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setup. Intervals are used for modeling the variability of the data that can be attributed
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© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The most common experimental setup for comparing multiple machine learning algorithms is k fold cross-validation.
Data sets are broken into k disjoint subsets of approximately equal size. For each fold, a subset is removed, the system
trained on the remaining data and tested on the held-out subset. The training sets overlap, but all test sets are indepen-
dent [22].

Cross validation is often combined with a single factor repeated measures experimental design [5]. This is a design with
one response variable, where each experimental unit is measured multiple times in this variable. In the context of this
contribution, experimental units are the algorithms being compared. The values of the response variable are the averages of
the k test values obtained for each pair (algorithm, dataset) with the cross-validation setup. The significance of differences
between algorithms is assessed with repeated-measures ANOVA or its nonparametric equivalent, the Friedman test [5].
Multiple comparisons tests are accompanied by post-hoc tests that assess the relevance of paired differences between
algorithms [6,9,10].

Algorithms whose output depends only on training and test sets are called deterministic, and those that also depend on a
random seed are called stochastic [17]. For comparing stochastic algorithms, the variability added by the random seed must
be accounted for by repeating each fold a number of times. In this case the single factor repeated measures experimental
design cannot be applied. There are designs considering multiple independent observations per cell [14], but according to
[5] they cannot be applied to this problem because repeating training/test episodes breaks the independence assumption of
the test values, thus analyzing the variance of the repetitions of folds in cross validation is a yet unresolved problem.
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Fig. 1. 10-cv based comparison to two stochastic algorithms. Left: 10 repetitions of each algorithm. Center: solid red and blue symbols mark sample means
of each fold. Right: solid symbols mark interquartile ranges of the same folds. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

In this paper it is proposed that intervals are used for describing the part of the variability of the data that can be
attributed to the repetition of learning and testing stages over the same sets. Each group of non-independent repetitions
will be consolidated into a single interval-valued measure of the response variable, thus the single factor repeated measures
design can still be applied. The drawback of the proposal is the need of extending the experimental design and statistical
tests to interval-valued data [8]. In this respect, extending ANOVA or Friedman tests to interval data would be feasible,
but involves an optimization task that is computationally costly. On the contrary, there exist efficient algorithms for the
particular case of bootstrap tests for interval data [3]. This raises the question about whether bootstrap tests improve
ANOVA or Friedman tests for this particular problem. It will be shown that the answer is positive, thus a new bootstrap test
is introduced that allows for assessing the significance of the differences between stochastic algorithms in a cross-validation
with repeated folds experimental setup.

The structure of this paper is as follows: in Section 2 the interval representation is introduced, and the general procedure
for extending paired tests to interval data recalled. In Section 3 the proposed bootstrap tests are defined for point and
interval data. In Section 4 a numerical analysis is included where the following three conclusions are supported by data:
(1) Boostrap tests can be more powerful than ANOVA or Friedman test for comparing multiple classifiers. (2) In the presence
of outliers, interval-valued bootstrap tests achieve a better discrimination between stochastic algorithms than nonparametric
tests. (3) Choosing ANOVA, Friedman or Bootstrap can produce different conclusions in experiments involving actual data
from machine learning tasks. The paper concludes in Section 5, with the concluding remarks and future work.

2. Interval-valued representations and statistical tests

Consider the example shown in Fig. 1. Test errors after 100 executions of two stochastic algorithms are plotted. Results of
the first algorithm are drawn with squares, and those of the second are drawn with diamonds. The experimental setup is 10-
cv with 10 repetitions. Horizontal axis are folds, and the vertical axis represents the classification error of each training/test
pair.

Repetitions of the ‘square’ algorithm form compact clouds, but some executions of the ‘diamond’ algorithm were trapped
in local minima. Average errors of both are the same (see Fig. 1, central part) but the typical error of the diamonds is better,
as shown in the interquartile ranges in the rightmost part of the same figure. Different facts can be tested with this data:

o If the null hypothesis is average accuracies of algorithms are the same, both algorithms seem to be similar. However, the
experimental design is not adequate for drawing this conclusion. The sample mean is not a good estimator of the test
error of the diamond algorithm, because different repetitions for the same fold are not independent, as mentioned
in the introduction. For instance, should the data set contain one instance that disrupted the learning algorithm, this
instance would be a part of the training set in ninety percent of the experiments, heavily biasing the error estimate. It
is a well-known fact that cross validation should not be applied to algorithms that are not stable with respect to the
data set, i.e. to algorithms for which a small change in the training set triggers large deviations in the test error [15].
Stochastic algorithms are unstable in the sense that if they converge to local minima, large changes in the test error
may occur without modifying the training set.

e If the null hypothesis is typical accuracies of algorithms are the same, then the diamond algorithm is better. “Typical
accuracy” can be understood either as median, censored mean or interquartile range, to name some robust estimates.
The percentage of repetitions that must be kept and discarded for obtaining a robust estimate can be estimated with
additional experiments about the convergence ratio of the learning algorithm. Intervals are arguably more informative
than punctual estimations for this purpose. Some authors claim that they allow for better modeling of asymmetrical
distributions [18]. For instance, the smallest intervals covering at least 10% of repetitions of each algorithm could be
used for describing the typical range of accuracies. Centers of these intervals provide information about the mode of
the distribution of the repetitions. Their widths inform about the dispersion of the same distribution.



90 J. Otero et al. / Journal of Computer and System Sciences 80 (2014) 88-100

For deciding whether the differences between interquartile ranges of diamonds and squares in Fig. 1 could have hap-
pened by chance or not, a statistical test for interval data must be used. Different extensions of statistical tests to interval-
valued data have been proposed (see [3] for a discussion about this subject). The generalization used in this paper for paired
tests is described in the remaining of this section. Multiple comparison tests will be addressed in Section 3.

Let (Ig9_.q5,).....[q%_.q}. D) and ([q¢}_.q},].....[g)_. g}, ) be interval-valued measurements of the typical accuracy

of two classifiers a and b in k folds. Let x* = (x{,x5, ..., xi) and x? = (xl{, xlz’, e xz) be two vectors of k real numbers each.

Lastly, let the test being generalized be defined by a function p(x?, x?) that maps each pair (x?, x?) to the probability of the
null hypothesis being false (p-value), given that x* and x? are the test errors of either classifier at each fold.
Given two vectors of intervals

([ai- a5 ] - [ak— ks ]) (1)
and

([qﬁ’,, qllj+]’ s [qu’ q£+]) (2)
the p-value of the extended test is defined as the interval [p~, p*], where

p~(x*.x") =inf{p(x*.x) [ f € [qf_.qf, ]. & < [ar_. a7, ]} (3)

pt (¢ x") =sup{p(x'. ") |  [af_.qL.]. % € [a]_. a7, ]} 4)

Observe that determining p~ and p* requires solving two constrained non-linear optimization problems with 2k variables
and 2k interval restrictions each.

3. Two proposals of bootstrap tests for making multiple comparisons

As mentioned in the introduction, a multiple comparison procedure is needed for comparing series of executions of
different algorithms. Friedman’s test is often used because normality is not assumed in rank tests [5]. But replacing mea-
surements by their ranks has the same effect as if the sample size is reduced by 3% for very large samples and much more
for smaller ones [11]. In addition to this, Friedman’s test requires that the distribution of the differences scores between any
pair of levels is continuous and symmetrical in the population. This assumption is required to ensure that the test evaluates
difference in medians rather than other characteristics of the distribution [16].

Bootstrap tests make less restrictive assumptions [7], nonetheless their use in combination with cross-validation is not
common. In this section two permutations-based bootstrap test are proposed that can be applied to single factor repeated
measures designs, either with scalar or interval-valued data.

3.1. Test Bootstrap-A for multiple comparisons of algorithms with scalar data

Let eqqfr be the test error of the a-th algorithm in the d-th dataset, f-th fold and r-th repetition. Let ng, ng, ny and n;
the number of datasets, algorithms, folds and repetitions in the experimental setup. Let

Fpo(x) =

be the sample cumulative distribution function (cdf) of the outcome of the a-th algorithm, and let

F..(® #{(a,d,r, f) | eadsr <x} (6)

- nandnrnf
be the sample cdf of the prior distribution of the test error. Let Fq... and F... be the corresponding population cdfs.

If the differences between the algorithms were not significant, the expectations obtained with respect to F... and wrt
Fi...,..., Fy,... should not be significantly different. The null hypothesis of the test will then be expressed as “the expecta-
tions

q

ea:/xdFa..., a=1,...,nq (7)

do not depend on the algorithm index a”.
Following [11], this problem can be solved with a bootstrap test, obtained via rearrangements of the sample. This requires
four steps:

1. Choice of test statistic that best discriminates between the primary hypothesis and the alternative hypothesis.
2. The value of this statistic is determined for the set of observations before rearrangement of their labels.
3. A rearrangement distribution is generated by computing the value of the test statistic for each rearrangement.
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4. The value of the statistic obtained at step 2 is compared with the set of possible values generated at step 3. If the
original value of the test statistic lies in the tails of the rearrangement distribution favoring the alternative hypothesis,
the primary hypothesis is rejected.

It is proposed that these steps are implemented as follows:

1. The test statistic is the sample mean.
2. The value before rearrangement is a vector of ny components €q. These are the expected test errors of the algorithms

wrt cdfs Fg...:

ng nr ng

N Zi=1 > i=1 Zk:1 €akij

€q = / (8)

ngnenq
3. Let {ma}g=1,...ny = (@14, - .., Ong.d)}d=1,...n, D€ a family of permutations of the indices 1,...,nq, and let

ng n ng B

. Dic er:1 Zk:1 Cayg ykij

€q = 9)

nyneng

the value of the test statistics for the rearrangement given by {m4}4—1,. n,- The rearrangement distributions of the
values & are numerically approximated by bootstrap estimation.

4. If the value &, belongs to the tails of the distribution of &} for any a, the null hypothesis is rejected and the index a
marks the algorithms whose expected error is different than the average. The tails of the distribution of €} must be
determined so that their probability mass is lower than the significance level of the test, adjusted for simultaneous n,
tests.

In case the null hypothesis is rejected, the post-hoc tests for comparing pairs of algorithms can be defined by particular-

izing the same test: let 7152) = (aizé, ocf;) be a permutation of the pair of indices (a, b), and let

ng n nq
0 Doit1 2ojm1 2ok €aDiij
o _ , (10)
nfnrnd

If the value e, belongs to the tails of the distribution of él(jz)
the same” is rejected. The tails of the distribution of é,gz)

, the null hypothesis “the test errors of algorithms a and b are
are determined as before.

3.2. Test Bootstrap-B for multiple comparisons of algorithms with interval data

The interval-valued bootstrap test proposed in this section will be called Bootstrap-B. Let [e_qgfr, €4adfr] be the interval-
valued error of the a-th algorithm in the d-th dataset, f-th fold and r-th repetition. In the first place, each group of r
repetitions of an algorithm over the same fold is consolidated into a confidence interval [q_qqf, G+qdf]. For scalar problems,
€_adfr = €4adfr aNd q_qdf = q4qdf iS a robust central tendency measure summarizing the n; repetitions of the algorithm.

Let [F_q.(x), I:'+a.4(x)] be the sample cdf of the outcome of the a-th algorithm [4],

. 1

F—a--(x)zﬁ#{(dv D |Q+adf §X} (11)
~ 1 ~

Fia.(0) = m#{(d, )| % € 9-adf Gtaaf)} + F-a- () (12)

and let [F_..(x), ﬁ+...(x)] be the sample cdf of the prior distribution of the test error,

F_..(®

= nandnf#{(a,d, ) | @radr <x} (13)

Fio.(x=

myp #{(a.d, f) | x € [q-aar. Graa)} + F—.(0). ()

Let also [F_g..(x), F1q..(x)] and [F_...(x), F+...(x)] be the corresponding population cdfs. The null hypothesis of the test will
then be expressed as “the set of expectations

[G—a) G1al = {/xdF ’ F(x) € [F—a.(%), Fq.(X)] forallx}, a=1,...,nq (15)

do not depend on the algorithm index a”.
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Extending [3], a rearrangement bootstrap problem will be defined for comparing a mix of scalar or interval data-based
algorithms, with the following premises:

1. The test statistic is the sample Aumann mean [19].
2. The value before rearrangement is a vector of ng intervals [§_q, §1ql:

A Z Zk 1 A—aki
== 16
0-a neng (16)
ny ng .
g = Z,:] Zk=1 q-+aki (17)
ngng

3. Let {mg}d=1

ng ng .
q‘* _ Zi=l Zk=1 q*aa.kkl

,,,,, ng ={(@1,d, ..., 0n, d)}d=1,...n, be a family of permutations of the indices 1,...,nq, and let

T (18)
neng
n
A Ziil sz:1 qJFO‘a.kki
* = (19)
neng

the value of the test statistics for the rearrangement given by {mg}4—1,
values g are numerically approximated by bootstrap estimation, as before

4. If the interval [§_q, §+q] belongs to the tails of the distribution of [¢*,, §*,] for any a, the null hypothesis is rejected
and these indices a mark the algorithms whose expected error is different than the average. In other words, let q*_adf )
and qjadf (s) be the results of evaluating expressions 18 and 19 in the s-th bootstrap resample, and let ns; the number
of these resamples. Then,

. The rearrangement distributions of the

1
Fro0 = —#]s| T agf () <X} (20)

~ 1 N
Fia) = —#{5 | X € [q7 405 (), Qar )} + FE(0) (21)
For an adjusted signification level «, the test is rejected if any of the following conditions are met:

ah o
FX(@-a)>1— ) (22)

~ ~ o
Fia(q-‘ra) < 5 (23)

In case the null hypothesis is rejected, the post-hoc tests for comparing pairs of algorithms can be defined, as was done

in the preceding case, by particularizing the test: let n(z) (otizé,oeézé) be a permutation of the pair of indices (a, b), and
let

ng ng
Zi:] Zk:l qfaf;ki

T (24)
ng
~(2) Z 1 2k Dok 25)

If the value [G_q, G1q] belongs to the tails of the distribution of [q(zg qu] the null hypothesis “the set of test errors of

algorithms a and b are the same” is rejected. This happens when any of the following conditions are met:

FPG)>1- 5 (26)

FY@) < > 5 (27)
where

F&w = {s 1435 <x} (28)

F2x) = {s |x€[4%).49)} + F (29)
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4. Numerical results
Numerical experiments are provided that are not in disagreement with the following three claims:

1. Bootstrap tests can be more powerful than ANOVA or Friedman test for comparing multiple classifiers.

2. In the presence of outliers, interval-valued bootstrap tests achieve a better discrimination between stochastic algorithms
than nonparametric tests.

3. Choosing ANOVA, Friedman or Bootstrap can produce different conclusions in experiments involving actual data from
machine learning tasks.

Experiments related to items 1 and 2 are based on synthetic data. Item 3 will be supported by standard machine learning
benchmarks.

4.1. Claims 1 and 2

In this section, power and type I error of ANOVA, Friedman, Bootstrap-A and Bootstrap-B tests are estimated by the
fraction of correct and wrong conclusions taken by these tests when confronted with synthetic classification problems with
known statistical properties.

Let x(w) be a set of features measured on an object w € £2, whose class is denoted as class(w). Let A(x(w)) be the
output of a classification algorithm, and let

ea=Plwe 2| A(x(w)) # class(w) } (30)
be the expected error of this classifier. Let also T be a test set comprising n; objects, T = {w1, ..., wp,}. The fraction of
misclassifications in T is

A 1

ea(T) = n—#{a)e T | A(x(w)) # class(w) } (31)

t

and é4(T) is an estimator of e4. In a k-fold cv based experimental design, classifiers are learned from k training sets and
tested in k independent test sets. The experimental measurement of the performance of the algorithm A on a given dataset
is a vector comprising k different estimations

(éa(T1).....ea(Ty) (32)

for k independent test sets Tq,..., Tk.

The simulation of these estimations will be different for a deterministic algorithm (the outcome of the learning process
is uniquely determined by the training set) or a stochastic algorithm (the outcome of the learning process is determined by
both the training set and a random seed). Both are described below.

4.1.1. Deterministic algorithms
Assuming that the probability of misclassifying an instance is e4, a random variable Y, following a binomial distribution
models the number of errors in the test set T:

YA — B(nt,eA) (33)

thus the fraction of errors is

R 1
ea(Ty) = n—YA (34)
t

4.1.2. Stochastic algorithms

For stochastic algorithms, the probability of committing an error is higher if the learning algorithm is trapped in a local
minimum. Let AT be the r-th repetition of the algorithm being simulated, let p ¢ be the probability that A® is trapped
in a local minimum, and let e;(r) be the average fraction of misclassifications committed in this case. Let Y 47 be a random
variable with binomial distribution, as before:

Yio — B(t,eqm) (35)
and let Z,x be a random variable with Bernoulli distribution,
ZA(r) — B(l,pA(r)) (36)

Assuming that Y,» and Z,x are independent, the test error of A® is modeled as follows:

o 1
e n(Ti) = ZEZ(r) + n_(l —Zsn)Yam (37)
t
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Table 1
Theoretical errors and simulated sample errors for Ap =0.03.

Dataset Aq A; A3 Ay As Ay Ay A3 Ay As ne
1 0.20 0.37 0.40 0.49 0.44 0.22 0.41 0.33 0.37 0.42 12
2 0.31 0.37 0.40 0.20 0.44 0.34 0.34 0.42 0.23 0.46 13
3 0.31 0.37 0.40 0.20 0.44 0.39 0.32 047 017 0.49 15
4 0.31 0.37 0.40 0.49 0.20 0.35 0.41 0.37 0.52 0.17 19
5 0.31 0.20 0.40 0.49 0.44 0.34 0.23 0.32 0.45 0.39 12
6 0.31 0.20 0.40 0.49 0.44 0.36 018 0.38 0.48 0.46 18
7 0.31 0.37 0.20 0.49 0.44 0.28 0.37 0.19 0.39 0.46 19
8 0.31 0.37 0.20 0.49 0.44 0.38 0.34 0.26 0.47 0.36 16
9 0.20 0.37 0.40 0.49 0.44 0.22 0.33 0.41 0.55 0.49 16

10 0.31 0.37 0.40 0.20 0.44 0.38 0.35 0.46 0.16 0.48 10

11 0.31 0.20 0.40 0.49 0.44 0.39 0.15 0.42 0.57 0.44 12

12 0.31 0.37 0.40 0.20 0.44 0.28 0.49 0.33 0.24 0.52 11

13 0.20 0.37 0.40 0.49 0.44 0.13 0.42 0.38 0.46 043 16

14 0.31 0.37 0.40 0.20 0.44 0.35 0.33 0.32 0.15 0.50 13

15 0.31 0.37 0.20 0.49 0.44 0.31 0.32 0.16 0.40 0.46 17

16 0.31 0.37 0.40 0.20 0.44 0.31 0.32 043 017 0.50 14

17 0.31 0.37 0.40 0.20 0.44 0.35 0.31 0.36 0.26 0.41 17

18 0.31 0.37 0.20 0.49 0.44 0.31 0.40 0.19 0.49 0.44 19

19 0.31 0.20 0.40 0.49 0.44 0.32 0.21 038 0.43 0.37 13

20 0.31 0.20 0.40 0.49 0.44 0.35 0.24 0.39 0.55 043 17

21 0.31 0.37 0.40 0.20 0.44 0.31 0.42 0.40 0.33 043 19

22 0.31 0.37 0.40 0.49 0.20 0.25 0.35 0.37 0.48 017 12

23 0.31 0.20 0.40 0.49 0.44 033 0.21 0.46 0.46 047 16

24 0.31 0.37 0.20 0.49 0.44 0.34 0.29 0.16 0.49 047 11

25 0.20 0.37 0.40 0.49 0.44 0.17 0.36 0.35 0.38 0.42 12

26 0.31 0.37 0.20 0.49 0.44 0.30 0.39 017 0.52 0.44 13

27 0.31 0.37 0.40 0.20 0.44 0.21 0.42 0.38 0.14 0.46 10

28 0.31 0.37 0.40 0.20 0.44 0.34 0.39 0.48 0.18 0.48 13

29 0.31 0.37 0.40 0.49 0.20 0.24 0.43 0.46 0.51 018 18

30 0.31 0.37 0.20 0.49 0.44 0.32 043 0.22 0.51 0.42 13

31 0.31 0.20 0.40 0.49 0.44 0.41 0.19 0.46 0.49 0.44 14

32 0.31 0.37 0.40 0.20 0.44 0.31 0.37 0.39 0.25 0.41 15

Avg. 0.30 0.33 0.36 0.39 0.42 0.31 0.33 0.35 0.38 0.42 14.5

4.1.3. Experimental setup and results for claim 1

Five algorithms A1, ..., As and 32 datasets are simulated. 5-fold cross validation with 30 repetitions is used. Az and A4
are deterministic, A1, Ay and As are stochastic. In this first experiment, none of the stochastic algorithms converges to a
suboptimal solution, pgi) =0.

For each test set T4, one algorithm jq is assigned the theoretical error eg; (Tg) = 0.20. The remaining algorithms were
d

assigned a higher value such that the average of the theoretical errors of the algorithms for each dataset is 3l2 >od ei\ri)(Td) =
030+ (@i —1)-Ap,i=1,...,5. For each value Ap =0,0.005,0.01,...,1, 100 simulations were made (see Table 1 for an
example of theoretical errors and simulated sample means for Ap =0.03).

In Fig. 2, power and type I errors are plotted for ANOVA (dotted line), Friedman (dashed line) and Bootstrap-A (solid

line). The contents of this figure are:

1. Left part: Power of the tests, estimated by the fraction of times the combination of multiple comparisons test and post-
hoc tests correctly detected that an algorithm was better than other. Horizontal axis is Ap, vertical axis is the power.
Bootstrap-A is more powerful than a Friedman test followed by Wilcoxon post-hoc tests and Hochberg adjustment, as
claimed. In turn, Friedman’s test is better than ANOVA followed by t-tests.

2. Right part: Type I error of the tests, estimated by the fraction of times the combination of multiple comparisons test
and post-hoc tests wrongly concluded that an algorithm was better than a preferable alternative. The horizontal axis is
Ap, vertical axis is the error. Notice that the significance level is 0.95 thus it is expected that this error is 0.05 (marked
with the horizontal dotted line).

In Table 2, numerical values plotted in Fig. 2 are given and in Table 3 a detail of the column for Ap = 0.03 is provided.
The number of significant and correct comparisons (labeled “Sig OK”), not significant (“No Sig”) and significant but wrong
conclusions (“Sig Err”) were obtained for each pair of algorithms being compared.

4.14. Experimental setup and results for claim 2
As done in the preceding section, five algorithms Aj,...,As and 32 datasets are simulated. 5-fold cross validation with
30 repetitions is used. A; and A4 are deterministic, A1, Ay and As are stochastic. In this second experiment, stochastic
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Fig. 2. Left: Average power of post-hoc tests a function of distance. Right: Average type I error of post-hoc tests as a function of distance. Solid line:
Bootstrap-A. Dotted line: ANOVA + t-test. Dashed line: Friedman + Wilcoxon. Horizontal dotted line in the right part: expected type I error (0.05).

Table 2

Numerical data plotted in Fig. 2. Column “MC” contains the number of simulations where the multiple comparisons test detected a relevant difference.
Columns “PH” count how many post-hoc tests found existing differences between each pair of algorithms (“Sig OK”), found non-existing differences (“Sig
Err”) or did not find differences (“No Sig”).

Actual MC PH
Ap Sig t-test Wilcoxon Bootstrap-A

AOV Fried Boot-A Sig OK No Sig Sig Err Sig OK No Sig Sig Err Sig OK No Sig Sig Err
0 0 6 4 0 1000 0 0 1000 0 0 1000 0
0.005 0 69 2 48 933 19 0 1000 0 4 996 0
0.01 2 100 30 45 900 55 0 998 2 31 953 16
0.015 64 100 99 12 988 0 95 903 2 274 706 20
0.02 100 100 100 75 877 48 76 876 48 377 569 54
0.025 100 100 100 159 769 72 189 737 74 449 441 110
0.03 100 100 100 407 567 26 450 521 29 539 406 55
0.035 100 100 100 344 642 14 416 570 14 971 15 14
0.04 100 100 100 474 482 44 501 455 44 911 45 44
0.045 100 100 100 542 436 22 903 75 22 978 0 22
0.05 100 100 100 603 397 0 1000 0 0 1000 0 0
0.055 100 100 100 546 400 54 926 20 54 946 0 54
0.06 100 100 100 652 340 8 992 0 8 992 0 8
0.065 100 100 100 768 209 23 976 1 23 976 1 23
0.07 100 100 100 996 4 0 996 4 0 1000 0 0
0.075 100 100 100 634 268 98 902 0 98 902 0 98
0.08 100 100 100 979 0 21 979 0 21 979 0 21
0.085 100 100 100 998 0 2 998 0 2 998 0 2
0.09 100 100 100 1000 0 0 1000 0 0 1000 0 0
0.095 100 100 100 1000 0 0 1000 0 0 1000 0 0
1 100 100 100 1000 0 0 1000 0 0 1000 0 0

0.56 0.025 0.67 0.022 0.76 0.027

Avg Pow T1 Err Pow T1 Err Pow T1 Err

algorithms can converge to a suboptimal solution with probability pfqri) =0.1. The expected error of suboptimal classifiers is

et (Tg) =0.75.
For each test set T4, one algorithm jg was assigned a theoretical error egj, (Tg) =0.20 and the remaining algorithms
d

were assigned an error such that 31—2 > e(Ari)(Td) =030+ @{—1)-Ap,i=1,...,5. For each value Ap =0,0.005,0.01,...,1,
100 simulations were made. The number of samples of the test partitions was chosen at random between 10 and 20. The
interval estimation of the dispersion of the repetitions is estimated by a confidence interval, centered in the median and
covering 10% of data.

In Fig. 3, power and type I errors are plotted for ANOVA (dotted line), Friedman (dashed line) and Bootstrap-A (solid
line). The contents of this figure are:

1. Left part: Power of the tests is estimated by the fraction of times the combination of multiple comparisons test and
post-hoc tests detected that an algorithm was better than other. Horizontal axis is Ap, vertical axis is the power.
Bootstrap-B is more robust than Friedman and achieves better discrimination, as claimed. For instance, differences as
high as 0.05 were considered as not significant in 69% of simulations by ANOVA + t-test, 46% by Friedman Test and
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Table 3
Detail of Table 2 for Ap =0.03.
Actual (Hochberg pv adjust) Bootstrap-A
Ap=0.030 ANOVA + t-test Friedman + Wilcoxon Sig OK No Sig Sig ERR
Sig OK No Sig Sig ERR Sig OK No Sig Sig ERR
A1 vs. Ay 0 100 0 0 100 0 0 100 0
Aj vs. Az 0 100 0 0 100 0 0 100 0
A1 vs. Ay 0 100 0 0 100 0 0 100 0
A1 vs. As 0 100 0 0 100 0 0 100 0
Ay vs. Az 35 45 20 38 39 23 49 2 49
Ay vs. Ay 55 45 0 61 39 0 98 2 0
Ay vs. As 55 45 0 61 39 0 98 2 0
Az vs. Ay 83 16 1 97 2 1 99 0 1
A3 vs. As 84 16 0 98 2 0 100 0 0
A4 vs. As 95 0 5 95 0 5 95 0 5
Avg. 40.7 56.7 2.6 45 52.1 29 53.9 40.6 55
Q] &
- o
«©
S 0
=
© | S
5 ° 5 o
5 ra
a Q
g‘ | '2‘ : A /
5 A
o i h
g i \/ \/ |
© T T T T T © T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
actual difference actual difference

Fig. 3. Data with 10% of outliers. Solid line: Bootstrap-B. Dotted line: ANOVA + t-test. Dashed line: Friedman + Wilcoxon. Left: Average power of post-hoc
tests a function of the differences between the theoretical errors of the classifiers. Right: Estimation of type I error of post-hoc tests as a function of the
theoretical differences.

only in 1% by Bootstrap-B. Observe also that, in the presence of outliers, Friedman’s test is not always better than
ANOVA followed by t-tests.

2. Right part: Type I error of the tests, estimated by the fraction of times the combination of multiple comparisons test
and post-hoc tests wrongly concluded that an algorithm was better than other. It is expected that this error is 0.05. For
Bootstrap-B, not conclusive results were regarded as not significant.

In Table 4, numerical values plotted in Fig. 2 are given and in Table 5 a detail of the column for Ap = 0.03 is provided.
The number of significant and correct comparisons (labeled “Sig OK”), not significant (“No Sig”), significant but wrong
conclusions (“Sig Err”) and (only for Bootstrap-B) not conclusive (“Inc”) were obtained for each pair of algorithms being
compared. Post-hoc tests were assigned the outcome “not significant” whenever the corresponding multiple comparisons
test was not conclusive, as mentioned before.

4.2. Claim 3

In this section, an experimentation is designed to check whether the state-of-the-art fuzzy classification algorithm FURIA
[13] is better than a selection of classical classifiers in imbalanced classification problems. FURIA, Linear Discriminant Analy-
sis (LDA) [21], Nearest Neighbor (1NN) [21], Multilayer Perceptron (NNET) [12] and C4.5 [20] were applied to 64 imbalanced
classification problems taken from KEEL repository [1]. Their performances were measured both by the classification error
and by the area under the ROC curve (AUC) [2]. The average results of 30 repetitions of each pair (algorithm, dataset) are
shown in Table 6.

According to the results, FURIA has the highest fraction of correct classifications. FURIA and 1NN are tied if the perfor-
mance is measured with AUC. For assessing the relevance of the differences, three different sets of tests were applied to the
data: (1) ANOVA + paired t-tests, (2) Friedman 4+ Wilcoxon and (3) Bootstrap-B with confidence intervals with mass 10%.
The p-values of the three tests are shown in Table 7.

Observe that ANOVA and Friedman'’s tests show a strong relevance of the differences in AUC, however post-hoc tests are
needed to show the fact that LDA and not FURIA is responsible of this result (LDA is significantly worse than the mean).
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Table 4

Numerical data plotted in Fig. 3. Column “MC” contains the number of simulations where the multiple comparisons test detected a relevant difference.
Columns “PH” count how many post-hoc tests found existing differences between each pair of algorithms (“Sig OK”), found non-existing differences (“Sig
Err”), did not find differences (“No Sig”) or were inconclusive (“Inc”).

Actual MC PH t-test PH Wilx PH Boot-B
Ap Sig Boot-B Sig OK No Sig Sig Err Sig OK No Sig Sig Err Sig OK No Sig Sig Err Inc
AoV Fried Sig Inc
0 93 55 13 0 8 928 64 17 884 99 0 968 0 32
0.005 82 90 6 41 5 992 3 10 981 9 1 958 0 41
0.01 78 100 61 38 100 900 0 72 926 2 103 886 1 10
0.015 99 100 100 0 100 900 0 99 901 0 171 718 15 96
0.02 100 100 100 0 32 968 0 100 900 0 273 567 32 128
0.025 100 100 100 0 100 900 0 100 900 0 415 144 73 368
0.03 100 100 100 0 100 900 0 108 892 0 482 101 74 343
0.035 100 100 100 0 132 868 0 231 766 3 763 15 29 193
0.04 100 100 100 0 122 878 0 182 816 2 651 4 93 252
0.045 100 100 100 0 203 796 1 502 497 1 963 0 9 28
0.05 100 100 100 0 237 693 70 468 462 70 917 0 71 12
0.055 100 100 100 0 515 467 18 311 672 17 943 0 33 24
0.06 100 100 100 0 548 452 0 799 201 0 1000 0 0 0
0.065 100 100 100 0 888 102 10 695 295 10 990 0 10 0
0.07 100 100 100 0 626 374 0 994 6 0 1000 0 0 0
0.075 100 100 100 0 899 101 0 1000 0 0 1000 0 0 0
0.08 100 100 100 0 996 4 0 1000 0 0 1000 0 0 0
0.085 100 100 100 0 989 6 5 995 0 5 995 0 5 0
0.09 100 100 100 0 985 0 15 985 0 15 985 0 15 0
0.095 100 100 100 0 994 0 6 994 0 6 994 0 6 0
0.1 100 100 100 0 907 0 93 907 0 93 907 0 93 0
0.47 0.011 0.53 0.011 0.73 0.028 0.075
Avg Pow T1 Err Pow T1 Err Pow T1 Err
Table 5
Detail of Table 3 for Ap =0.03.
Actual (Hochberg pv adjust) Bootstrap-B
Ap=0.030 ANOVA + t-test Friedman + Wilcoxon Sig OK No Sig Sig ERR Inc
Sig OK No Sig Sig ERR Sig OK No Sig Sig ERR
A1 vs. Ay 0 100 0 0 100 0 4 20 0 76
A; vs. Az 0 100 0 0 100 0 4 20 0 76
A1 vs. Ag 0 100 0 0 100 0 4 20 0 76
A1 vs. As 0 100 0 0 100 0 4 20 0 76
Ay vs. Az 0 100 0 0 100 0 19 7 61 13
Ay vs. Ag 0 100 0 0 100 0 74 6 7 13
Ay vs. As 0 100 0 0 100 0 81 6 0 13
Az vs. Ag 0 100 0 4 96 0 92 2 6 0
A3 vs. As 0 100 0 4 96 0 100 0 0 0
A4 Vs. As 100 0 0 100 0 0 100 0 0 0
Avg. 10 90 0 10.8 89.2 0 48.2 10.1 7.4 34.3

Bootstrap-B provides more information: it correctly shows that algorithms LDA and 1NN are responsible of the differences in
AUC (the quality of 1NN is better than the mean, LDA is inferior and the data is inconclusive for FURIA). If the performance
of the classifier is measured by the test error, FURIA and NNET are both different than the average because FURIA is better
and NNET is worse.

For ANOVA and Friedman, the setup in [10] is followed and the best ranked classifier for AUC (FURIA) has been compared
to its alternatives and the results shown in Table 8. The only disagreement between the tests is in FURIA vs. C4.5 (boldfaced
in the table). In Fig. 4 density functions of the distributions of values of AUC of FURIA, C4.5 and their paired differences
are displayed, thus the similarity between these algorithms can be judged. Observe that the mode of both algorithms is the
same and therefore the mode of their difference is zero. The typical performance of both is typically the same, however
there are a small number of datasets for which FURIA performed better than C4.5. After Hochberg adjust, a paired t-test
between FURIA and C4.5 does not reject that both algorithms have the same AUC, but Friedman’s test reject the hypothesis
at 99% level. An interval-valued bootstrap test estimate a p-value between 0.03 and 0.40, thus the test is inconclusive,
meaning that the dispersion of the results is too high and a decision cannot be taken.
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Table 6

AUC and test error of 5 machine learning algorithms in 64 datasets.
Dataset AUC Test error

FURIA LDA 1NN NNET C4.5 FURIA LDA 1NN NNET Cc4.5

ecoli147vs2356 0.85 0.81 0.82 0.83 0.84 0.96 0.96 0.95 0.94 0.94
ecoli34vs5 0.84 0.86 0.87 0.86 0.81 0.95 0.94 0.96 0.95 0.95
glass 0.78 0.54 0.81 0.68 0.73 0.81 0.64 0.85 0.72 0.72
ecolivs1 0.99 0.98 0.96 0.96 0.98 0.99 0.99 0.96 0.96 0.96
leddigit02456789vs1 0.90 0.90 091 0.89 0.88 0.97 0.96 0.96 0.96 0.96
yeastvs4 0.85 0.83 0.85 0.85 0.83 0.95 0.96 0.96 0.95 0.95
ecoli67vs35 0.85 0.75 0.83 0.81 0.85 0.96 0.92 0.95 0.93 0.93
glass6vs5 0.95 0.68 0.94 0.98 0.99 0.98 0.92 0.97 0.99 0.99
wisconsin 0.97 0.95 0.95 0.94 0.95 0.97 0.96 0.96 0.95 0.95
ecolilvs5 0.84 0.89 0.87 0.88 0.81 0.95 0.97 0.97 0.96 0.96
ecoli234vs5 0.84 0.89 0.87 0.86 0.79 0.96 0.96 0.97 0.95 0.95
pima 0.74 0.72 0.65 0.64 0.70 0.78 0.77 0.68 0.70 0.70
glass146vs2 0.52 0.49 0.63 0.56 0.64 0.92 091 0.87 0.84 0.84
glass15vs2 0.52 0.48 0.61 0.53 0.50 0.89 0.87 0.87 0.83 0.83
iris 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
ecoli147vs56 0.79 0.80 0.87 0.86 0.75 0.96 0.96 0.97 0.96 0.96
glass 0.83 0.70 0.78 0.66 0.82 0.87 0.76 0.79 0.73 0.73
yeast359vs78 0.60 0.61 0.67 0.62 0.59 091 0.92 0.88 0.85 0.85
clevelandvs4 0.71 0.78 0.59 0.69 0.66 0.93 0.94 0.89 0.92 0.92
yeast2579vs368 0.89 0.89 0.87 0.82 0.84 0.97 0.97 0.96 0.93 0.93
yeast 0.71 0.63 0.64 0.67 0.67 0.80 0.76 0.70 0.75 0.75
vehiclel 0.74 0.71 0.59 0.60 0.66 0.82 0.80 0.70 0.76 0.76
vehicle2 0.98 0.96 0.92 0.76 0.95 0.99 0.97 0.93 0.88 0.88
vehicle3 0.75 0.70 0.61 0.58 0.67 0.84 0.80 0.73 0.76 0.76
ecoli146vs5 0.78 0.87 0.87 0.83 0.78 0.95 0.97 0.98 0.96 0.96
yeast256vs3789 0.73 0.72 0.76 0.69 0.66 0.93 0.93 0.91 0.89 0.89
ecoli46vs5 0.84 0.89 0.87 0.87 0.81 0.96 0.97 0.97 0.95 0.95
ecoli 0.84 0.92 0.90 0.86 0.81 0.97 0.98 0.98 0.97 0.97
glass123vs456 0.88 0.88 0.94 0.83 0.92 0.92 0.93 0.96 0.90 0.90
ecoli01vs235 0.77 0.86 0.79 0.83 0.77 0.94 0.96 0.94 0.95 0.95
vehicleO 0.95 0.93 091 0.79 0.93 0.97 0.95 0.94 0.89 0.89
yeast1vs7 0.57 0.56 0.64 0.64 0.59 0.94 0.93 0.91 0.89 0.89
ecoli0267vs35 0.80 0.85 0.78 0.82 0.76 0.94 0.96 0.95 0.94 0.94
ecolil 0.87 0.85 0.80 0.82 0.86 0.91 0.88 0.86 0.87 0.87
haberman 0.59 0.55 0.55 0.56 0.58 0.74 0.74 0.68 0.71 0.71
shuttlecOvsc4 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
glass04vs5 0.99 0.89 0.95 0.99 0.99 0.99 0.96 0.99 1.00 1.00
glass4 0.85 0.59 0.94 0.93 0.79 0.97 0.93 0.98 0.97 0.97
newthyroid2 0.94 0.81 0.99 0.93 0.95 0.98 0.94 1.00 0.97 0.97
ecoli0346vs5 0.86 0.86 0.90 0.88 0.82 0.97 0.95 0.98 0.96 0.96
newthyroid1 0.97 0.84 0.98 0.90 0.95 0.98 0.95 0.99 0.97 0.97
pageblocks13vs4 1.00 0.75 0.86 0.95 1.00 1.00 0.96 0.97 0.99 0.99
ecoli0347vs56 0.79 0.81 0.87 0.87 0.79 0.95 0.95 0.95 0.96 0.96
ecoli2 0.86 0.82 0.92 0.85 0.86 0.94 091 0.95 0.91 0.91
glass016vs5 0.84 0.59 0.84 0.82 0.89 0.97 0.95 0.96 0.97 0.97
segment0 0.99 0.98 0.99 0.99 0.98 1.00 0.98 0.99 1.00 1.00
yeast05679vs4 0.70 0.73 0.69 0.69 0.68 0.92 0.94 0.90 0.89 0.89
ecoli067vs5 0.84 0.86 0.84 0.86 0.77 0.96 0.96 0.95 0.96 0.96
glass6 0.88 0.91 0.93 0.88 0.81 0.96 0.96 0.97 0.94 0.94
shuttlec2vsc4 0.95 0.94 1.00 1.00 1.00 0.99 0.98 1.00 1.00 1.00
vowel0 0.96 0.86 1.00 0.99 0.97 0.99 0.95 1.00 1.00 1.00
yeast1458vs7 0.51 0.50 0.57 0.55 0.50 0.95 0.96 0.94 0.90 0.90
yeast3 0.88 0.83 0.80 0.83 0.86 0.95 0.94 0.93 0.93 0.93
ecoli3 0.80 0.84 0.75 0.71 0.73 0.93 0.93 0.91 0.89 0.89
glass016vs2 0.54 0.49 0.59 0.55 0.62 0.89 0.90 0.88 0.84 0.84
glass5 0.90 0.64 0.84 0.88 0.90 0.99 0.96 0.97 0.98 0.98
glass2 0.58 0.49 0.61 0.54 0.67 0.93 091 0.88 0.84 0.84
pageblocksO 0.94 0.79 0.87 0.90 0.92 0.98 0.95 0.96 0.97 0.97
yeast2vs8 0.77 0.77 0.74 0.74 0.50 0.98 0.98 0.96 0.96 0.96
yeast4 0.61 0.61 0.67 0.65 0.60 0.97 0.96 0.96 0.95 0.95
yeast1289vs7 0.55 0.53 0.56 0.59 0.62 0.97 0.97 0.95 0.94 0.94
yeast5 0.90 0.80 0.85 0.84 0.88 0.99 0.98 0.98 0.98 0.98
ecoli0137vs26 0.75 0.84 0.84 0.82 0.75 0.98 0.98 0.98 0.98 0.98
yeast6 0.75 0.70 0.78 0.73 0.78 0.98 0.98 0.97 0.97 0.97
Avg 0.81 0.77 0.81 0.80 0.80 0.94 0.93 0.93 0.92 0.93
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Bootstrap-B

[0.0001, 0.0001]

[0.0001, 0.003]

[0.0001, 0.0001]

Table 7
p-Values of different multiple comparisons tests for data in Table 6.
Test p-value - AUC
ANOVA 0.00023
Friedman 0.0020
FURIA LDA 1NN NNET C4.5
Bootstrap-B (10%) [0.07,0.3] [0.005, 0.005] [0.03,0.03] [0.4,1] [1,1]
Test p-value - Test error
ANOVA ~0
Friedman ~0
FURIA LDA 1NN NNET Cc4.5
Bootstrap-B [0.0001, 0.0001] [1,1] [0.7,0.7] [0.0001, 0.03] [0.8,0.8]
Table 8
p-Values of post-hoc tests. Cases where the selection of the test influences the difference have been marked.
FURIA vs. LDA FURIA vs. 1NN FURIA vs. NNET FURIA vs. C4.5
AUC
ANOVA 0.01 0.98 0.24 0.12
Friedman 0.02 0.93 0.71 0.01
Bootstrap-B [0.00, 0.02] [0.50, 1.00] [0.60, 1.00] [0.03,0.40]
Test error
ANOVA 0.01 0.01 ~0 ~ 0
Friedman 0.0004 0.002 ~0 ~ 0

[0.0001, 0.0001]
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Fig. 4. Density function of the distribution of values of AUC of FURIA, C4.5 and their paired differences.

5. Concluding remarks and future work

In deterministic algorithms, the variability of the test error in the different folds of cross validation is originated on the
random selection of the test sets. In stochastic algorithms, the chance that the algorithm converges to a suboptimal solution
introduces a second source of uncertainty in the estimation of its performance, that cannot be properly accounted with a
single factor repeated measures experimental design. In this study it is proposed that a confidence interval for a robust
central tendency measure of the repetitions (median, mode, censored mean) is used instead of the mean when modeling
the repetitions of a fold. A new interval-valued statistical test (Bootstrap-B) has been proposed, and it has been shown that
in the presence of outliers, its power can be better than that of Friedman’s test. In addition to this, in future works the
following properties will be explored:

e The new test can be applied to learning algorithms that produce interval-valued estimations of the test error. Up to our
knowledge, this is the first proposal of a mixed experimental design that allows for multiple comparisons between a
combination of algorithms for scalar and interval-valued data.

e Incomplete tables of results can be tackled. Missing values in an experimentation could possibly be replaced by an
interval spanning the range of errors.

A symmetric redefinition of the bootstrap post-hoc tests will also be considered in the future. Lastly, the use of a family
of confidence intervals (a fuzzy set) for describing the variability attributable to repetitions of folds will be analyzed. This
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representation might remove the need for determining the best width for the intervals with additional experiments, as was
proposed in this contribution.
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