus on the partial mem-
bership of instances to the classes of a fuzzy partition
[19,20,22,23,25,26,57,58] or by extending the definition of decision
reduct to fuzzy decision reduct [18].

To the best of our knowledge, only one fuzzy rough approach to
instance selection, called Fuzzy Rough Instance Selection (FRIS,
[29]), has been proposed. The three variants of the FRIS algorithms
described in [29] use the fuzzy rough positive region to decide if
an instance should be retained or removed.

e The basic algorithm, FRIS-I, deletes all instances for which the
positive region membership is lower than a certain threshold
(typically 0.95 or 1). One weakness of this algorithm is that it
strongly depends on the fuzzy indiscernibility relation and
threshold used. In Section 4.2, we will experimentally show
that FRIS-I does not perform very well.

e Another variant is FRIS-II, which iteratively uses the positive
region information to select the object with lowest member-
ship to the positive region for removal and then recalculates
each object's membership to the positive region with this
object removed.

e The last variant, FRIS-III, performs a backward elimination of
instances: at every step, it removes the instance whose removal
expands the positive region the most, and repeats this until all
the instances belong maximally to the positive region.

Unfortunately, both FRIS-II and FRIS-IIl have time complexity
O@mn*) if m is the number of attributes and n the number of
instances. Hence, these approaches require too much running time
to use them in practice. Moreover, the experimental study in [29]
shows that there are no significant differences in accuracy
between FRIS-I, FRIS-II and FRIS-III. In the experimental section
we only use FRIS-I and refer to it as FRIS.

An approach that is related to FRIS is the Positive Region based
Nearest Neighbour (POSNN, [59]) classifier. In this work, the Fuzzy
Nearest Neighbour (FNN, [60]) classifier of Keller is improved by
weighting the instances according to their fuzzy rough positive
region membership. That is to say, instead of performing a
preprocessing step to the k NN classifier, a new classifier is
introduced that weights instances according to their fuzzy positive
region membership.

3. FRPS: Fuzzy Rough Prototype Selection

In this section we present our new PS technique: the FRPS
algorithm. We stress that it is an editing technique, that is, our
main goal is to improve the classification based on the k NN
rule over the reduced decision system. The main outline of the
algorithm is as follows:

1. Order the instances according to a measure, called alpha,
inspired by fuzzy rough set theory.

2. Based on this ranking, decide which instances to remove from
the training set.

In Section 3.1, we handle the first part: based on fuzzy rough set
theory, we impose an order on the instances. In Section 3.2, we
present the final PS algorithm that determines which threshold to
use to prune the inferior instances.

3.1. A fuzzy rough measure

In this section we introduce a measure based on fuzzy rough
set theory [6] to express the lack of predictive ability of instances.
We first recall the main components of rough set theory and then
extend it to fuzzy rough set theory.

We consider a decision system (X,.Au{d}) that consists of
a universe of instances X ={xq,...,Xn}, a set of attributes
A={ay,...,an} and a fixed decision attribute d¢.4. The value of
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instance x for attribute a is denoted by a(x). The decision of
instance x is denoted by d(x). As we only consider classification
problems, d(x) takes values in a finite set of classes.

The indiscernibility relation R;,q is defined as

Ring = {(x.y)IVaeA : a(x) = a(y)}. M

Clearly, Ri,q is an equivalence relation. Its equivalence classes,
defined by

vxeX : [X]g.  ={yeX|VaeA : a(x) = a(y)}, 2)

ind
can be used to approximate concepts, i.e., subsets of the universe X.

Given AcX, its lower and upper approximation w.r.t. Ryg are
defined by

Ring|A = {x€X|[X]g,,, CA} 3)

ind —
RinatA = {x€X|[X]g,,,nMA#2}. C))
Also the decision class defines an equivalence relation on X:

Ry = {xy)d(x) =dy)}. )

The positive region POS is then the set containing all instances xeX
for which the attributes A predict the decision class of x unequi-
vocally:

POS = U RinaLX]g,- ©
xeX

The more elements the POS contains, the more predictive ability
the decision system has.

Classical rough set theory cannot appropriately handle contin-
uous attributes. Therefore, in [17], rough set theory was extended
using concepts from fuzzy set theory [55] to fuzzy rough set
theory.

We now consider a decision system (X,.Au{d}) for which the
value of instance x for attribute a can be a continuous (real) or
nominal value. Without loss of generality, we assume that all
continuous attributes are normalized: for all attributes ae.A and
instances xeX, a(x)€[0,1]. For both the attributes in .4 and the
decision class d, we construct a [0,1]-valued indiscernibility rela-
tion on the universe of instances X. The indiscernibility relation
with respect to the decision class is given by:

1 if diy)=dx)

0 else. 7)

WYX : Ry(xy) = {

The indiscernibility relation with respect to the attribute set A is

given by
vx,yeX, a€l0,+ ) : R%(x,y) = T(max(0,1-adq(X,y))), ®)

acA

where T is a triangular norm' and where §, is a distance measure
based on the attribute a. Note that this definition is valid even if A
contains more than 2 attributes, as a t-norm is associative and can
hence be extended to [0,1]™—[0,1] mappings unequivocally. We use
the following distance measure in case of a nominal attribute a:

) 0 if ax)=a(y)
VX,yeX : 6a(X,y) = { 1 else. )
In case a is continuous, we use
VX,YEX : a(X,y) = (a(x)-ay))’. (10)

1 A triangular norm (t-norm) is a mapping T : [0,1]>—[0,1] that satisfies

e vxe[0,1]: T(x,1)=x;

o Vx,ye[0,1]: T(x,y)=T(y.X);

e Vx,y,z€[0,1] : T(x,T(y,2)) = T(T(x,y),2);

e vx,y,v,wel0,1] : if x<v and y<w, then T(x,y)<T(v,w).
Examples are the Lukasiewicz t-norm Ty, the product t-norm Tp and the minimum
t-norm Ty, defined for x,ye[0,1] as: Ti(x,y)=max(0,x+y-1),Tp(x,y)=xy and
Tum(x,y) = min(x,y).

As we assume that all continuous attributes are normalized, both
distance measures return a value between 0 and 1.

The parameter a€[0, + o) is called the granularity and expresses
how large the differences between attribute values of instances
need to be in order to distinguish between them. When « is
smaller, the attribute values of the instances need to differ more in
order to be able to discern between them. In the extreme case
where a=0, all instances are indiscernible with respect to RY.
When « is larger, small differences between the attribute values of
two instances are sufficient to discern between them. This is
illustrated in the following example:

Example 1. Consider two instances x,y and two continuous
attributes ay,a,, such that

e a;(x)=0.3;
® ay,(x)=0.2;
e a,(y)=04;
L] az(y)=0.9.

We use the minimum t-norm T,. It follows that Rzalvaz,(x,y) =0.51,
that is, it is possible to discern between the instances x and y.
On the other hand, R;! , (x,y)=0.951 which means that x and y
are almost indiscernible with respect to R%!

{a1,a2}"

This indiscernibility relation can be used to approximate
concepts, which are now fuzzy sets A:X—[0,1]. We use the
definitions introduced by Radzikowska and Kerre in [61] to fuzzify
the lower and upper approximation in Egs. (3) and (4):

R LAY (X) = ;rel)gl R4 (x.y),Rq(x,)), (1
Ra=tA)X) = SLEI)I?T (R4«(x,y),Rq(x,y)), (12)
!

where inf and sup are the largest lower and smallest upper bounds
of the sets respectively, and 7 is a fuzzy implicator.?

The fuzzy rough positive region can be used to express to what
extent the attributes 4 determine the decision class of a given
instance, and is defined as

WyeX : POSS(y) = min(RS L [Vlg JX), (13)

and can be rewritten as [18]
vyeX : POS%(y) = rpei)pl (R%(x,¥),R4(x,Y)). (14)

For a particular granularity «, this formula evaluates to what
degree all objects indiscernible from y also belong to y's class.

We might now use the positive region to order the instances:
instances with a higher positive region have more predictive
ability than others. However, the problem remains to decide which
granularity value « to use. So instead of using the positive region
directly, we consider the following measure:

vxeX : a(x) = sup{a€[0, + o0)|POS% (x) < 1,} (15)

where a(x) is the minimum value « for which x fully belongs to the
positive region POS%. When for x,yeX, a(x) > a(y), it means that
there are values « for which x does not fully belong to the positive
region POS‘, and y does, meaning that the quality of instance y is
better than that of instance x. Hence, we can use a(x) to measure
the lack of predictive ability. It can occur that the supremum is

2 A fuzzy implicator is a mapping I : [0,1]?—[0,1] that satisfies
e [(0,00=1;
e I(1,x)=x;
e [ is decreasing in the first argument;
e [ is increasing in the second argument.
Examples are the Lukasiewicz implicator I; and the Kleene Dienes implicator I
given by, for x,y€[0,1] : I.(x,y) = min(1,1-x+Y), Ix(x,y) = max(1-x,y).
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equal to infinity, in this case, we use the symbolic notation
a(X) = co. This means that Vae€[0, + ), POS%(x) =0, that is, x can
never belong to the positive region to any extent.

Summarizing, instances with a low « value have higher positive
regions, which means that instances indiscernible from them also
belong to the same class. These instances are more typical for their
class and have more predictive ability. Instances with a high « value
have lower positive regions, which means that there are instances
similar to them have different classes. These can be boundary
instances, instances in overlapping regions or instances that are
mislabelled. Our algorithm will remove this type of instances, and
only the instances typical for their class are retained.

It is difficult to calculate the value a(x) directly. Therefore, we
will introduce the minimum granularity theorem to give an expres-
sion for a(x) that can be used in practice.

First, we show that higher granularity parameters lead to
higher fuzzy positive region membership degrees:

Lemma 1.
vyeX, Vai,az€[0,+ ) : a1<ap= : POSY (y)<POS% (y) (16)

Proof. Assume yeX, acA, 0<a;<ay. Then we have

vxeX : max(0,1-a164(x,y))>max(0,1-a284(X,y)). a7)
As t-norms are increasing in both arguments, this means

vxeX : R (x,y) = T(max(0,1-a164(x,y)))

acA

2T(max(0,1-a284(x,y))) = R% (x.y). (18)
acA

As implicators are decreasing in the first argument, this leads to:
POS7 (y) = minI(R% (x.y),Rq(x.y) <minl(R% (x,y).Ra(x,y)) = POSZ (¥).

(19)
This lemma allows us to give an expression for a(x).

Theorem 1 (Minimum granularity theorem). Let I be an implicator
such that vte[0,1), I(t,0) = 1-t holds (which is the case for e.g. the
Lukasiewicz or Kleene-Dienes implicator), and let xeX. Then if T =Ty
or T=Tp:

a ]
Sup{ae[O +OO)‘POSA(X) < 1 ygf[x] m (20)
and if T=T;:
sup{a€[0, + oo)‘POSj(x) <1}= max; 21

YE[Xla 2 5a,- xYy) '
provided the denominators are different from zero.
Proof.

POS* (%) < 1
c»mmI(R *Y), Raxy) <1
c»mmI(RA(x,y) 0)<1
¢
min(1-R%(x, 1
de[x]d( ALy) <
1-maxR%(x, 1
SlmaxRay) <
gq;[a]xT(max(O. 1-adq, (x,Y)),...,max(0,1-adq, (x,y))) > 0
YéEIXlq

For these equivalences, we used the definition of the positive region

membership function, the fact that I(t,1)=1 for all te[0,1], the

assumption that I(t,0) = 1t for all t€[0,1] and the definition of R’.
Now assume that T=Tp or T =Ty, then

POS%(x) < 1

<max mln(max(O 1-adq(x,y)) >0
YEXlg i=1

Smax mm(l —abq,(X,y)) >0
YEX]g i=

omax(l-a r_nax 8q;(x,y)) >0
YE[Xla i=1

1
S @ygy) (a < ) y))

< ((I < max m—>
YéE[X]a maxi — ]éa,v (va)

The first equivalence follows because for T=Ty or T=Tp,
T(x,y) =0 holds iff x=0 or y=0, for x,y€[0,1].
From these equivalences, it follows that

sup{a€[0, + o) |POS% (x) < 1} = 22)

Vi, maxt_ 6, (%)’
On the other hand, when T =T, it follows that
POS*(x) < 1
<(Iy¢x])(TL(max(0,1-adq, (x,)),-. .,
S AYEX])(TL(1-adq, (X,Y), ..., 1-adq, (X,y)) > 0)
<(3y¢(x]g)(max(0,1-adq, (X,y)+ -+ +1-abq, (X,y)—-m+1) > 0)
<(FYE[X])(ada, (X,Y) + -+ +adq, (%,y) < 1)

1
<(Fyglxlq) (0‘ < m>

max(0,1-adg, (X,y))) > 0)

In the second equivalence, we used the fact that vs,te[0,1], T;(s,t) >
0 implies that both s > 0 and t > 0. Next, we used the associativity
of T; to obtain its definition for more than 2 arguments:

Ti(s1,..5m) =Tr(51,T1(52,T1(S3,...))) = max(0,51 +Sp + - +Sp—m+1)
(23)
The equivalences imply
1
o, POS?, Tl=maX—er———. 24
sup{a€[0, + co) ) <1} = yﬁ[x]d YT 60 (XY) O (24)

A possible drawback of the measure a(x) is that it is max-based.
This means that small changes in the data may alter the a(x) values
drastically, and hence the robustness of the final PS method is
limited. Therefore, we consider a generalization of the basic
measure using Ordered Weighted Average (OWA, [30]) aggrega-
tion operators.

Recall that given a series of values ay,...,
vector W =(wy,...,wp) that fulfills:

a,eR and a weight

° Viel ...p : w;€[0,1],

* Swi-t,

i=1
the OWA aggregation of these values is given by

OWAW(al- ap)— 2 Wz i (25)

i
where b;=gq; if q; is the ith largest value in aj,...,a,. That is, the
values are ordered and then a weighted average is applied to these
values.

The OWA aggregator resembles the weighted average but it
assigns weights to the ordered positions of the values instead of to
the values themselves. It is a very flexible aggregation operator
that includes other aggregators such as minimum, maximum or
average as special cases. It can also be used to relax the notion of
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maximum. Consider a weight vector W =(wy,...,w;) such that
wi>w,>--->Wp. Then the operator OWAy relaxes the maximum
operator: larger values are associated with high weights, while
smaller values are associated with low weights.

From now on, Wy is a weight vector such that OWAy,,,
relaxes the maximum operator. We can use this operator to
calculate the a(x) values for each xeX. For T=T;, the OWA-
generalized definition of a(x) is given by

1

. OWA(yy _ _ -
vxeX : a""(x) = OWAw,,, T Gaxy) (26)

YeE[Xlg

while for T =Ty, or T = Tp, we can generalize the definition of a(x)
by

1
OWAW, . OWAw,..54,(X.)
—

vxeX : a®"A(x) = 27)

YE[Xla

The advantage of the OWAy, operator is that all weights can be
non-zero, which means that all values can influence the aggrega-
tion result and more stable results are obtained.

A possible weight vector for an OWA aggregator with the
behaviour of a maximum operator is given by:

2(p-i+1)
pp+1)

As a result, we have four possible definitions for the « measure,
each leading to a different FRPS algorithm. In Table 1, an overview
of the methods we consider is given. The first two FRPS methods
use Ty, or Tp as t-norm (recall from Theorem 1 that these t-norms
lead to the same result), whereas the last two methods use the T
t-norm. The weight vector W refers to the weights defined in (28).

viel,...,p:w;= (28)

3.2. The FRPS algorithm

Using the measure defined in the previous subsection, we can
order the instances based on their quality. If we have a good
threshold z, then we can define an algorithm that removes
instances xeX if a(x) > z. The outline of this algorithm, which we
call basic FRPS (bFRPS), is given in Algorithm 1.

Algorithm 1. bFRPS.

—

input: Decision system (X,.4u{d}), threshold .
Calculate a(xq),...,a(xp)
S
for xeX do

if a(x)<r then

S<Sufx}

end if
end for
Output Decision system (S,.Au{d})

LRENDPDRAWN

Table 1
Overview of the a(x) definitions used in the FRPS methods.

Name of method a(x) used
FRPS-1 max 1
yeamdimaxxm: e ®y)

FRPS-2 1

OWAw (OWAW@, <x,y>>>
FRPS-3 1

maXye(x, Zm 15'] *y)

i=1%4 X,

FRPS-4

1
WA _
OWAw (2;’; 100 (xy))

To determine the threshold z, we use a wrapper approach. That
is, we try several values for r and then select the best one.
To determine which is the best one, we use a leave-one-out strategy
to calculate the training accuracy. The outline of this procedure,
called trainAcc is given in Algorithm 2. To classify the instances in X,
two cases are considered. If xeX is not in the selected set of
prototypes S, then we assign x to the class of the nearest neighbour
of x in S. In case x belongs to the set of prototypes S, we assign x to
the class of the nearest neighbour of x in S\x. If we did not make this
distinction, all instances in S would be classified correctly, which
would favour larger subsets of prototypes.

Algorithm 2. trainAcc, procedure to measure the training accu-
racy of a subset of instances using a leave-one-out approach.

1: input: Reduced decision system (S, Au{d}) (5cX).
2: acc<0

3: for xeX do

4: if xS then

5: Find the nearest neighbour nn of x in S\{x}
6: if d(x) = d(nn) then

7: acc—acc+1

8: end if

9: else

10: Find the nearest neighbour nn of x in S
11: if d(x) = d(nn) then

12: acc—acc+1

13: end if

14: end if

15: end for

16: Output acc

The final question that remains is which thresholds 7 to
evaluate using the trainAcc procedure. The FRPS algorithm uses
all values a(x) with xeX as a possible threshold. The final algorithm
is given in Algorithm 3.

Algorithm 3. FRPS.

1: input: Decision system (X,.Au{d})
2: Calculate a(xq),...,a(Xn)
3: Remove duplicates and order the « values from step 2:
ap>op > >ap
opt.alphas«{co}
Calculate nearest neighbours of all instances
acc.opt«trainAcc(X, Au{d})
acc.current<acc.opt
for a =ay,...,ap do
Remove instances x for which a(x) > «, the resulting set
of instances is S
10:  if Number of remaining instances > 1 then

©LRNDU A

11: Recalculate nearest neighbours of instances for which
current nearest neighbour was removed in step 9

12: acc.current«trainAcc(S, Au{d})

13: if acc.current > acc.opt then

14: opt.alphas<{a}

15: else if acc.current = acc.opt then

16: opt.alphas<opt.alphasu{a}

17: end if

18: end if

19: end for

20: best.alpha=median(opt.alphas)
21: Output bFRPS((X,.Au{d}),best.alpha)

First, the a(x) values are calculated for each xeX. Then,
duplicates are removed from these values and they are ordered.
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In line 5, the nearest neighbour is calculated for each instance.
Next, in line 6 the accuracy using the entire instance set is
calculated. In each run of the loop from line 8 to line 19 instances
x for which a(x) exceeds the current threshold a are removed from
the current instance set. If the accuracy of the current instance
subset is equal or better than the best accuracy reached so far, the
best accuracy and the corresponding list of optimal alphas are
updated. Finally, the best « value is calculated as the median> of all
optimal « values and used as threshold.

The reason why we consider the « values in decreasing order is
that we can implement this efficiently. The instance subsets are
generated decrementally. Every time instances are removed from
the current instance subset, we only recalculate the nearest
neighbours of those instances for which the nearest neighbour is
removed in the current step.

The stopping criterion in line 10 makes sure that a nearest
neighbour can be calculated for every instance: if there is only one
instance x for which a(x) = ), that is, there is only one instance
with the lowest « value, then in line 11 the nearest neighbour
cannot be calculated for x: the only candidate instance is x but this
instance cannot be picked as nearest neighbour of x in the leave-
one-out strategy. Therefore, we choose not to consider this
instance subset {x}.

The next toy example shows how the FRPS procedure works.

Example 2. Consider a decision system with 2 attributes a, and a,
and two decision classes 0 and 1. There are 6 instances {x1,...,Xg}.
The decision system is shown in Table 2. The first step of FRPS is to
calculate the a(x) values for each instance x. We use the a(x)
definition where the T; t-norm is used:

=20

- 1 1 1
a(x) =max (0 04+ 001 *0.04+049 '0.09+o.09>

a(X2) = MaX 5571+ 004 025+016'0+0> =

- 1
a(X3) = MaX 5o 507 007+ 0:04 '001+004) 20

- 1 1
a(Xs) = MaX (5071004 0251076 '0+0>

a(Xg) = max

_ 1
a(x4)_max(004+049 025+016'025+016) 241
( oo
LI A
(009+oo 0100+ o)—°°

The FRPS algorithm orders the distinct « values from high to low:
00 >20>241.

First, we consider the entire instance set {x1,X2,X3,X4,X5,Xg}.
The nearest neighbours of each instance are given in Table 3. Note
that if an instance has more than 1 nearest neighbour, one of them
is picked at random. Applying 1NN now misclassifies x, x4, X5, X
and classifies x; and x5 correctly. This means that the training
accuracy is now %. In the next step, we consider a = 20. Now, x;,Xs5
and xs are removed. We only have to recalculate the nearest
neighbours of x;, x4, X5 and xs. They are given in Table 3. Now,
X1, X2, X3 are classified correctly by 1NN and x4, x5, Xg incorrectly.
The training accuracy is now 2.

Next, we consider a = 2.41. Now, only x4 remains in the dataset,
so the procedure stops. We conclude that using a =20 yields the
best training accuracy, and therefore, we return {x;,X3,x4} as
prototypes.

If we assume that the number of neighbours in k NN is a small
constant (in our experiments k=1 or k=3), the complexity of FRPS

3 We opt to take the median because it is a compromise between removing
possibly useful instances and retaining too many instances. For completeness, we
also added results of the FRPS algorithm using the minimum or maximum of the
optimal « values on our web site: http://users.ugent.be/ ~ nverbies/.

Table 2
Decision system Example 2.

a; a, d
X1 0.5 0.1 0
X2 0.2 04 0
X3 0.3 0.2 0
X4 0.7 0.8 1
Xs 0.2 04 1
X6 0.2 0.4 1

Table 3
Nearest neighbours of the instances at each step in Example 2.

a=oo a=20
X1 X3 X3
X2 X5 X3
X3 X1 X1
X4 X2 X3
X5 X2 X3
X6 X2 X3

is ©(m3*m). Line 2 in Algorithm 3 requires @(n*m) calculations.
The most costly step, however, is the loop in lines 8-20: for each
instance, a subset is generated for which the classification accu-
racy is calculated. Therefore, the NN rule needs to be performed
for each instance. Each NN evaluation requires the calculation of
the distances to each instance in the subset of selected instances,
i.e, its cost is at most O(n?m). In practice, the complexity will be
lower, as only the nearest neighbours of those instances for which
the nearest neighbour is removed need to be recalculated.

4. Experimental evaluation

In this section we evaluate the performance of the FRPS
algorithm and compare it to a range of state-of-the-art PS algo-
rithms. In Section 4.1, we describe the experimental set-up of our
evaluation, and in Section 4.2 we present the results.

4.1. Experimental set-up

To show the good performance of the FRPS algorithm, we
follow the experimental set-up as described in [31]. We consider
58 datasets and their partitions from the KEEL dataset repository*
[62]. The main characteristics of these datasets are given in
Table 4. We consider several types of datasets: the datasets contain
from 100 up to 19,000 instances and the number of attributes
ranges from 2 to 85. Some of the datasets contain only continuous
attributes (e.g. appendicitis), others contain only nominal attri-
butes (e.g. breast) and the others contain both (e.g. abalone). Some
of these datasets originally contained instances for which attribute
values were missing. We removed these instances from the
datasets, the numbers in Table 4 correspond to the datasets
without missing data.

Guided by the results in [31], we select 22 Prototype Selection
methods against which we compare the FRPS algorithm. An
overview of these methods is given in Table 5. They are repre-
sentative in the sense that they are the best performing methods
among each type of methods discussed in [31]. We also run the

4 http://www.keel.es/datasets.php.
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Table 4

Characteristics of the datasets used in the experimentation: number of instances
(# Inst.), number of attributes (# Atts.), number of continuous (# Cont.) and
nominal (# Nom.) attributes, number of classes (# Cl.).

Dataset # Inst. # Atts. # Cont. # Nom. # CL
abalone 4174 8 7 1 28
appendicitis 106 7 0 2
australian 690 14 8 6 2
automobile 205 25 15 10 6
balance 625 4 4 0 3
banana 5300 2 2 0 2
bands 539 19 19 0 2
breast 286 9 0 9 2
bupa 345 6 6 9 2
car 1728 6 0 6 4
chess 3196 36 0 36 2
cleveland 303 13 13 0 5
coil2000 9822 85 85 0 2
contraceptive 1473 9 9 0 3
crx 690 15 6 9 2
dermatology 366 34 34 0 6
ecoli 336 7 7 0 8
flare-solar 1066 11 0 11 6
german 1000 20 7 13 2
glass 214 9 9 0 7
haberman 306 3 3 0 2
hayes-roth 160 4 4 0 3
heart 270 13 13 0 2
hepatitis 155 19 19 0 2
housevotes 435 16 0 16 2
iris 150 4 4 0 3
led7digit 500 7 7 0 10
lymphography 148 18 3 15 4
magic 19,020 10 10 0 2
mammographic 961 5 5 0 2
marketing 8993 13 13 0 9
monk-2 432 6 6 0 2
newthyroid 215 5 5 0 3
nursery 12,960 8 0 8 5
pageblocks 5472 10 10 0 5
penbased 10,992 16 16 0 10
phoneme 5404 5 5 0 2
pima 768 8 8 0 2
ring 7400 20 20 0 2
saheart 462 9 8 1 2
satimage 6435 36 36 0 7
segment 2310 19 19 0 7
sonar 208 60 60 0 2
spambase 4597 57 57 0 2
spectheart 267 44 44 0 2
splice 3190 60 0 60 3
tae 151 5 5 0 3
texture 5500 40 40 0 11
thyroid 7200 21 21 0 3
tic-tac-toe 958 9 0 9 2
titanic 2201 3 3 0 2
twonorm 7400 20 20 0 2
vehicle 846 18 18 0 4
vowel 990 13 13 0 11
wine 178 13 13 0 3
wisconsin 699 9 9 0 2
yeast 1484 8 8 0 10
Z00 101 16 0 16 7

FRIS algorithm, with threshold  set to 1 and a=10 in the
indiscernibility relation.’

We follow a 10-fold cross-validation strategy to evaluate the
algorithms; in each fold the data is divided into a training and
testing part. We use FRPS to reduce the training data and apply k

5 Results with a ranging from 1 to 10 can be found on or web site http://users.
ugent.be/~ nverbies/.

NN on the test data, looking up the nearest neighbours in the
reduced training set. Four evaluation parameters are considered:

e Test Accuracy (acc): the rate of correctly classified instances in
the test data.

e Test Cohen's kappa (x) [63]: this is an additional accuracy
measure that compensates for random hits. Given the confu-
sion matrix [y;lo., of the classification task (£ is the number of
classes) it is given by:

o= Ny Yi— X WiV

29
n2-y% yiyi @9)

wherevi=1,...,Q,y; and y; are the sum of the elements of the
ith column and ith row of the confusion matrix respectively.
e Storage reduction (red): the fraction of instances removed from
the training data.
e Running time (time): this is the running time in seconds of the
Prototype Selection method. The running time of the subse-
quent 1NN classification is not taken into account.

We also perform statistical comparisons over the multiple
datasets considered to find significant differences between FRPS
and the remaining methods. In [64], it is recommended to use a
set of simple, safe and robust non-parametric tests for statistical
comparisons of classifiers.

We apply the Wilcoxon's signed ranks statistical test [65] to
compare FRPS against all other considered PS methods. This is a
non-parametric pairwise test that aims to detect significant
differences between two sample means; that is, the behaviour of
the two implicated algorithms in the comparison. For each
comparison we compute the sum of ranks of Wilcoxon's test in
favour of FRPS R+, the sum of ranks in favour of the other
methods R— and also the p-value obtained for the comparison.

Besides, we perform a statistical analysis conducted by non-
parametric multiple comparison procedures [66-68]. We use
Friedman's procedure to compute the set of ranks that represent
the effectiveness associated with each algorithm. We compute the
p-value related to the significance of the differences found by this
test. In addition, we compute the adjusted p-value with Holm's
test. More information about these tests and other statistical
procedures can be found at http://sci2s.ugr.es/sicidm/.

We take the results from [31] for the state-of-the-art methods.
The FRPS method is implemented within the KEEL software
platform, and the experiments are run on the same machine as
the state-of-the-art methods.

4.2. Results

In this section we present the results of our approach. Due to
space restrictions, we are not able to include all the details in this
paper, but they can be found on our webpage.® In Section 4.2.1
we use the 1NN classifier to evaluate FRPS, while in Section 4.2.2
we use FRPS as a preprocessing method for the 3NN classifier to
study how FRPS performs for higher values of k.

4.2.1. Results using 1NN as classifier

Before comparing our approach to the state-of-the-art algo-
rithms, we evaluate the performance of the different a(x) defini-
tions in Table 1. We use the non-parametric statistical Wilcoxon
test to compare each of the FRPS algorithms to each other.
In Table 6, we show the average results of the FRPS methods on
all datasets. Recall that we use four versions of the FRPS algorithm,

6 http://users.ugent.be/ ~ nverbies/
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State-of-the-art PS algorithms against which FRPS is compared. The full name, abbreviation and reference are given, as well as its place in the PS taxonomy.

Complete name Abbrev. name Reference Type of method
All-k NN Allk NN [34] Editing—Filter
Class Conditional Instance Selection CCIS [51] Hybrid—Filter
CHC Evolutionary Algorithm CHC [48] Hybrid—Wrapper
Condensed Nearest Neighbour CNN [37] Condensation—Filter
C-Pruner Cpruner [52] Hybrid—Filter
Decremental Reduction Optimization Procedure 3 DROP3 [50] Hybrid—Filter
Fast Condensed Nearest Neighbour 1 FCNN [39] Condensation—Filter
Generational Genetic Algorithm GGA [44] Hybrid—Wrapper
Hit Miss Network Edition Iterative HMNEI [49] Hybrid—Filter
Instance Based 3 IB3 [53] Hybrid—Filter
Iterative Case Filtering ICF [54] Hybrid—Filter
Modified Condensed Nearest Neighbour MCNN [40] Condensation—Filter
Modified Edited Nearest Neighbour MENN [33] Editing—Filter
Model Class Selection MoCS [36] Editing—Filter
Modified Selective Subset MSS [42] Condensation—Filter
Patterns by Ordered Projections POP [41] Condensation— Filter
Reconsistent Reconsistent [43] Condensation—Filter
Random Mutation Hill Climbing RMHC [46] Hybrid —Wrapper
Relative Neighbourhood Graph Editing RNG [35] Editing—Filter
Reduced Nearest Neighbour RNN [38] Condensation—Filter
Steady-State Memetic Algorithm SSMA [47] Hybrid—Wrapper
Fuzzy Rough Instance Selection FRIS [29] Editing—Filter
Table 6 Table 7
Average results of the four FRPS methods in Table 1, using 1NN. Comparison between the four FRPS algorithms in Table 1 with respect to test
accuracy and Cohen's kappa. An acc sign (resp. <) means that the method in the row
Method acc Kappa Time Red outperforms the method in the column with respect to classification accuracy
(resp. Cohen's kappa). Results are obtained with TNN.
FRPS-1 0.7804 0.5713 20.219 0.2972
FRPS-2 0.7893 0.5898 37.273 0.3568 Method FRPS-1 FRPS-2 FRPS-3 FRPS-4
FRPS-3 0.7868 0.5824 21.571 0.3915
FRPS-4 0.7920 0.5942 27.638 0.3557 FRPS-1
FRPS-2 K acc K
FRPS-3
FRPS-4 K acc

each version corresponding to a different « measure describing the
lack of predictive ability of the instances:

® FRPS-1 uses the Ty, or Tp t-norm to aggregate the similarities of
the separate attributes.

® FRPS-2 uses the Ty, or Tp t-norm to aggregate the similarities of
the separate attributes and uses an OWA aggregator to general-
ize the maximum.

o FRPS-3 uses the T; t-norm to aggregate the similarities of the
separate attributes.

® FRPS-4 uses the T; t-norm to aggregate the similarities of the
separate attributes and uses an OWA aggregator to generalize
the maximum.

The results of the Wilcoxon test are shown in Table 7. A « sign
means that the algorithm in the row outperforms the algorithm in
the column at the 10% significance level with respect to Cohen's
kappa, an acc sign means that the algorithm in the row outper-
forms the algorithm in the column with respect to accuracy. An
empty table cell indicates that the algorithm in the row and
column do not significantly differ from each other, in this case the
p-value is higher than 0.10. From these tables, we can draw two
conclusions:

1. The OWA approach is beneficial: FRPS-2 performs better than
FRPS-1 and FRPS-3 with respect to both accuracy and
Cohen's kappa.

2. The running time of the approaches using T; as a t-norm is
lower than those using the Tp or Tj; t-norm.

Based on these conclusions, we decide to use FRPS-4 and we will
refer to this method as FRPS in the remainder of this work.

Next, we compare the FRPS algorithm to each of the state-of-
the-art algorithms in Table 5. In Table 8, we show the average
results of all methods, ordered according to their performance.
The algorithms that obtain the best behaviour with respect to both
reduction and accuracy are the hybrid techniques RMHC, CHC and
SSMA. However, the significant improvement in the accuracy rate
these methods achieve comes with a high computation cost.
The methods that are less accurate but that show a great reduction
of time complexity are DROP3 and CCIS. If the objective is the
accuracy rate, the best results are achieved with FRPS and RNG as
the editing method and with HMNEI as a hybrid method. When
the key factor is reduction, FCNN is the highlighted one, being one
of the fastest condensation methods. The reduction rate of FRPS is,
as expected, not high, and is similar to that of the other editing PS
algorithms. The running time of FRPS is average: FRPS is much
faster than the other wrapper methods, but slower than some of
the filter methods. This is remarkable; FRPS is a wrapper method,
but the decremental nature of FRPS allows one to implement it
efficiently, which results in a relatively low running time.

In order to show the statistical significance of the good perfor-
mance of FRPS with respect to test accuracy and Cohen's kappa, we
perform the Wilcoxon test to compare FRPS to each of the state-of-
the-art PS algorithms. The statistics of this test are given in Table 9.
Both the R+ and R- values are given, as well as the asymptotic
p-values. For Cohen's kappa, the asymptotic p-value is lower than
0.10 for all comparisons, so we can state that FRPS significantly
outperforms all state-of-the-art algorithms with respect to Cohen's
kappa. For the accuracy, only the p-value for the comparison with
RNG is larger than 0.10, so FRPS significantly outperforms all state-
of-the-art algorithms apart from RNG with respect to accuracy.



N. Verbiest et al. / Pattern Recognition 46 (2013) 2770-2782 2779

Table 8
Average results of FRPS and the state-of-the-art PS algorithms, using 1NN.

Test acc. Kappa Red Time

FRPS 0.7920 FRPS 0.5942 CHC 0.9785 POP 0.0620
SSMA 0.7819 SSMA 0.5743 SSMA 0.9539 CNN 0.3626
CHC 0.7799 RMHC 0.5724 MCNN 0.9352 FCNN 1.1057
RNG 0.7798 HMNEI 0.5700 GGA 0.9302 MCNN 1.4932
RMHC 0.7792 CHC 0.5669 RNN 0.9289 B3 21922
GGA 0.7762 RNG 0.5662 CCIS 0.9202 MSS 2.6236
ModelCS 0.7740 GGA 0.5632 CPruner 0.9075 FRIS 2.7999
HMNEI 0.7701 ModelCS 0.5632 RMHC 0.9011 CCIS 4.1368
AIIKNN 0.7678 FRIS 0.5450 DROP3 0.8462 ModelCS 5.1000
FRIS 0.7590 AIIKNN 0.5421 ICF 0.7509 AIIKNN 8.1249
POP 0.7576 POP 0.5376 B3 0.7190 HMNEI 9.5758
MENN 0.7541 MSS 0.5250 FCNN 0.6639 CPruner 11.6989
RNN 0.7520 MENN 0.5217 CNN 0.6177 MENN 12.2071
MSS 0.7497 FCNN 0.5139 Reconsistent 0.5878 ICF 30.5873
FCNN 0.7391 B3 0.5125 HMNEI 0.5428 FRPS 32.8760
B3 0.7389 CNN 0.5122 MSS 0.4739 DROP3 52.8063
CNN 0.7381 RNN 0.5121 MENN 0.4519 Reconsistent 534.3105
DROP3 0.7142 Reconsistent 0.4714 FRPS 0.3557 RNG 616.3506
Reconsistent 0.7124 DROP3 0.4686 AIIKNN 0.3174 SSMA 2084.4480
CPruner 0.6991 MCNN 0.4410 RNG 0.2080 CHC 2244.7833
CCIS 0.6979 CCIS 0.4396 FRIS 0.1265 RMHC 3962.0403
MCNN 0.6842 ICF 0.4209 ModelCS 0.1109 GGA 7022.4551
ICF 0.6824 CPruner 0.3918 POP 0.0732 RNN 8030.2003

Table 9

Comparison of the state-of-the-art algorithms with FRPS, with respect to accuracy and Cohen's kappa, using 1NN.

FRPS vs acc K

Method R+ R— Asymptotic p-value R+ R— Asymptotic p-value
AlIKNN 1283.5 369.5 0.000267 1334.0 319.0 0.000053
CCIS 1583.5 69.5 0 1613.5 97.5 0

CHC 1073.0 580.0 0.049482 1126.0 527.0 0.017146
CNN 1615.0 96.0 0 1465.0 246.0 0.000002
CPruner 1588.5 64.5 0 1619.0 34.0 0

DROP3 1706.0 5.0 0 1641.0 70.0 0

FCNN 1588.0 123.0 0 1452.0 259.0 0.000004
GGA 1219.0 434.0 0.001775 1252.0 459.0 0.002114
HMNEI 1265.0 388.0 0.000487 1159.0 552.0 0.018475
B3 1613.0 98.0 0 1500.0 211.0 0.000001
ICF 1708.0 3.0 0 1696.0 15.0 0

MCNN 1653.0 58.0 0 1587.0 124.0 0

MENN 1330.5 380.5 0.000232 1388.0 323.0 0.000037
ModelCS 1345.5 365.5 0.00014 1157.5 495.5 0.008378
MSS 1562.5 90.5 0 1435.5 275.5 0.000007
POP 1483.5 169.5 0 1278.5 374.5 0.000324
Reconsistent 1703.0 8.0 0 1616.0 95.0 0

RMHC 1136.0 575.0 0.029428 1139.0 572.0 0.02789
RNG 1007.0 704.0 0.239261 1104.0 607.0 0.053874
RNN 1581.0 130.0 0 1508.0 203.0 0

SSMA 1081.0 572.0 0.042762 1137.0 574.0 0.029011
1NN 1508.5 144.5 0 1363.0 290.0 0.00002
FRIS 1437.0 274.0 0.000007 1357.5 353.5 0.0001

However, when using the Wilcoxon test for multiple pairwise
comparisons, we lose control on the family-wise error rate, this is
the probability of making one or more false discoveries among all
the hypotheses [66]. Therefore, we also use the Friedman test and
Holm post hoc procedure, specifically designed for comparing
multiple algorithms, to show the good performance of FRPS.

We perform the Friedman test and Holm post hoc procedure
only for the nine best scoring algorithms with respect to test
accuracy and Cohen's kappa, as these procedures may lose power
if one compares too many algorithms [66]. The Friedman rankings
are given in Table 10. For both accuracy and Cohen's kappa, FRPS
obtains the best ranking. Next, we perform the Holm post hoc
procedure to compare FRPS with each of the other PS algorithms.

Table 10
Results of the Friedman test: the Friedman rankings are given for both the
comparison with respect to accuracy and Cohen's kappa, using 1NN.

Algorithm Ranking w.r.t acc. Ranking w.r.t «
AIIKNN 5.7328 6.0776
CHC 4.8879 5.4655
GGA 5.6983 5.9224
HMNEI 5.3017 4.5086
ModelCS 5.3448 5.0862
RMHC 5.4224 5.1897
RNG 3.8707 4.3966
SSMA 4.9914 4.8448
FRPS 3.75 3.5086
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Table 11

Adjusted p-values of the Holm post hoc procedure. The FRPS method is compared
against each of the algorithms in the first column and the corresponding p-value is
given in column 2 for the comparison with respect to accuracy and in column
3 with respect to Cohen's kappa. Results are obtained using the 1NN classifier.

FRPS VS Phoim acc Pholmk

AIIKNN 0.000773 0.000004
GGA 0.000893 0.000014
RMHC 0.006041 0.004739
ModelCS 0.008562 0.007685
HMNEI 0.009115 0.098509
SSMA 0.043936 0.025805
CHC 0.050493 0.000714
RNG 0.812407 0.098509

Table 12

Average results of FRPS and the state-of-the-art PS algorithms, using 3NN.

Test acc. Kappa
FRPS 0.784357 FRPS 0.583008
ModelCS 0.783636 ModelCS 0.579932
RNG 0.78257 HMNEI 0.568039
RMHC 0.772238 RNG 0.567519
HMNEI 0.769689 POP 0.555516
POP 0.769608 RMHC 0.55417
AIIKNN 0.769205 FRIS 0.545045
GGA 0.764862 AlIKNN 0.539715
SSMA 0.764677 GGA 0.539556
FRIS 0.758969 SSMA 0.537683
MSS 0.752465 MSS 0.529244
MENN 0.750534 CNN 0.521819
CHC 0.746067 FCNN 0.518912
RNN 0.745975 MENN 0.504962
CNN 0.745906 CHC 0.497511
FCNN 0.744242 Reconsistent 0.495426
Reconsistent 0.729242 RNN 0.495111
IB3 0.717835 IB3 0.468368
ICF 0.703723 DROP3 0.443813
DROP3 0.69675 ICF 0.443687
CPruner 0.689395 CCIS 0.371281
CCIS 0.663074 CPruner 0.370772
MCNN 0.640596 MCNN 0.366144
Table 13

The adjusted p-values are given in Table 11. We see that all
algorithms except for RNG are significantly worse than FRPS with
respect to test accuracy. For Cohen's kappa, FRPS clearly performs
better than all other considered PS algorithms.

4.2.2. Results using 3NN as a classifier

In this section we discuss the performance of FRPS applied as
preprocessing method for the 3NN classifier. In Table 12 we show
the average results over all datasets. We do not list the reduction
rate and execution time because they are the same as for 1NN.
On average, FRPS is the best performing PS method with respect to
accuracy and Cohen's kappa. To test the significance of this result,
we performed the Wilcoxon test to compare FRPS with the other
methods. The values of the statistics are given in Table 13. None of
the considered PS methods outperforms FRPS and FRPS outper-
forms most of the other PS methods with respect to accuracy and
Cohen's kappa. Only MoCS, RMHC and RNG are not significantly
worse than FRPS with respect to both accuracy and Cohen's kappa.

From this we conclude that FRPS works not as well for 3NN as
for 1NN, but it is still a good idea to use FRPS for 3NN: it is a fast
method and none of the other PS methods outperforms it with
respect to accuracy or Cohen's kappa.

5. Conclusion and future work

In this paper we have presented a new Prototype Selection
method, FRPS. This preprocessing method is designed to only
retain instances with good predictive ability and aims to improve
k NN classification. We have done this by extending the existing
FRIS method by building a wrapper around it. In order to keep
the running time of this wrapper under control and to obtain a
good accuracy, we have introduced the minimal granularity
theorem. The OWA operator is used to refine the final algorithm.
An experimental study that compares FRPS to 22 state-of-the-art
Prototype Selection algorithms on 58 datasets shows its good
performance.

Comparison of the state-of-the-art algorithms with FRPS, with respect to accuracy and Cohen's kappa, using 3NN.

FRPS vs acc K

R+ R— Asymptotic P-value R+ R— Asymptotic P-value
AlIKNN 1099.0 612.0 0.058385 12215 489.5 0.004507
CCIS 1549.0 104.0 0 1576.0 77.0 0
CHC 1217.5 493.5 0.005007 1266.0 387.0 0.000472
CNN 1530.0 181.0 0 1416.0 295.0 0.000014
CPruner 1601.0 52.0 0 1641.0 12.0 0
DROP3 1598.0 113.0 0 1551.0 160.0 0
FCNN 1498.0 155.0 0 1390.0 263.0 0.000007
GGA 1090.0 621.0 0.068306 1182.5 528.5 0.011146
HMNEI 1141.5 569.5 0.026396 1010.0 701.0 0.230115
B3 1609.5 101.5 0 1568.0 143.0 0
ICF 1537.0 174.0 0 1569.0 142.0 0
MCNN 1678.0 33.0 0 1657.0 54.0 0
MENN 1202.0 509.0 0.007162 1367.5 3435 0.000072
ModelCS 979.0 732.0 0.336562 968.0 685.0 0.259227
MSS 1362.0 291.0 0.000019 1333.0 378.0 0.000215
POP 1193.0 460.0 0.003547 1152.0 559.0 0.021478
Reconsistent 1529.5 181.5 0 1462.0 249.0 0.000003
RMHC 957.0 696.0 0.297958 1047.0 664.0 0.137139
RNG 812.0 841.0 1 988.0 723.0 0.303136
RNN 1373.0 280.0 0.000014 1527.0 184.0 0
SSMA 1108.0 545.0 0.024911 1182.0 471.0 0.004677
3NN 1203.5 507.5 0.006755 1167.0 544.0 0.015709
FRIS 1385.0 326.0 0.000041 1289.0 422.0 0.00077
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In order to improve the reduction rate of the FRPS algorithm,
we plan to combine it with condensation methods in order to
develop a hybrid Fuzzy Rough Prototype Selection algorithm.

Furthermore, as k NN is not only susceptible to noise on the
instance level, we want to combine FRPS with feature selection.
As FRPS is a wrapper method, it uses the 1NN method and hence it
might suffer from low quality features as well. This means that
first performing FRPS and then feature selection does not solve the
problem. On the other hand, many feature selection methods are
susceptible to noisy data, which means that first performing
feature selection and then FRPS is no solution either. Therefore,
we want to develop an algorithm that simultaneously performs
feature and instance selection in the future.
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