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Abstract  
Orthology detection requires more effective scaling algorithms. Combinations of 

alignment, synteny, evolutionary distances and protein interactions have been used in 

different unsupervised algorithms to improve effectiveness while many available 

databases are concerned with the scaling problem. In this paper, a set of gene pair 

features based on similarity measures, such as alignment scores, sequence length, 

gene membership to conserved regions and physicochemical profiles are combined in 

a supervised Pairwise Ortholog Detection (POD) approach to improve effectiveness 

considering low ortholog ratios in relation to the possible pairwise comparison 

between two genomes. In this POD scenario, big data supervised classifiers managing 

imbalance between ortholog and non-ortholog pair classes allow for an effective 

scaling solution built from two genomes and extended to other genome pairs. 

The supervised approach for POD was compared with Reciprocal Best Hits (RBH), 

Reciprocal Smallest Distance (RSD) and a Comprehensive, Automated Project for the 

Identification of Orthologs from Complete Genome Data (OMA) algorithms by using 

the following yeast genome pairs: Saccharomyces cerevisiae - Kluyveromcyes lactis, 

Saccharomyces cerevisiae - Candida glabrata and Saccharomyces cerevisiae -

Schizosaccharomyces pombe as benchmark datasets. Four datasets derived from each 

genome pair comparison with different alignment settings were used. Because of the 

large amount of instances (gene pairs) and the data imbalance, the building and testing 

of the supervised model was only possible by using big data supervised classifiers 

managing imbalance. Evaluation metrics taking low ortholog ratios into account were 

applied. From the effectiveness perspective, MapReduce Random Oversampling 

combined with Spark Support Vector Machines outperformed RBH, RSD and OMA, 

probably, because of the consideration of gene pair features beyond alignment 

similarities combined with the advances in big data supervised classification.  



 - 3 - 

Introduction  
Orthologs are defined as genes in different species that descend by speciation from 

the same gene in the last common ancestor [1]. Their probable functional equivalence 

has made them important for genome annotation, phylogenies and comparative 

genomics analyses. Ortholog detection (OD) algorithms should distinguish 

orthologous genes from other types of homologs such as paralogs evolving from a 

common ancestor through a duplication event. A great deal of unsupervised graph-

based  [2-8], tree-based [9-13] and hybrid approaches [14-15] have been developed to 

identify orthologs resulting in corresponding repositories for pre-computed orthology 

relationships.  

Focusing on the graph-based approach, orthogroups are generally built from the 

comparison of genome pairs by using BLAST searches [16], and then the application 

of some “nearest neighbor” heuristics such as Best BLAST hit (Bet) [2], Bidirectional 

Best Hit (BBH) [17], RBH [18], RSD [19] or Best Unambiguous Subset (BUS) [20] 

to find potential pairwise orthology relationships. Subsequently, algorithms can return 

pairwise relationships, if they perform pairwise ortholog detection (POD) such as 

RBH [18] and RSD themselves [19], and OMA Pairwise [21], or they can apply 

clustering to predict orthogroups from the score of the alignment process. 

When OD is based only on sequence similarity, it has been limited by evolutionary 

processes such as recent paralogy events, horizontal gene transfers, gene fusions and 

fissions, domain recombinations or different genetic events [22-23]. In fact, the 

identification of homologs is a difficult task in the presence of short sequences, those 

that evolved in a convergent way, and the ones that share less than 30% of amino acid 

identities (twilight zone). Algorithm failures have been particularly shown in 

benchmark datasets from Saccharomycete yeast species that underwent whole 
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genome duplications (WGD) and, certainly, present rampant paralogies and 

differential gene losses [24]. 

To tackle these shortcomings for OD, some OD solutions may integrate the conserved 

neighborhood (synteny) of genes in the inference process for related species. 

Currently, there is a tendency of merging sequence similarity with synteny [20, 25-26]  

genome rearrangements [27-28], protein interactions [15], domain architectures [29] 

and evolutionary distances [19]. However, so far there is no report that combines such 

features in a supervised approach to increase POD effectiveness. 

On the other hand, the integration of different gene or protein information and the 

massive increase in complete proteomes highly increase the dimensionality of the OD 

problem and the total number of proteins to be classified. In a thorough paper from 

the Quest for Orthologs consortium [30], the authors emphasize the idea that this 

increase in proteome data brings out the need to work out not only efficient but 

effective OD algorithms. As they mention, the increase in computational demands in 

sequence analyses is not easily met by an increase in computational capacities but 

rather calls for new approaches or algorithmic implementations [30]. In this sense, 

they summarized some methodological shortcuts implemented by the existing 

orthology databases to deal with the scaling problem. 

Considering all these previous remarks about OD, we propose a new supervised 

approach for pairwise OD (POD) that combines several gene pairwise features 

(alignment-based and synteny measures with others derived from the pairwise 

comparison of the physicochemical properties of amino acids) to address big data 

problems [30]. Our big data supervised POD approach allows scaling to related 

species and data imbalance management (low ortholog ratio found in two or more 

genomes) for an effective OD. The methodology consists of three steps:  
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(i) the calculation of gene pair features to be combined, 

(ii) the building of the classification model using machine learning algorithms to 

deal with big data from a pairwise dataset, and 

(iii) the classification of related gene pairs.  

Since traditional supervised classifiers cannot scale large datasets, the supervised 

classification for the POD problem should be addressed as a big data classification 

problem according to [31-33]  and big data solutions should be applied for binary 

classification in imbalanced data such as the ones presented in [34] based on 

MapReduce [35].  

Finally, we evaluate the application of several big data supervised techniques that 

manage imbalanced datasets [34, 36] such as cost-sensitive Random Forest (RF-

BDCS), Random Oversampling with Random Forest (ROS+RF-BD) and the Apache 

Spark Support Vector Machines (SVM-BD) [36] combined with MapReduce ROS 

(ROS+SVM-BD). The effectiveness of the supervised approach is compared to the 

well-known unsupervised RBH, RSD and OMA algorithms following an evaluation 

scheme that take data imbalance into account. All the algorithms were evaluated on 

benchmark datasets derived from the following yeast genome pairs: S. cerevisiae and 

K. lactis, S. cerevisiae and C. glabrata [24] and S. cerevisiae and S. pombe [37]. The 

S. cerevisiae and C. glabrata pair is particularly complex for OD since both species 

had undergone WGD. We found that our supervised approach outperformed 

traditional methods, mainly when we applied ROS combined with SVM-BD. 

Materials and Methods  

Gene pair features 

Starting from two genome representations being 𝐺1 =  𝑥1, 𝑥2, … , 𝑥𝑛   and 𝐺2 =

 𝑦1 , 𝑦2 , … , 𝑦𝑚  , with n and m annotated gene sequences or proteins, respectively, we 
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define gene pair features in Table 1 representing continuous normalized values of the 

following similarity measures: 

- The sequence alignment measure 𝑆1 averages the local and global protein alignment 

scores from the Smith Waterman [38] and the Needleman-Wunsch [39] algorithms 

calculated with a specified scoring matrix, and “gap open” (GOP) and “gap 

extended” (GEP) parameters. 

- Measure 𝑆2 is calculated from the length (L) of the sequences  by using the 

normalized difference for continuous values [40].  

- The similarity measure 𝑆3  is calculated from the distance between pairs of sequences 

in regards to their membership to Locally Collinear Blocks (LCB)s. These blocks 

represent truly homologous regions that can be obtained with the Mauve software 

[41]. The 𝐿𝐶𝐵[𝑘, 1…𝑛] matrix represents the total number of codons in the block k 

for each n gene belonging to genome 𝐺1; and 𝐿𝐶𝐵[𝑘, 𝑛 …𝑛 + 𝑚] counts for the 

membership in genome 𝐺2. The total number of LCBs where one or both of the 

sequences in the gene pair (𝑥𝑖 , 𝑦𝑗 ) contain at least one codon is represented by Q. 

The normalized difference is selected for the comparison of the continuous values in 

the 𝐿𝐶𝐵[𝑘, 𝑝] matrix.  

- Based on the spectral representation of sequences from the global protein pairwise 

alignment, the 𝑆4 measure uses the Linear Predictive Coding [40]. First, each amino 

acid that lies in a matching region without “gaps” between two aligned sequences is 

replaced by its contact energy [42]. The average of this physicochemical feature in 

the predefined window size W, called the moving average for each spectrum, is then 

calculated. Next, the similarity measure 𝐶𝑜𝑟𝑟 𝑀𝑋,𝑀𝑌  between the two spectral 

representations in a matching region is calculated by using the Pearson correlation 

coefficient and the corresponding significance level. Finally, the significant 
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similarities of the R regions without “gaps” are aggregated considering the length 

𝑙𝑒𝑛𝑘  of each k region. From our previous studies presented in [43-44], we have 

considered three features for the physicochemical profile with W values of 3, 5 and 

7.  

Table 1  - Gene pair features. 

Measure Definition Parameters 

Local and global 
alignment  𝑆1 𝑥𝑖 , 𝑦𝑗  =

𝑆𝑙 𝑥𝑖 , 𝑦𝑗  + 𝑆𝑔(𝑥𝑖 , 𝑦𝑗 )

2

𝑆𝑙 𝑥𝑖 , 𝑦𝑗  =   
𝑐𝑙 𝑥𝑖 , 𝑦𝑗  , 𝑐𝑙 𝑥𝑖 , 𝑦𝑗  > 0

0,                     𝑐𝑙 𝑥𝑖 , 𝑦𝑗  ≤ 0
 

𝑐𝑙 𝑋𝑖 , 𝑌𝑗  =
𝑠𝑤𝑎𝑙𝑖𝑔𝑛 𝑥𝑖 , 𝑦𝑗 ,𝑀, 𝑔𝑜, 𝑔𝑒 

𝑚𝑎𝑥  𝑠𝑤𝑎𝑙𝑖𝑔𝑛 𝑥𝑘 , 𝑦𝑝 , 𝑀, 𝑔𝑜, 𝑔𝑒  
,

∀𝑘 ∈ [1, 𝑛], ∀𝑝 ∈ [1,𝑚]

𝑆𝑔 𝑋𝑖 , 𝑌𝑗  =  
𝑐𝑔 𝑥𝑖 , 𝑦𝑗  , 𝑐𝑔 𝑥𝑖 , 𝑦𝑗  > 0

0,                         𝑐𝑔 𝑥𝑖 , 𝑦𝑗  ≤ 0
 

𝑐𝑔 𝑋𝑖 , 𝑌𝑗  =
𝑛𝑤𝑎𝑙𝑖𝑔𝑛 𝑥𝑖 , 𝑦𝑗 ,𝑀, 𝑔𝑜, 𝑔𝑒 

𝑚𝑎𝑥  𝑛𝑤𝑎𝑙𝑖𝑔𝑛 𝑥𝑘 , 𝑦𝑝𝑀, 𝑔𝑜, 𝑔𝑒  
,

∀𝑘 ∈ [1, 𝑛], ∀𝑝 ∈ [1,𝑚]

 

M -
substitution 

matrix and 

go, ge- 
GOP and 

GEP 

Length 
𝑆2 𝑥𝑖 , 𝑦𝑗 = 1 −

 𝐿(𝑥𝑖) − 𝐿(𝑦𝑗 ) 

𝑚𝑎𝑥 𝐿 𝑧𝑘  −𝑚𝑖𝑛(𝐿 𝑧𝑘 )
,

𝑧 = 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑦1, 𝑦2, … , 𝑦𝑚           

∀𝑘 ∈  1, 𝑛 + 𝑚                                      

 

 

Membership to 

locally collinear 
blocks 

𝑆3 𝑥𝑖 , 𝑦𝑗 = 1 − 𝑑𝑙𝑐𝑏  𝑥𝑖 , 𝑦𝑗  

𝑑𝑙𝑐𝑏  𝑥𝑖 , 𝑦𝑗 =
1

𝑄
×  𝑑𝑙𝑐𝑏  𝑘, 𝑥𝑖 , 𝑦𝑗 

𝐿𝐶𝐵𝑠

𝑘=1

𝑑𝑙𝑐𝑏  𝑘, 𝑥𝑖 , 𝑦𝑗 =

 
 
 

 
 

0,
𝑚𝑎𝑥 𝐿𝐶𝐵 𝑘, 𝑝  =

𝑚𝑖𝑛(𝐿𝐶𝐵 𝑘, 𝑝 )
 𝐿𝐶𝐵 𝑘, 𝑖 − 𝐿𝐶𝐵 𝑘, 𝑛 + 𝑗  

𝑚𝑎𝑥 𝐿𝐶𝐵 𝑘, 𝑝  −𝑚𝑖𝑛(𝐿𝐶𝐵 𝑘, 𝑝 )
,

 

∀𝑙 ∈  1, 𝑛 + 𝑚 ; 𝑘 = 1… 𝐿𝐶𝐵𝑠

 

Mauve 

software 
parameters  

Physicochemical 

profile 
𝐶𝑜𝑟𝑟 𝑀𝑋,𝑀𝑌 =  

𝐶𝑜𝑟𝑟(𝑀𝑋,𝑀𝑌) , 𝑠𝑖𝑔 ≤ 0.05
0 , 𝑠𝑖𝑔 > 0.05

 

𝑆4 𝑥𝑖 , 𝑦𝑗 =
 𝐶𝑜𝑟𝑟(𝑀𝑋𝑖𝑘 , 𝑀𝑌𝑗𝑘 ) × 𝑙𝑒𝑛𝑘

𝑅
𝑘=0

 𝑙𝑒𝑛𝑘
𝑅
𝑘=0

 

W - moving 

average 
window 

size of each 

spectrum 

Big data supervised classification managing data imbalance 

Given a set 𝐴 =  𝑆𝑟(𝑥𝑖 , 𝑦𝑗 )  of gene pair features or attributes as discrete or 

continuous values of r gene pair similarity measure functions, previously specified, 
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we represent a POD decision system 𝐷𝑆 = (𝑈,𝐴 ∪   𝑑 ), where 

𝑈 =   𝑥𝑖 , 𝑦𝑗  , ∀𝑥𝑖 ∈ 𝐺1, ∀𝑦𝑗 ∈ 𝐺2 is the universe of the gene pairs, and 𝑑 ∉ 𝐴 is the 

binary decision attribute obtained from a curated classification. This decision attribute 

defines the extreme data imbalance. Given an underlying function 𝑓: 𝑆 →  0,1  

defined on the set S of gene pair instances, the learning process produces a set of 

learning functions  𝛤 = {𝑓 : 𝐿 →  0,1 |𝐿 ⊂ 𝑆} that approximate f from the train set L. 

The goal is to find the best approximation function from 𝛤 having a fitness function or 

a classification evaluation metric. In this case, the evaluation metric should take into 

account the low ratio of orthologs to the total number of possible gene pairs in the test 

set (S-L). The big data supervised classification divides S into train and test instance 

to build a learning model 𝑓  and to classify the instances by means of a big data 

supervised algorithm managing the imbalance between classes. 

The proposed big data processing framework is shown in Table 2. We use the open-

source project Hadoop [45] with its highly scalable and fault-tolerant Hadoop 

Distributed File System (HDFS). We also utilize the scalable Mahout data mining and 

machine learning library [46] with machine learning algorithms adapted according to 

the MapReduce scheme as the MapReduce implementation of the RF algorithm [47]. 

Finally, we use the Apache Spark framework [36] interacting with HDFS, when the 

implementation of SVM-BD in the scalable MLLib machine learning library [48] is 

combined with the MapReduce ROS implementation [34]. 
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Table 2  - Big data framework, applications and algorithms. 

Big data framework Application Algorithms 

Hadoop 2.0.0 (Cloudera CDH4.7.1) with the head 

node configured as name-node and job-tracker, and 

the rest, as data-nodes and task-trackers. 

- MapReduce ROS 

implementation 

- A cost-sensitive 

approach for 

Random Forest 

MapReduce 

algorithm (RF-BD) 

- MapReduce RF 

implementation 

(Mahout Library) 

RF-BDCS  

ROS (100%) + RF-BD 

ROS (130%) + RF-BD 

Apache Spark 1.0.0 with the head node configured 

as master and name-node, and the rest, as workers 

and data-nodes.  

- Apache Spark 

Support Vector 

Machines (MLLib) 

ROS (100%) + SVM-BD 

ROS (130%) + SVM-BD 

Evaluation scheme considering data imbalance  

For the evaluation of POD algorithms, we compare the supervised solutions and the 

unsupervised ones represented by the reference RBH, RSD and OMA algorithms 

following the evaluation scheme in Figure 1. The process separates the pairs into train 

and test sets and calculates pairwise similarity measures for the pairs of both sets. The 

sequences of the test sets should be used to run the unsupervised reference algorithms. 

The train set should be used for building the supervised models to be tested only with 

the test set. 

The performance quality evaluation involves the calculation of the following 

evaluation metrics for imbalanced datasets. 

The Geometric Mean (G-Mean) [49] is defined as: 

𝐺 −𝑀𝑒𝑎𝑛 =  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

where 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 and 𝑇𝑁𝑅𝑎𝑡𝑒 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝐹𝑃+𝑇𝑁
 are calculated from 

True Positives (TP), False Negatives (FN), False Positives (FP) and True Negatives 

(TN). 

The Area Under the ROC Curve (AUC) [50] is computed obtaining the area of the 

ROC graphic. Concretely, we approximate this area using the average of True 

Positive Rate and False Positive Rate values by means of the following equation: 

𝐴𝑈𝐶 =
1+𝑇𝑃𝑟𝑎𝑡𝑒 −𝐹𝑃𝑟𝑎𝑡𝑒

2
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where 𝑇𝑃𝑟𝑎𝑡𝑒 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 corresponds to the percentage of positive instances correctly 

classified, and  𝐹𝑃𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 corresponds to the percentage of negative instances 

misclassified.  

We use G-Mean seeking to maximize the accuracy of the two classes (orthologs and 

non-orthologs) by achieving a good balance between sensitivity and specificity that 

consider misclassification costs, and AUC to show the classifier performance over a 

range of data distributions [51]. 

 

Figure 1  - Workflow of the evaluation of supervised vs. unsupervised POD 
algorithms. 

Experiments for building and testing the supervised POD algorithms 

Datasets 

For the evaluation of POD algorithms in related yeast genomes, in Experiment 1 we 

evaluated the algorithms inside a genome by partitioning at random 75% of the 

complete set of pairs for training and 25% for testing, and in Experiment 2 we built 
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the model from a genome pair and tested it in two different pairs. Specifically, in 

Experiment 1 we divided the S. cerevisiae - K. lactis set into 16.986.996 pairs for 

training and 5.662.332 pairs for testing. The four datasets (BLOSUM50, 

BLOSUM62_1, BLOSUM 62_2 and PAM250) of each genome pair, summarized in 

Table 3, 4 and 5, were built from combinations of alignment parameter settings shown 

in Table 6. On the other hand, in Experiment 2, we built the classification model from 

22.649.328 pairs of S. cerevisiae and K. lactis genomes and tested it in 29.887.416 

pairs of  S. cerevisiae and C. glabrata, and 8.095.907 pairs of S. cerevisiae and S. 

pombe genomes.  

Table 3  - Datasets S.cerevisiae - K. lactis. 

Datasets  #Ex.  #Atts

.  

Class 

(maj;min)  

#Class     

(maj; min)  

%Class   

(maj; min)  

IR  

Blosum50  22.649.328  6  (0; 1)  (22.646.914; 

2414)  

(99.989; 

0.011)  

9381.489  

Blosum621  22.649.328  6  (0; 1)  (22.646.914; 

2414)  

(99.989; 

0.011)  

9381.489  

Blosum622  22.649.328  6  (0; 1)  (22.646.914; 

2414)  

(99.989; 

0.011)  

9381.489  

Pam250  22.649.328  6  (0; 1)  (22.646.914; 

2414)  

(99.989; 

0.011)  

9381.489  

Table 4  - Datasets S. cerevisiae – C .glabrata. 

Datasets  #Ex.  #Atts

.  

Class 

(maj;min)  

#Class    

(maj; min)  

%Class    

(maj; min)  

IR  

Blosum50  29.887.416  6  (0; 1)  (29.884.575, 

2841)  

(99.99; 0.01)  10519.034  

Blosum621  29.887.416  6  (0; 1)  (29.884.575, 

2841)  

(99.99; 0.01)  10519.034  

Blosum622  29.887.416  6  (0; 1)  (29.884.575, 

2841)  

(99.99; 0.01)  10519.034  

Pam250  29.887.416  6  (0; 1)  (29.884.575, 

2841)  

(99.99; 0.01)  10519.034  

Table 5  - Datasets S. cerevisiae - S. pombe. 

Datasets  #Ex.  #Atts

.  

Class 

(maj;min)  

#Class    

(maj; min)  

%Class  

(maj; min)  

IR  

Blosum50  8.095.907  6  (0; 1)  (8.090.950; 

4.957)  

(99.939; 

0.061)  

1632.227  

Blosum621  8.095.907  6  (0; 1)  (8.090.950; 

4.957)  

(99.939; 

0.061)  

1632.227  

Blosum622  8.095.907  6  (0; 1)  (8.090.950; 

4.957)  

(99.939; 

0.061)  

1632.227  

Pam250  8.095.907  6  (0; 1)  (8.090.950; 

4.957)  

(99.939; 

0.061)  

1632.227  
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Table 6  - Combination of alignment parameter settings on the datasets. 

Dataset Substitution matrix Gap open Gap extended 

BLOSUM50 BLOSUM50 15 8 

BLOSUM62_1 BLOSUM62 8 7 

BLOSUM62_2 BLOSUM62 12 6 

PAM250 PAM250 10 8 

 

S. cerevisiae - S. pombe dataset contains ortholog pairs representing 95.18% of the 

union of the Inparanoid7.0 and GeneDB classifications described in [37]. On the other 

hand, S. cerevisiae - K. lactis and S. cerevisiae - C. glabrata datasets contain all 

ortholog pairs in the gold groups reported in [24]. When we built the set of instances 

with all possible pairs, we just excluded 89 genes from S. cerevisiae, 37 from C. 

glabrata and 1403 from K. lactis since we didn’t find their genome physical location 

data in the YGOB database [52], required for the LCB feature calculation. 

Table 3, 4 and 5 summarizes the characteristics of the four datasets including the total 

number of gene pairs (#Ex.), the number of attributes (#Atts), the labels for majority 

and minority classes (Class (maj; min)), the number of pairs in both classes (#Class 

(maj; min)), the percentage of pairs in majority and minority classes (%Class(maj; min) ) 

and the imbalance ratio (IR). 

The calculation of gene pair features or attributes (average of local and global 

alignment similarity measures, length of sequences, gene membership to conserved 

regions (synteny) and physicochemical profiles within 3, 5 and 7 window sizes) was 

specified in the previous section. 

Algorithms and parameter values 

The supervised algorithms compared in the experiments and the parameter values are 

specified in Table 7. Additionally, Table 8 summarizes the parameter values and the 

implementation details for the unsupervised algorithms. 
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Table 7  - Supervised algorithms and parameter values in the experiments. 

Algorithm Parameter values 

RF-BD
1
 Number of trees: 100 

Random selected attributes per node: 3
2 

Number of maps: 20 

RF-BDCS Number of trees: 100 

Random selected attributes per node: 3 

Number of maps: 20 

𝐶 +| − = 𝐼𝑅  

𝐶 −| + = 1 

ROS (100%)+ RF-BD RS
3 
= 100% 

ROS (130%)+ RF-BD RS
 
= 130% 

SVM-BD Regulation parameter:  

1.0, 0.5 and 0.0 

Number of iterations:  

100 (by default) 

StepSize: 1.0 (by default) 

miniBatchFraction: 1.0 (percent of the dataset 

evaluated in each iteration 100%) 

ROS (100%) + SVM-

BD 

RS
 
= 100% 

ROS (130%) + SVM-

BD 

RS
 
= 130% 

1 
BD means big data. 

2
 int(log2 N + 1), where N is the number of attributes of the dataset.   

3
 RS represents resampling size. 

Table 8  - Unsupervised algorithms and parameter values in the experiments. 

Algorithm Parameter values Implementation 

RBH Soft filter and Smith 

Waterman alignment 

E-value = 1e-06 

BLASTp program
1
  

Matlab script 

RSD E-value thresholds:  

1e-05, 1e-10 and 1e-20 

Divergence thresholds 

α: 0.8, 0.5 and 0.2. 

BLASTp program
1
  

Python script
2 

OMA Default parameter 

values 

OMA stand-alone
3
 

1
 Available in http://www.ncbi.nlm.nih.gov/BLAST/. 

2 
Available in https://pypi.python.org/pypi/reciprocal_smallest_distance/1.1.4/. 

3
 Available in http://omabrowser.org/standalone/OMA.0.99z.3.tgz. 

Results and Discussion 
In this section, we first analyze the supervised approaches based on big data 

technologies, and later we compare the best supervised solution with the classical 

unsupervised methods.  

Supervised classifiers: Analysis of big data based approaches 

The G-Mean values of the supervised classifiers with the best performance in 

experiments 1 and 2 are shown in Table 9 for the Blosum50, Blosum621, Blosum622 

and Pam250 datasets. The best values are in bold face. The G-Mean values of the 

http://www.ncbi.nlm.nih.gov/BLAST/
https://pypi.python.org/pypi/reciprocal_smallest_distance/1.1.4/
http://omabrowser.org/standalone/OMA.0.99z.3.tgz
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supervised algorithms change only slightly with the selection of different alignment 

parameters. The stability of these classification results may be either caused by the 

aggregation of global and local alignment scores in a single similarity measure or by 

the appropriate combination of scoring matrices and gap penalties in relation to the 

sequence diversity between the two yeast genomes. The selection of the four scoring 

matrices was aimed to find homologous protein sequences in a wide range of amino 

acid identities between both genomes. For example, BLOSUM50 and PAM250 

scoring matrices are frequently used to detect proteins sharing less than 50% of amino 

acid identities [53]. In addition, the selected gap penalties values are not low enough 

to affect the sensitivity of the alignment [53]. 

Table 9  - Geometric mean results of the best supervised classifiers in each 
dataset. 

Dataset ROS (RS: 

100%) + RF-

BD        

(Scer-Klac) 

ROS (RS: 

130%) + RF-

BD        

(Scer-Klac) 

RF-BDCS  

(Scer-Klac) 

ROS (RS: 

100%) + RF-

BD         

(Scer-Cgla) 

ROS (RS: 

130%) + RF-

BD          

(Scer-Cgla) 

RF-BDCS 

(Scer-

Cgla) 

ROS (RS: 

100%) + 

SVM-BD 

(regParam: 

1.0)         

(Scer-

Spombe) 

ROS (RS: 

100%) + 

SVM-BD 

(regParam: 

0.5)         

(Scer-

Spombe) 

Blosum50 0.9818 0.9818 0.9896 0.9889 0.9885 0.9934 0.8393 0.8673 

Blosum621 0.9801 0.9818 0.9855 0.9891 0.9903 0.9932 0.8707 0.8959 

Blosum622 0.9793 0.9793 0.9905 0.9910 0.9910 0.9929 0.8536 0.8694 

Pam250 0.9818 0.9818 0.9899 0.9912 0.9905 0.9941 0.8495 0.8839 

 

The average results of AUC and G-Mean obtained in experiments 1 and 2 for the 

supervised algorithms with different parameter values are shown in Table 10. The 

average  𝑇𝑃𝑅𝑎𝑡𝑒  and  𝑇𝑁𝑅𝑎𝑡𝑒  are also depicted in Figure 2. SVM-BD has been left out 

from the table due to its very poor performance in G-Mean caused by its imbalance 

between 𝑇𝑃𝑅𝑎𝑡𝑒  and 𝑇𝑁𝑅𝑎𝑡𝑒  as shown in Figure 2. Both Table 10 and Figure 2 prove 

that big data supervised classifiers managing imbalance outdo their corresponding big 

data supervised versions.  
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The ROS pre-processing method for big data makes SVM-BD useful for POD and 

improves the performance of RF-BD even more with a higher value for the 

resampling size parameter of 130% [54]. In contrast, both experiments show that the 

variation in this parameter value from 100% to 130% does not significantly influence 

on the performance of the SVM-BD classifier with different regulation values. 

Specifically, RF-BDCS shows the best performance in S. cerevisiae - C. glabrata and 

S . cerevisiae - K. lactis when the classification quality is measured by G-Mean  and 

AUC metrics, because it enhances the learning of the minority class. The criterion 

used to select the best tree split is based on the weighting of the instances according to 

their misclassification costs, and such costs are also considered to calculate the class 

associated with a leaf [34]. This cost treatment does not explicitly change the sample 

distribution and avoids the possible overtraining, that it is present in the ROS 

solutions due to replicated cases. The election of the cost values (𝐶 +| − = 𝐼𝑅 and 

𝐶 −| + = 1) may also define the success of the algorithm. 

In the case of SVM-BD, the fixed regularization parameter defines the trade-off 

between the goal of minimizing the training error (i.e., the loss) and minimizing the 

model complexity to avoid overfitting. The higher is its value, the simpler the model. 

Nonetheless, setting an intermediate value, or one close to cero may produce a better 

performance in classification [48]. This is the case of the ROS (RS: 100%) + SVM-

BD (regParam: 0.5) classifier that exhibits the best AUC and G-Mean values in S. 

cerevisiae - S. pombe, and the best balance between 𝑇𝑃𝑅𝑎𝑡𝑒  and  𝑇𝑁𝑅𝑎𝑡𝑒  in the three 

datasets (Figure 2). 



 - 16 - 

 

 

Table 10  - AUC and G-Mean results of supervised classifiers in experiments 1 
and 2. 

  S.cerevisiae-

S.Klactis 

S.cerevisiae-

C.glabrata 

S.cerevisiae-

S.pombe 

Algorithm AUC G-Mean AUC G-Mean AUC G-Mean 

RF-BD 0.6979 0.6291 0.7455 0.7005 0.5172 0.1851 

ROS (RS: 100%)+RF-BD  0.9809 0.9807 0.9901 0.9900 0.6096 0.4527 

ROS (RS: 130%)+RF-BD  0.9813 0.9812 0.9901 0.9901 0.6121 0.4581 

RF-BDCS  0.9889 0.9889 0.9934 0.9934 0.7294 0.6745 

ROS (RS: 100%) + SVM-BD 
(regParam: 1.0) 

0.9477 0.9477 0.9542 0.9542 0.8632 0.8533 

ROS (RS: 100%) + SVM-BD 
(regParam: 0.5) 

0.8845 0.8791 0.9540 0.9539 0.8845 0.8791 

ROS (RS: 100%) + SVM-BD 
(regParam: 0.0) 

0.6135 0.4961 0.9432 0.9431 0.6135 0.4961 

ROS (RS: 130%) + SVM-BD 

(regParam: 1.0) 

0.8164 0.7956 0.9523 0.9522 0.8164 0.7956 

ROS (RS: 130%) + SVM-BD 
(regParam: 0.5) 

0.8629 0.8528 0.9539 0.9539 0.8629 0.8528 

ROS (RS: 130%) + SVM-BD 
(regParam: 0.0) 

0.6248 0.5147 0.9429 0.9428 0.6248 0.5147 

 

 

Figure 2  - Average true positive and true negative rate values of supervised 
classifiers obtained in experiments 1 and 2. 
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In order to balance time with classification quality, time consumption is another 

aspect to have in mind when comparing big data solutions. Table 11 contains run time 

in seconds for all big data solutions in each dataset and the faster algorithms are 

highlighted in bold face. These results allow us to prove that the time required is 

directly related to the operations needed for each method, as well as to the size of the 

datasets used to build the model. The fastest algorithm considering the average run 

time is SVM-BD followed by SVM-BD combined with ROS. Thus, the fastest 

algorithms coincide with the ones with better performance. In general, the ROS (RS: 

100%) + SVM-BD (regParam: 0.5) classifier can be considered the best supervised 

solution considering both performance and time. 

Table 11  - Run time results in seconds of the big data solutions in experiments 
1 and 2. 

Datasets S.cerevisiae-

S.Klactis 

S.cerevisiae-

C.glabrata 

S.cerevisiae-

S.pombe 

RF-BD 1201.59 2174.90 2060.99 

ROS (RS: 100%)+RF-BD  2983.75 4562.38 4440.03 

ROS (RS: 130%)+RF-BD  3345.04 4805.50 4681.51 

RF-BDCS  1302.41 2362.04 2025.15 

SVM-BD 461.87 482.85 480.45 

ROS (RS: 100%) + SVM-
BD (regParam: 1.0) 

867.38 1011.59 1012.46 

ROS (RS: 100%) + SVM-
BD (regParam: 0.5) 

874.62 1008.77 1013.32 

ROS (RS: 100%) + SVM-
BD (regParam: 0.0) 

859.17 1008.24 999.31 

ROS (RS: 130%) + SVM-
BD (regParam: 1.0) 

927.14 1079.19 1079.58 

ROS (RS: 130%) + SVM-
BD (regParam: 0.5) 

929.17 1084.19 1076.33 

ROS (RS: 130%) + SVM-
BD (regParam: 0.0) 

924.42 1076.37 1077.21 

Comparison of supervised vs. unsupervised classifiers  

The average results of AUC and G-Mean obtained for the best supervised algorithms 

and the unsupervised algorithms with different parameter values are shown in Table 

12 for experiments 1 and 2. The average  𝑇𝑃𝑅𝑎𝑡𝑒  and  𝑇𝑁𝑅𝑎𝑡𝑒  are also depicted in 

Figure 3. The supervised classifiers outperform the unsupervised ones. Among the 

unsupervised algorithms, RSD reaches the highest G-Measure value by setting E-
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value = 1e-05 and  = 0.8 (recommended values in [55]) in S. cerevisiae - C. glabrata 

where similar results can also be seen for AUC and 𝑇𝑃𝑅𝑎𝑡𝑒  values. On the contrary, 

OMA was the best among the unsupervised algorithms in S. Cerevisiae - S. pombe 

datasets (Table 12).  

In general, the performance of all classifiers declined in S. Cerevisiae - S. pombe 

datasets due to the fact that S. pombe is a distant relative of S. cerevisiae [56]. The  

supervised classifiers performance is affected for the same reason and also, by the 

difference in data distribution between the train and test sets [57]. Conversely, ROS 

(RS: 100%) + SVM-BD (regParam: 0.5) remained stable in S. Cerevisiae - C. 

glabrata and S. Cerevisiae - S. pombe datasets when considering the balance between 

𝑇𝑃𝑅𝑎𝑡𝑒  and 𝑇𝑁𝑅𝑎𝑡𝑒 . Superior results in S. cerevisiae - C. glabrata are outstanding, 

since both genomes underwent a WGD and a subsequent differential loss of gene 

duplicates, so that algorithms are prone to produce false positives. Thus, this dataset 

contains “traps” for OD algorithms [24]. 

Table 12  - AUC and G-Mean results of the unsupervised and the best 
supervised classifiers in experiments 1 and 2. 

  S. cerevisiae-.K. 

lactis 

S. cerevisiae-C 

.glabrata 

S. cerevisiae-S. 

pombe 

Algorithm AUC G-Mean AUC G-Mean AUC G-Mean 

RBH 0.1497 0.0062 0.8196 0.7995 0.4697 0.4525 

RSD 0.2 1e-20 0.5862 0.4862 0.9238 0.9206 0.4874 0.4438 

RSD 0.5 1e-10 0.5926 0.4643 0.9340 0.9316 0.4980 0.4063 

RSD 0.8 1e-05 0.5886 0.4518 0.9382 0.9362 0.5009 0.3899 

OMA 0.5765 0.4904 0.9287 0.9259 0.5151 0.4644 

RF-BDCS  0.9889 0.9889 0.9934 0.9934 0.7294 0.6745 

ROS (RS: 100%) + SVM-BD 
(regParam: 1.0) 

0.9477 0.9477 0.9542 0.9542 0.8632 0.8533 

ROS (RS: 100%) + SVM-BD 
(regParam: 0.5) 

0.8845 0.8791 0.9540 0.9539 0.8845 0.8791 
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Figure 3  - Average true positive and true negative rate values of the 
unsupervised and the best supervised classifier in experiments 1 and 2. 

 

The reduced quality shown by RBH, RSD and OMA, mainly in the case of RBH, 

could be caused by their initial assumption that the sequences of orthologous 

genes/proteins are more similar to each other than they are to any other genes from 

the compared organisms. This assumption may produce classification errors [22], 

mainly in RBH, that infer orthology relationships simply based on reciprocal BLAST 

best hits, in spite of the fact that BLAST parameters can be tuned as has been 

recommended in [58]. 

Conversely, RSD not only compares the sequence similarity of query sequence a of 

genome A against all sequences of genome B using the BLASTp algorithm, but it also 

separately aligns sequence a against the corresponding set of hits resulting from a 

BLAST search. Those pairs that satisfy a divergence threshold (defined as the fraction 
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of the alignment total length) are used for the calculation of evolutionary distances. 

From this step, sequence b yielding the shortest distance with sequence a is retained 

and then used as query for a reciprocal BLASTp against genome A. Thus, the 

algorithm is repeated in the opposite direction, and if b finds a as its best reciprocal 

short distance hit, then, the pair (a, b) can be assumed as an ortholog pair and their 

evolutionary distance is retained. In sum, the RSD procedure relies on global 

sequence alignment and maximum likelihood estimation of evolutionary distances to 

detect orthologs between two genomes, and as a result, it finds many putative 

orthologs missed by RBH because it is less likely than RBH to be misled by existing 

close paralogs.  

The OMA algorithm also displays advantages over RBH, corroborated in both 

experiments 1 and 2. It uses evolutionary distances instead of alignment scores. This 

algorithm allows the inclusion of one-to-many and many-to-many orthologs. It also 

considers the uncertainty in distance estimations and detects potential differential 

gene losses. 

From the point of view of the intrinsic information managed by the algorithms, the 

success of big data supervised classifiers managing imbalance over RSD and OMA 

may be explained by feature combinations calculated for the datasets together with the 

learning from curated classifications. That is, the assembling of alignment measures 

together with the comparison of sequence lengths, the membership of genes to 

conserved regions (synteny) and the physicochemical profiles of amino acids, 

improve the supervised classification results on the test sets, even in those built from 

two species that underwent WGD. 

With the aggregation of global and local alignment scores we are combining protein 

structural and functional relationships between sequence pairs, respectively. Besides, 
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we incorporate other gene pair features: (i) the periodicity of the physicochemical 

properties of amino acids that allows us to detect similarity among protein pairs in 

their spectral dimension [59]; (ii) the conserved neighbourhood information, which 

considers that genes belonging to the same conserved segment in genomes of different 

species will probably be orthologs; and (iii) the length of sequences that can be seen 

as the relative positions of nucleotides/amino acids within the same gene/protein in 

different species and in duplicated genomic regions within the same species.  

In order to obtain (i), each of the two aligned sequences is first represented as an 

ordered arrangement of moving average values of amino acids contact energies in a 

window frame of the aligned regions without gaps. Then each spectrum is correlated 

to obtain the pair similarity value. This feature may allow us to deal with sequences 

having functional similarities despite their low amino acid sequence identities 

(<35%).  These sequences may affect OD in S. cerevisiae-S. pombe which are 

moderately related and their orthologs may be diverged. 

In feature (ii), two genes from different genomes are more likely to be orthologs when 

they share a high sequence similarity and they are placed in the same LCB (conserved 

segment that does not seem to be altered by genome rearrangements [60]). The 

detection of authentic orthologs is frequently impaired by genome rearrangements and 

other large-scale evolutionary events like WGD.  

With regard to sequence length (iii), it is disturbed by insertion and deletion of 

stretches of DNA over evolutionary time. This makes more distant relatives to have a 

higher likelihood of sequence length difference [61]. In this way, the genomes 

involved in this study are relatives and length similarities may complement the 

detection of homology.  
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Conclusions 
The development of effective supervised algorithms for POD in a big data scenario 

was made possible by: (i) the availability of curated databases (authentic orthologs), 

(ii) the combination of traditional alignment measures with other gene pair features 

(sequence length, gene membership to conserved regions and physicochemical 

profiles) to complement homology detection, and (iii) the treatment of the low ratio of 

orthologs to the total possible gene pairs between two genomes. By applying 

evaluation metrics such as G-mean, AUC and the balance between 𝑇𝑃𝑅𝑎𝑡𝑒  and 

𝑇𝑁𝑅𝑎𝑡𝑒 , our results show that gene pairwise feature combinations provide excellent 

POD in a big data supervised scenario that consider data imbalance. The SVM-BD 

classifier combined with the ROS (RS: 100%) pre-processing with regulation 

parameter 0.5 outdid  the rest of the big data supervised solutions and the popular 

unsupervised (RBH, RSD and OMA) algorithms even when the supervised model was 

extended to datasets containing “traps” for OD algorithms. The classification 

performance of the supervised algorithms measured by G-Mean and AUC metrics did 

not significantly change in the four test sets obtained with different alignment 

parameter settings. When the balance between time and classification quality is 

considered, ROS (RS: 100%) + SVM-BD (regParam: 0.5) also proves to be the 

algorithm of choice. 

In future research, the introduction of new gene pair features might improve the 

effectiveness and efficiency of the supervised algorithms for POD. 
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