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The existing methods for graph-based data mining (GBDM) follow the basic approach of
applying a single-objective search with a user-defined threshold to discover interesting
subgraphs. This obliges the user to deal with simple thresholds and impedes her/him
from evaluating the mined subgraphs by defining different “goodness” (i.e., multiobjec-
tive) criteria regarding the characteristics of the subgraphs. In previous papers, we defined
a multiobjective GBDM framework to perform bi-objective graph mining in terms of sub-
graph support and size maximization. Two different search methods were considered with
this aim, a multiobjective beam search and a multiobjective evolutionary programming
(MOEP). In this contribution, we extend the latter formulation to a three-objective frame-
work by incorporating another classical graph mining objective, the subgraph diameter. The
proposed MOEP method for multiobjective GBDM is tested on five synthetic and real-world
datasets and its performance is compared against single and multiobjective subgraph min-
ing approaches based on the classical Subdue technique in GBDM. The results highlight
the application of multiobjective subgraph mining allows us to discover more diversified
subgraphs in the objective space.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Many applications that contain complicated structures and relational objects rely on a graph-based data representa-
tion [1,2]. Some examples include scientific information analysis [3], bioinformatics [4], transportation networks [5], web
data analysis [6], among others. Subgraph mining in graph-based data is the process of discovering subgraphs subject to
some objective function. It usually involves applying some user-defined threshold, such as mining subgraphs whose fre-
quency is above a specified threshold. For this task, several algorithms have been introduced in the graph-based data
mining (GBDM) literature, starting with the classical heuristic search-based Subdue method [7] and being followed by some
well-known exact search methods such as Gaston, gSpan, FSG, etc., [2,8]. Recently, evolutionary programming [9] has also
been applied for frequent subgraph mining [10,11]. The proposal was basically an extension of Subdue and showed an im-
proved performance over it. The performance improvement was a consequence of the use of global search instead of the
beam search [12] with no backtracking as applied by the standard Subdue method in the subgraph search space.

Recently some important limitations of the existing approaches that operate by using simple user-defined constraints on
the mined subgraphs have been highlighted in [5]. In addition, several authors [4,13–16] have noted that only employing
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the frequency-based subgraph discovery is not much interesting to properly solve some real-world applications. A good
methodology should consider additional objectives as the complexity of the subgraphs being mined and their diversity.
Taking into this consideration, a few approaches that perform multiobjective subgraph mining have been proposed [4,5,
17–20].

Multiobjective subgraph mining has been termed as multiobjective GBDM [4,17,20] or skyline processing [5]. The method
proposed by Papadopoulos et al.’s [5], SkyGraph, employs two specific objectives, the order and the edge connectivity of the
subgraph, to generate the Pareto-optimal subgraphs. However, the drawback of SkyGraph is that it is problem-specific, i.e.,
the algorithm design is characterized by the latter objective. Romero-Zaliz et al. [4] introduced the EMO-CC methodology
(Evolutionary Multiobjective Optimization-based Conceptual Clustering) for the Gene Ontology domain. The method has
solved a bi-objective problem using the support and the size of the mined subgraphs as objectives. However, EMO-CC has
the important limitation of not being able to deal with general graphs, where a node may have several parents. Finally,
MOSubdue (Multi-Objective Subdue), a Pareto dominance-based multiobjective subgraph mining algorithm, was developed
by the authors in [17,21]. MOSubdue has performed multiobjective beam search using two objectives, support and size. It
was also applied for a three-objective subgraph mining task by considering another objective, the density. MOSubdue is a
general purpose multiobjective subgraph mining method, but it has the important limitation that its beam search does not
allow backtracking in the subgraph search space.

Aiming to solve all these drawbacks, the authors also introduced in [18–20] a Multiobjective Evolutionary Propgramming
(MOEP)-based approach to perform global search in the multiobjective subgraph solution space, thus allowing the user to
obtain a good approximation to the Pareto-optimal subgraph set at a reasonable computational effort. An individual in the
MOEP population is a subgraph in the input graph dataset. The input data is a set of connected relational graphs with or
without cycles and directed or undirected edges. The individual is evaluated using two objectives, support and size of the
subgraph. At any generation, parent individuals give rise to child individuals only through mutation, and subsequently the
next generation is selected from the collection of parent and child individuals.

In this paper, we further extend the application of the latter MOEP-based GBDM method to solve a three-objective
subgraph mining problem. An individual is evaluated using three objectives, namely, support, size, and diameter of the
subgraph. The three-objective problem formulation is tested on two synthetic and three real-world datasets from the area
of scientific information analysis [3]. The performance of MOEP is compared with single-objective Subdue, EP-Subdue, and
MOSubdue algorithms. The comparison based on the different performance metrics (C-metric and HVR-metric) [22–24] shows
superior performance of the multiobjective methods, and in particular of MOEP in the real-world graph datasets.

The paper is organized as follows. Section 2 defines the multiobjective subgraph mining problem. Section 3 describes the
MOEP-based method for multiobjective subgraph mining. Section 4 discusses results of an experimental study and finally
Section 5 provides conclusions and future works.

2. Multiobjective subgraph mining problem

In this section, we first give some basic definitions of the different objectives considered and then describe our multiob-
jective subgraph mining task.

2.1. Definitions

A labeled connected graph G is denoted by a set of nodes V (G) and a set of edges E(G), where there is an edge el
between every pair of nodes (vi, v j). Each node vi ∈ V (G) has a label from the node label set LV , and each edge el ∈ E(G)

that connects two nodes vi, v j has a label from the edge label set LE . The edge el can be directed or undirected. In this
work, we consider a set of connected graphs G = {G1, G2, . . . , Gn}.

In this study, we have used some of the commonly used preferences (or objectives) to evaluate a subgraph S ∈ G which
are given below as:

Definition 1 (Support of subgraph S). The support or (frequency) of subgraph S denoted by sup(S) in the graph dataset G is
the cardinality of the set {Gi |S ⊆ Gi, i = 1, . . . ,n}.

Definition 2 (Size of subgraph S). The size of subgraph S denoted by size(S) is the number of nodes and edges present in the
subgraph S .

Definition 3 (Diameter of subgraph S). The diameter of subgraph S denoted by dia(S) is the greatest distance between any
pair of nodes. It is measured as the number of edges (or links) between the furthest nodes (vi, v j ) in the subgraph S . In
this study it is evaluated using the Dijkstra’s algorithm [25].

These objectives have been commonly applied in the frequent subgraph mining literature primarily to guide single-
objective search methods by posing some threshold in the mining process [26–28].

The frequent subgraph mining problem is commonly modeled using a subgraph lattice [8]. Fig. 1 represents a subgraph
lattice for a toy graph dataset G = {G1, G2, G3}. The subgraph lattice in Fig. 1 models the search space in the dataset G as
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Fig. 1. A subgraphs lattice of the graph dataset G = {G1, G2, G3}. (The figure based on a similar figure presented in Jiang et al. [29].)

follows. The top of the lattice, i.e., level 0, represents the empty subgraph labeled with *. The first level shows all possible
single node subgraphs containing just one node with zero edges. The second level of the lattice lists subgraphs with one
edge, and so on. At the bottom of the lattice, graphs in the dataset G are shown. Frequent subgraph mining problem
can be formulated as finding the embedding subgraphs in the lattice. For example, a subgraph in level 1 with just single
node labeled as A can be embedded in two single edge subgraphs in the level 2 having other nodes labeled as B and C,
respectively. In Fig. 1, the subgraph A–C in level 2 is a parent of the subgraph B–A–C in level 3 of the lattice as the subgraph
B–A–C is different from the subgraph A–C by exactly one edge. Thus, the subgraph B–A–C is a child of the subgraph A–C.
All the subgraphs of Gi ∈ G are present in the lattice and every subgraph occurs only once in it.

2.2. Problem formulation

The multiobjective subgraph mining problem tackled in this contribution is defined considering a general definition of
multiobjective optimization problems [22,30,31]. In our case, a solution is a subgraph S , a set of nodes and edges, and the
solution space is the subgraph lattice (e.g. Fig. 1). The subgraph S is evaluated considering d different objectives on the
subgraph’s characteristics, such as the support, the size, etc., which are conflicting among them. For example, a subgraph
with a high support is usually of a small size and vice-versa. As an example, consider two subgraphs A–B and B–A–C in the
subgraph lattice space depicted in Fig. 1. The subgraph A–B in level 2 is of size three (two nodes and one edge) and has a
support of four being embedded in as many subgraphs in level 3. On the other hand, the subgraph B–A–C in level 3 is of
size five and has a support of two in level 4. Clearly, these objective functions, the support and the size of the subgraph,
are competing in nature.

Formally, we give a problem definition for multiobjective GBDM as follows. Given a graph dataset G , mine the Pareto-
optimal subgraphs representing all the connected subgraphs in G defined by three user-defined objectives:

F (S) = (
f1(S), f2(S), f3(S)

)
(1)

where

f1 = Max. support, sup(G, S) = #N(Gi|S ⊆ Gi, i = 1, . . . ,n)

f2 = Max. size, size(S) = #V (S) + #E(S)

f3 = Min. diameter, dia(S) = # maxvi ,v j∈V (S) d(vi, v j)

subject to

S ∈ X (2)

F (S) ∈ Y (3)

where #N(.) is the number of graphs in G which contains the subgraph S . #V (.) and #E(.) return the number of nodes and
edges of the subgraph S , respectively. In the diameter function, dia(S), the distance between any two vertices, d(vi, v j), is
the number of edges of the shortest path between vi and v j . X is the subgraph search space, and Y is the objective space.
The objectives used in this study are clearly conflicting in nature. For example, maximization of the size objective directs
the search to find large subgraphs while minimization of the diameter objective aims to find small dense subgraphs.
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Solution to the problem in Eq. (1) is a set of optimal subgraphs in X , which represent different trade-offs in the objec-
tive space Y . To compare any pair of subgraphs, we apply the well-known concept of dominance [22,30,31]. For simplicity,
we consider maximization of all the objectives. For this purpose, we convert a minimization of an objective function (i.e.,
diameter, in our case) into the maximization of another one by taking its opposite value. Suppose, we have two objective
vectors u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ Y , corresponding to the subgraphs S1, S2 ∈ X , respectively. u is said to domi-
nate v (denoted by u � v) if u is greater than or equal to v in all objectives, and is strictly greater than v in at least one
objective, i.e., ∀i ∈ {1,2, . . . ,d}: ui � vi ∧ ∃ j ∈ {1,2, . . . ,d}: u j > v j . This definition can also be applied for minimization or
any condition of objectives.

The subgraph S ∈ X with objective vector u is said to be Pareto-optimal with respect to the search space X iff there is
no subgraph S ′ ∈ X with objective vector u′ that dominates S . For the multiobjective subgraph mining problem in Eq. (1),
the Pareto-optimal set P is defined as:

P := {
S ∈ X

∣∣ ¬∃ S ′ ∈ X F (S) � F
(

S ′)} (4)

and the Pareto-optimal front PF associated with the Pareto-optimal set P is defined as:

PF := {
F (S) = (

f i(S), . . . , fd(S)
) ∣∣ S ∈ P

}
(5)

For the problem in Eq. (1), the algorithm produces a set of nondominated or Pareto subgraphs P and the corresponding
nondominated front PF . PF is also called the Pareto, approximation, or efficient front.

3. Multiobjective evolutionary programming for subgraph mining

Recently a MOEP-based approach for a bi-objective subgraph mining was proposed in [18–20]. Two different MOEP
methods were implemented based on the use of two different selection mechanisms for the individuals in the population
at any generation. The first method, MOEP-NS, used NSGA-II’s nondominated sorting (NS) approach [32], while the second
method, MOEP-SO, applied the summation of objectives (SO) approach [33]. The comparison of results on several graph
datasets has shown superior performance of MOEP-SO [20]. Therefore, in this study, we will apply MOEP-SO for our three-
objective subgraph mining problem.

In MOEP-SO, an individual in the population R is represented as a possible subgraph S in the graph dataset G . R is
a set of subgraphs S1, Si, . . . , S |R| ∈ X , where Si is a connected subgraph within the graphical representation for all those
subgraph instances in G that match to the subgraph S . This graphical representation serves as a solution to the problem
defined in Eq. (1). Thus, an individual in the population R is always composed of a subgraph S with its associated instances
belonging to G . Consider an example depicted in Fig. 1, the subgraph A–B in level 2 has three instances in the input graph
dataset G . The different steps of MOEP-SO algorithm are given as follows.

3.1. Initialization

Initially, the population R contains randomly generated individuals. In this work, a simple procedure is applied to initial-
ize the population. First, all one-edge subgraphs are created from unique label nodes in G . These subgraphs share the same
values for two of the objectives, size (i.e., two nodes and one edge) and diameter (i.e., one link), but may have different
values for the remaining objective, support. The subgraph lattice in Fig. 1 shows all one-edge subgraphs in level 2 obtained
from five different node labels present in the input dataset G . The initial population contains subgraphs randomly selected
from these one-edge subgraphs. More sophisticated initialization procedures can also be applied that may well represent
different search space subgraphs.

3.2. Subgraph generation

To generate a child subgraph S ′ , a mutation operation is applied on a subgraph S encoded in a parent individual in the
population R . Mutation creates child instances by extending all instances of the parent subgraph S in the dataset G by an
edge (and a node if no cycle is closed). For example, the subgraph lattice in Fig. 1 shows extending the parent subgraph
A–B by an edge and node creates four children in level 3 of the subgraph lattice. A child instance is then randomly selected
that becomes a child subgraph in graphical representation. All of the child instances belonging to G that match this child
subgraph become its new instances in G . This child subgraph must have at least two instances to qualify as a child subgraph
of the parent subgraph S . Otherwise a new child instance of S will be randomly selected to form a child subgraph. This
is the most commonly used subgraph generation method in GBDM techniques [34,35]. Mutation is applied on each parent
individual in R to create the child population Q . All child subgraphs in Q are evaluated using the three objectives in Eq. (1).

3.3. Subgraph selection

For the next generation, a new parent population R is constructed by diversified selection of individuals from a tempo-
rary population R ∪ Q . To this end, in the temporary population, a range is computed for each objective as the difference



JID:YJCSS AID:2685 /FLA [m3G; v 1.93; Prn:21/03/2013; 16:19] P.5 (1-11)

P. Shelokar et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 5
1. MOEP-SO (Graph G , pop size |R|, gen MaxGen, archive size |Archive|)
2. Initial Subgraph population, R = RandomSelection(one-edge subgraphs)
3. Evaluate subgraphs in R using objective functions in Eq. (1)
4. Nondominated subgraphs archive, Archive = {}
5. Archive = UpdateArchive(Archive, R) //nondominance criteria
6. while MaxGen > 0 do
7. Child Subgraphs population, Q = {}
8. for each parent p ∈ R
9. Q = Q ∪ Mutation(p) //child generation

10. Evaluate subgraphs in Q using objective functions in Eq. (1)
11. Archive = UpdateArchive(Archive, Q )
12. Combine two populations, R ∪ Q
13. New population R = SubgraphSelection(R ∪ Q ) //summation of objectives method
14. MaxGen = MaxGen − 1
15. end while
16. Return Archive // the nondominated subgraphs set

Fig. 2. The outline of MOEP-SO algorithm.

Table 1
Description of different graph datasets used.

Dataset #Graphs #Nodes #Edges #Unique labels MOEP run time (secs)

random1 100 2954 3009 7 1742
random2 200 5876 6015 7 3075
US 10 2762 2769 294 1452
UK 10 2732 2748 292 787
Germany 10 2676 2702 284 1425

between the minimum and maximum values. Each range is then used to normalize the corresponding objective values. The
fitness of an individual is computed as the summation of the normalized objective values. A minimization of fitness value
is assumed. To select the diversified individuals from R ∪ Q , each of the objectives is selected and its range is divided into
100 bins and some 80 percent of the bins are scanned. For each non-empty bin an individual with the smallest fitness value
is chosen as an individual of the new population R .

3.4. External archive

MOEP-SO stores the nondominated subgraphs separately in an external archive Archive which is updated at the end
of each generation. Archive is updated using the subgraph set Q and the dominated subgraphs, if any, from Archive are
removed. The output of MOEP-SO is the set of nondominated subgraphs collected in Archive after the algorithm run.

The outline of the MOEP-SO algorithm is given in Fig. 2. Inputs to MOEP-SO are graph dataset G , population size |R|,
archive size |Archive|, and maximum number of generations MaxGen to perform the search.

4. Experimental study

The performance of the MOEP-SO algorithm for the tackled three-objective subgraph mining task (as defined in Sec-
tion 2.2) is analyzed by means of unary and binary metrics [22–24] and visual representations of the obtained PF approx-
imations. Five different graph datasets are considered in the experimentation developed (see Section 4.1). For comparison
purposes, we also apply single-objective Subdue [7,34] and EP-Subdue [10,11] using three different objective functions to
produce aggregated PFs on several graph datasets (see Section 4.2). Besides, MOSubdue [17] is applied for a broader per-
formance study (see Section 4.3). All the considered methods are implemented in C and all experiments are performed on
an Intel Core Quad at 2.66 GHz, with 4 GB RAM, running CentOS 5.5, using the parameter values reported in Section 4.4.
Section 4.5 collects the obtained results and the analysis developed.

4.1. Graph datasets used

The performance evaluation study is conducted using two synthetic and three real-world datasets. Table 1 summarizes
a few characteristics of the employed datasets, such as the number of nodes, the number of edges, etc. The datasets are of
different sizes and consist of varying degrees of nodes and unique labels.

The first two datasets, random1 and random2, were synthetically generated using the random graph generator available
at Subdue’s website.1 The graph generation program takes several parameters to generate the output graph. The basic

1 http://ailab.wsu.edu/subdue/datasets/subgen.tar.gz.

http://ailab.wsu.edu/subdue/datasets/subgen.tar.gz
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Fig. 3. A substructure to be embedded in random graphs. (a) shows a drawing of the substructure, and (b) highlights a graph representation for a portion
of the substructure.

Fig. 4. A scientogram of the European scientific domain in year 2002 (category names, are not shown to improve the readability).

parameters are a substructure to be embedded in the output graph and the number of nodes and edges in the final graph.
A sample substructure to be embedded is depicted in Fig. 3(a) and Fig. 3(b) shows the graph representation for a highlighted
part of the substructure in Fig. 3(a). The graph generation program used different random numbers to generate graphs with
the average number of nodes and edges equal to 60 and keeping other parameters settings to default.

The remaining three real-world datasets were generated from the world scientograms database [3]. The scientograms
database is built following de Moya-Anegón et al.’s methodology [36] to design visual science maps (scientograms) for
huge scientific publications collections. The rough considered data have been extracted from the Scimago Journal & Country
Rank portal2 and comprise a set of 36 millions documents indexed in Elsevier Scopus from 1996 to 2008 over 73 coun-
tries [36]. The nodes of the graphs correspond to Elsevier SCOPUS-SJR3 co-citation categories. Only the salient relationships
between categories are kept, capturing the essential underlying intellectual structure of the studied scientific domain, us-
ing the Pathfinder social networks algorithm [37] to prune the graphs. An example of one such scientogram is shown in
Fig. 4. Recently, this database has been extensively analyzed in [3] to propose an automatic Subdue-based approach for

2 http://www.scimagojr.com/.
3 http://www.scopus.com.

http://www.scimagojr.com/
http://www.scopus.com
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the identification and the comparison of scientific structures within scientograms. In our experimental study, we have used
three datasets compiled for United States (US), United Kingdom (UK), and Germany over the period of 10 years from 1996
to 2005.

4.2. Nondominated subgraph generation using single-objective methods

Two single-objective search methods for frequent subgraph mining were implemented. They are briefly described along
with the parameter settings in the following subsections.

4.2.1. Single-objective Subdue method
Subdue [7,34] is a classical method in GBDM. It performs a constrained beam search [12] in the subgraph search space

by defining a beam-width parameter. To evaluate a subgraph, Subdue uses a measure based on the MDL principle [38], which
assumes the best subgraph is the one that minimizes the description length of the input graph when compressed by the
subgraph [7]. An implementation of the Subdue algorithm is publicly available at Subdue’s website.4 In this work, we have
only modified the subgraph evaluation function of the Subdue algorithm. Thus, instead of the MDL measure, now Subdue
evaluates a subgraph using three different objective functions defined in Eq. (1). To obtain a nondominated set on the graph
dataset G , Subdue was executed with each of the three subgraph evaluation functions independently. The final output of
Subdue was an aggregation of three different outputs with removal of repeated subgraphs, if any, and the application of
nondominance criteria to return the nondominated subgraphs.

4.2.2. Single-objective EP-Subdue method
EP-Subdue [10,11] is a simple improvement to the constrained beam search of Subdue by maintaining a population of

subgraphs. Unlike Subdue, at any generation, this EP-Subdue method utilizes a population of subgraphs in order to explore
different regions of the subgraph search space. Except the beam search, EP-Subdue utilizes the remaining implementation
of Subdue. In this work, we have implemented EP-Subdue by modifying the Subdue implementation available at Subdue’s
website (see footnote 4). To produce a nondominated set on the graph dataset G , a single run of EP-Subdue per objective
was carried out. The final output of EP-Subdue was an aggregation of three different outputs with the removal of repeated
subgraphs, if any, and the application of nondominance criteria to return the nondominated subgraphs. In EP-Subdue, the
algorithm parameter is subgraph population size.

4.3. Multiobjective Subdue method

MOSubdue [17,21] is one of the first general-purpose multiobjective GBDM methods in the specialized literature. MO-
Subdue performs a multiobjective subgraph selection to guide Subdue’s beam search. Two different implementations of
MOSubdue were proposed in [17], where the first one is based on NSGA-II’s NS procedure was purely deterministic while
the second also incorporated crowding [21] performing stochastic search. The comparison of results of the two variants of
MOSubdue revealed a superior performance of MOSubdue with stochastic search [17]. Therefore, in this work, we have used
MOSubdue with stochastic search approach to solve 3-objective problem defined in Eq. (1). Like Subdue, MOSubdue has
beam-width as the only algorithmic parameter.

4.4. Parameter settings

Subdue is a deterministic heuristic search method. Hence, it is applied once on each dataset. Subdue’s beam search
parameter, beam-width, was set equal to 5 after a preliminary experimentation. The output of Subdue was set to return
a maximum of 100 best subgraphs corresponding to each of the three subgraph evaluation functions. These outputs were
combined and a maximum of 100 nondominated subgraphs were returned as the final output of Subdue.

EP-Subdue is a stochastic search method. Hence, it was run 10 times on each dataset with different random seeds. The
algorithm parameter, subgraph population was set to 100 and the output of EP-Subdue was set to return a maximum of 100
best subgraphs corresponding to each of the three subgraph evaluation functions. Three different outputs were combined
and a maximum of 100 nondominated subgraphs were returned as the final output of EP-Subdue.

As MOSubdue performs stochastic search, it was executed 10 times independently on each dataset. The beam-width
parameter was set to 5 after a preliminary experimentation. The output of MOSubdue was set to return a maximum of 100
nondominated subgraphs.

MOEP-SO is a pure stochastic search approach for multiobjective subgraph mining. The parameter settings were popula-
tion |R| = 100, external Pareto archive |Archive| = 100. Like MOSubdue, MOEP-SO was executed 10 times independently on
each dataset.

All the considered methods have stored the nondominated subgraphs externally with the maximum limit of 100. For
all the datasets used, none of the methods in any of their executions could produce a number of nondominated subgraphs

4 http://ailab.wsu.edu/subdue/software.

http://ailab.wsu.edu/subdue/software
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Table 2
The HVR-metric values for the nondominated sets found by different methods. The numbers in the parentheses represent the standard deviation.

Dataset Subdue EP-Subdue MOSubdue MOEP-SO

random1 0.7421 0.6955(0.01) 0.9933(0.0) 0.9456(0.0)
random2 0.7446 0.6904(0.01) 0.9902(0.0) 0.9522(0.0)
US 0.3166 0.2291(0.02) 0.4219(0.10) 0.8446(0.04)
UK 0.3636 0.2580(0.03) 0.4785(0.11) 0.8616(0.10)
Germany 0.4190 0.2678(0.02) 0.4641(0.07) 0.8291(0.05)

Average 0.5171(0.47) 0.4281(0.24) 0.6696(0.55) 0.8866(0.56)

that surpass the maximum archive size limit of 100. For safer side, all the methods used crowding measure [32] to prune
the nondominated set whenever it exceeds the limit. However, when datasets have a large number of nondominated and
repetitive subgraphs, a larger limit on the archive size could be used.

In this study, both Subdue and MOSubdue were run till exhaustion, i.e., until no subgraph growth possible, on each
dataset. To have a fair comparison between the EP-based methods and MOSubdue-II, MOEP-SO and EP-Subdue have used a
fixed run time as given in Table 1. This run time was determined from the average run time of 10 different executions of
MOSubdue for each dataset.

4.5. Experimental analysis

The performance comparison study of different algorithms for multiobjective optimization is more complex than in the
case of single-objective optimization. To this end, different unary and binary metrics are proposed in the EMO community
[22–24]. The unary metric computes some score for Pareto front approximation that reflects a certain quality aspect. Al-
though unary metrics let us determine the absolute, individual quality of the Pareto front approximation, they cannot be
used for comparing the nature of different Pareto front approximations. To do so, the binary metrics are introduced which
let us compare in pairs the different Pareto front approximations. Therefore, it is common to apply both types of metrics for
the performance study [22–24]. In this work, we have utilized the HVR-metric and the C-metric which are the most com-
monly used unary and binary metrics, respectively, in the EMO-literature [22–24]. The HVR-metric, the hypervolume ratio,
is to compare the nondominated subgraph set P produced by an algorithm with respect to the Pareto-optimal subgraph set
P . The HVR-metric is computed as the ratio of the areas/hypervolumes enclosed by the nondominated front PF and the true
Pareto-optimal front PF . For the set P , the HVR-metric value is better when it tends to one. In our experimental study,
the set P is not known beforehand for any of the employed datasets. Therefore, we have used a pseudo-optimal nondom-
inated subgraph set generated from the aggregation of the sets P produced by every method in every run. The C-metric
uses dominance criteria to compare in pairs the nondominated sets produced by different algorithms. The C-metric is also
better when it tends to one. It is computed in pair C(Z ′, Z ′′) as the fraction of the nondominated set Z ′ that covers the
nondominated set Z ′′ [23]:

C
(

Z ′, Z ′′) = |{∀S ′′ ∈ Z ′′; ∃S ′ ∈ Z ′: S ′ � S ′′}|
|Z ′′| (6)

where S ′ � S ′′ indicates that the subgraph S ′ dominates or covers the subgraph S ′′ in a maximization problem. A value of
C(Z ′, Z ′′) = 1 means that all the subgraphs in Z ′′ are dominated or covered by the subgraphs in Z ′ .

Table 2 presents the mean and standard deviation of the HVR-metric values of the nondominated set approximations
achieved by the different algorithms except Subdue for each dataset. The HVR-metric values reported for the deterministic
Subdue method are corresponding to a single run of the algorithm on each of the datasets. Table 2 also provides overall
performance of each of the methods by averaging the different HVR-metric values over the five datasets.

Fig. 5 shows the assessment of different algorithms in pairs using the C-metric. For an ordered algorithm pair (A, B),
there is a sample of 10 C-metric values according to the 10 runs performed. Each value is computed on the basis of
nondominated sets achieved by A and B with the same initial population. Note that, in case of deterministic Subdue, a
single run was performed on each dataset. Here, box-plots are used to visualize the distribution of these samples.

For illustrative purpose, Figs. 6 and 7 show the plots of the approximation set PF to the set PF achieved by different
algorithms on the US and UK datasets, respectively. The plots corresponding to Subdue are the approximations generated
by the three runs of the algorithm, each with different objective; while those corresponding to the remaining methods are
the aggregation of the results of 10 different runs with a different random seed. The fused outputs of stochastic methods
are only used for graphical representation. For the sake of a better visual representation, the PF plots are grouped into
two figures per dataset. They are grouped according to the average HVR-metric values, considering a figure for the worst
performing and another for the best performing algorithms.

The HVR-metric values in Table 2 indicate that the single-objective search methods (Subdue and EP-Subdue) on all the
datasets have produced the worst approximations to PF as compared to those achieved by the multiobjective search
methods (MOSubdue and MOEP-SO). This conclusion is further reinforced from the average value of the HVR-metric over all
the datasets, which is much lower for Subdue (0.5171) and EP-Subdue (0.4281) as compared to both multiobjective search
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Fig. 5. Box-plots based on the C -metric computed for the different methods considered. Each rectangle contains 5 box-plots representing the distribution
of the C -metric values for a certain ordered pair of algorithms. The leftmost box-plot relates to random1 dataset, the rightmost to Germany dataset.

Fig. 6. The nondominated set approximations produced by different algorithms on the US dataset. The pseudo Pareto-optimal front PF is also shown as a
reference.

methods. This confirms the incorporation of multiobjective search strategy enables the algorithm to explore more efficiently
the multiobjective subgraph search space.

The comparison of HVR-metric values in the case of the multiobjective search-based methods show that MOEP-SO is
the best performer on the three real-world datasets, while MOSubdue is superior on the two synthetic datasets. Overall,
MOEP-SO has achieved the best average HVR-metric value of 0.8866 as compared to that of 0.6696 attained by MOSubdue.
However, on the two synthetic datasets MOEP-SO has shown somewhat inferior performance as against MOSubdue.

Further comparing the C-metric values of the different methods, Fig. 5 also confirms that the PF approximations achieved
by the multiobjective search-based methods have more coverage over those obtained by the single-objective search-based
methods. The comparison between MOEP-SO and MOSubdue reveals that MOEP-SO has outperformed MOSubdue in terms of
coverage on the three real-world datasets. As against, MOSubdue has again attained the best coverage on the two synthetic
datasets.
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Fig. 7. The nondominated set approximations produced by different algorithms on the UK dataset. The pseudo Pareto-optimal front PF is also shown as a
reference.

In addition, the graphical representations in Figs. 6 and 7 show the superior performance of MOEP-SO and MOSubdue
methods. Comparing the plots of MOEP-SO and MOSubdue methods, it can be seen how MOEP-SO attained a wider spread
of subgraphs on the set P .

Finally, we performed an in depth analysis of the subgraph generation process of MOEP-SO on the synthetic datasets
in order to get some insights into the inferior performance of MOEP-SO on these datasets. At the beginning of the search
process, a parent subgraph has several repetitive instances in a graph of the dataset. As against, the definition of the
objective support assumes just one occurrence (and no repetition) in any graph of the dataset. The different repetitive
instances of the subgraph bring huge redundancy in the mutation operation for a child generation. The current definition
of the objective support fails to take into account this redundancy during subgraph selection. Thus, a new definition of
the objective support is needed to apply MOEP-SO efficiently and effectively in such scenarios. Note that, in the real-world
scientogram datasets, a parent subgraph has no repetitive instances in a graph of the dataset and thus there is no such
additional redundancy in the mutation operation for a child generation.

5. Conclusions

This contribution has successfully shown the application of MOEP for a three-objective subgraph mining problem. The
performance of the proposed multiobjective GBDM method has been tested on five datasets and compared against single-
and multiobjective Subdue-based methods. On all the datasets, the multiobjective subgraph mining methods have shown
superior performance over the single-objective ones. The results confirm the application of multiobjective subgraph mining
can discover more diversified subgraphs in the objective space. Overall, MOEP-SO is the best performer followed by MOSub-
due. Nevertheless, we should remark that MOSubdue outperformed MOEP-SO on the two synthetic graph datasets. To this
end, a new definition of the objective support is required to handle the subgraph selection pressure in the presence of sub-
graphs with repetitive instances in a graph of the input dataset. Future studies will also include a few more formulations of
the multiobjective subgraph mining problem, a performance study on large scale datasets, and the development of a genetic
algorithm for multiobjective subgraph mining.

Acknowledgments

This work has been partially supported by the Spanish Ministry of Science and Innovation (MICINN) under project
TIN2009-07727, including EDRF fundings. The first author acknowledges the partial support received from MICINN under
the Juan de la Cierva programme JCI-2010-07626.

References

[1] C. Aggarwal, H. Wang (Eds.), Managing and Mining Graph Data, Springer, 2010.
[2] D. Cook, L. Holder (Eds.), Mining Graph Data, Wiley, London, 2007.
[3] A. Quirin, Ó. Cordón, B. Vargas-Quesada, F. de Moya-Anegón, Graph-based data mining: A new tool for the analysis and comparison of scientific

domains represented as scientograms, J. Informetr. 4 (2010) 291–312.
[4] R.C. Romero-Zaliz, C. Rubio-Escudero, J.P. Cobb, F. Herrera, Ó. Cordón, I. Zwir, A multiobjective evolutionary conceptual clustering methodology for gene

annotation within structural databases: A case of study on the gene ontology database, IEEE Trans. Evol. Comput. 12 (2008) 679–701.
[5] A. Papadopoulos, A. Lyritsis, Y. Manolopoulos, SkyGraph: An algorithm for important subgraph discovery in relational graphs, Data Min. Knowl. Dis-

cov. 17 (2008) 57–76.
[6] A.J. Lee, Y.-A. Chen, W.-C. Ip, Mining frequent trajectory patterns in spatial–temporal databases, Inform. Sci. 179 (2009) 2218–2231.
[7] D.J. Cook, L.B. Holder, Substructure discovery using minimum description length and background knowledge, J. Artificial Intelligence Res. 1 (1994)

231–255.



JID:YJCSS AID:2685 /FLA [m3G; v 1.93; Prn:21/03/2013; 16:19] P.11 (1-11)

P. Shelokar et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 11
[8] I. Fischer, T. Meinl, Graph based molecular data mining – An overview, in: W. Thissen, P. Wieringa, M. Pantic, M. Ludema (Eds.), Proc. IEEE Int. Conf.
Systems, Man & Cybernetics, vol. 5, pp. 4578–4582.

[9] D. Fogel, System Identification through Simulated Evolution: A Machine Learning Approach to Modeling, Ginn Press, 1991.
[10] S. Bandyopadhyay, U. Maulik, D.J. Cook, L.B. Holder, Y. Ajmerwala, Enhancing structure discovery for data mining in graphical databases using evolu-

tionary programming, in: Int. Conf. Florida Artificial Intelligence Research Society (FLAIRS), 2002, pp. 232–236.
[11] U. Maulik, Hierarchical pattern discovery in graphs, IEEE Trans. Syst. Man Cybern. C 38 (2008) 867–872.
[12] B.T. Lowerre, The HARPY speech recognition system, PhD thesis, Carnegie Mellon University, Pittsburgh, 1976.
[13] D. Cook, L. Holder, S. Su, R. Maglothin, I. Jonyer, Structural mining of molecular biology data, IEEE Eng. Med. Biol. 20 (2001) 67–74.
[14] E. Ruspini, I. Zwir, Automated generation of qualitative representations of complex object by hybrid soft-computing methods, in: S. Pal, A. Pal (Eds.),

Pattern Recognition: From Classical to Modern Approaches, World Scientific Company, 2001, pp. 453–474.
[15] I. Zwir, R. Romero-Zaliz, E. Ruspini, Automated biological sequence description by genetic multiobjective generalized clustering, in: F. Valafar (Ed.),

Techniques in Bioinformatics and Medical Informatics, in: Ann. New York Acad. Sci., vol. 980, 2002, pp. 65–82.
[16] R. Romero-Zaliz, I. Zwir, E. Ruspini, Generalized analysis of promoters (GAP): A method for DNA sequence description, in: C.A. Coello, G.B. Lamont

(Eds.), Applications of Multi-Objective Evolutionary Algorithms, vol. 1, World Scientific Company, 2004, pp. 427–450.
[17] P. Shelokar, A. Quirin, Ó. Cordón, MOSubdue: A Pareto dominance-based multiobjective Subdue algorithm for frequent subgraph mining, Knowl. Inf.

Syst. 34 (2013) 75–108.
[18] P. Shelokar, A. Quirin, Ó. Cordón, Subgraph mining in graph-based data using multiobjective evolutionary programming, in: Proc. IEEE Conf. Evolution-

ary Computation (CEC’11), 2011, pp. 1730–1737.
[19] P. Shelokar, A. Quirin, Ó. Cordón, MOEP-SO: A multiobjective evolutionary programming algorithm for graph mining, in: Int. Conf. Intelligent System

Design and Application (ISDA’11), 2011, pp. 219–224.
[20] P. Shelokar, A. Quirin, Ó. Cordón, A multiobjective evolutionary programming framework for graph-based data mining, Inform. Sci. (2013), in press,

http://dx.doi.org/10.1016/j.ins.2013.02.014.
[21] P. Shelokar, A. Quirin, Ó. Cordón, A multiobjective variant of the Subdue graph mining algorithm based on the NSGA-II selection mechanism, in: Proc.

IEEE Conf. Evolutionary Computation (CEC’10), 2010, pp. 463–470.
[22] C.A. Coello, G.B. Lamont, D.A.V. Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, Berlin, 2007.
[23] E. Zitzler, L. Thiele, K. Deb, Comparison of multiobjective evolutionary algorithms: Empirical results, IEEE Trans. Evol. Comput. 8 (2000) 173–195.
[24] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, V. da Fonseca, Performance assessment of multiobjective optimizers: An analysis and review, IEEE Trans.

Evol. Comput. 7 (2003) 117–132.
[25] E. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269–271.
[26] H. Hu, X. Yan, Y. Huang, J. Han, X. Zhou, Mining coherent dense subgraphs across massive biological networks for functional discovery, Bioinformat-

ics 21 (2005) i213–i221.
[27] T. Falkowski, A. Barth, M. Spiliopoulou, Dengraph: A density-based community detection algorithm, in: IEEE/WIC/ACM Int. Conf. Web Intelligence, IEEE

Computer Society, Los Alamitos, CA, USA, 2007, pp. 112–115.
[28] N. Shrivastava, A. Majumder, R. Rastogi, Mining (social) network graphs to detect random link attacks, in: Proc. IEEE Conf. Data Engineering (ICDE’08),

2008, pp. 486–495.
[29] C. Jiang, F. Coenen, M. Zito, A survey of frequent subgraph mining algorithms, Knowl. Eng. Rev. 28 (2013) 75–105.
[30] V. Chankong, Y.Y. Haimes, Multiobjective Decision Making Theory and Methodology, North-Holland, Amsterdam, 1983.
[31] T. Gal, T. Stewart, T. Hanne (Eds.), Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory and Applications, Kluwer Academic,

Dordrecht, 1999.
[32] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182–197.
[33] B. Qu, P. Suganthan, Multi-objective evolutionary algorithms based on the summation of normalized objectives and diversified selection, Inform.

Sci. 180 (2010) 3170–3181.
[34] D. Cook, L. Holder, Graph-based data mining, IEEE Intell. Syst. 15 (2000) 32–41.
[35] X. Yan, J. Han, gSpan: Graph-based substructure pattern mining, in: Proc. IEEE Conf. Data Mining (ICDM’02), 2002, pp. 721–724.
[36] B. Vargas-Quesada, F. de Moya-Anegón, Visualizing the Structure of Science, Springer-Verlag New York, Secaucus, 2007.
[37] A. Quirin, Ó. Cordón, V.P. Guerrero-Bote, B. Vargas-Quesada, F. de Moya-Anegón, A quick MST-based algorithm to obtain Pathfinder networks, J. Am.

Soc. Inf. Sci. Technol. 59 (2008) 1912–1924.
[38] J. Rissanen, Stochastic Complexity in Statistical Inquiry Theory, World Scientific Company, River Edge, 1989.

http://dx.doi.org/10.1016/j.ins.2013.02.014

	Three-objective subgraph mining using multiobjective evolutionary programming
	1 Introduction
	2 Multiobjective subgraph mining problem
	2.1 Deﬁnitions
	2.2 Problem formulation

	3 Multiobjective evolutionary programming for subgraph mining
	3.1 Initialization
	3.2 Subgraph generation
	3.3 Subgraph selection
	3.4 External archive

	4 Experimental study
	4.1 Graph datasets used
	4.2 Nondominated subgraph generation using single-objective methods
	4.2.1 Single-objective Subdue method
	4.2.2 Single-objective EP-Subdue method

	4.3 Multiobjective Subdue method
	4.4 Parameter settings
	4.5 Experimental analysis

	5 Conclusions
	Acknowledgments
	References


