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Abstract

Over the recent years, continuous optimization has significantly evolved to become the mature research field it is nowadays.
Through this process, evolutionary algorithms had an important role, as they are able to obtain good results with limited
resources. Among them, bio-inspired algorithms, which mimic cooperative and competitive behaviors observed in animals,
are a very active field, with more proposals every year. This increment in the number of optimization algorithms is apparent in the
many competitions held at corresponding special sessions in the last 10 years. In these competitions, several algorithms or ideas
have become points of reference, and used as starting points for more advanced algorithms in following competitions. In this
paper, we have obtained, for different real-parameter competitions, their benchmarks, participants, and winners (from the
competitions’ website) and we review the most relevant algorithms and techniques, presenting the trajectory they have followed
over the last years and how some of these works have deeply influenced the top performing algorithms of today. The aim is to be
both a useful reference for researchers new to this interesting research topic and a useful guide for current researchers in the field.
We have observed that there are several algorithms, like the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), the
Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE), Mean-Variance
Mapping Optimization (MVMO), and Multiple Offspring Sampling (MOS), which have obtained a strong influence over other
algorithms. We have also suggested several techniques that are being widely adopted among the winning proposals, and that
could be used for more competitive algorithms. Global optimization is a mature research field in continuous improvement, and
the history of competitions provides useful information about the past that can help us to learn how to go forward in the future.

Keywords Continuous optimization - Global optimization - Large-scale global optimization - Multimodal optimization -
Real-parameter competitions

Preliminaries nowadays in the research community, due to the wide number
of real-world applications in fields such as engineering that
Global optimization, also referred to as real-parameter optimi- ~ need to be optimized. Global optimization implies the mini-

zation, or continuous optimization, is a topic of great interest ~ mization or maximization of a specific objective function (but
we can consider only minimization without loss of generality).
Mathematically, minimize objective function means to find x"
defined by Eq. 1.
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(the best one cannot be guaranteed) in a reasonable time (mea-
sured in processing time or limit of evaluated solutions), and
without requiring any particular knowledge about the optimi-
zation problem [4]. Furthermore, these algorithms have been
successfully applied to a large number of problems related to
cognitive issues, feature selection [5], etc.

The recent and growing interest on this type of optimiza-
tion has generated a huge number of optimization algorithms
that tackle this type of optimization (and many more proposals
arise each year), from more classical proposals such as genetic
algorithms (GAs) [6, 7], simulated annealing (SA) [8], evolu-
tionary strategy [9], estimation of distribution algorithms
(EDAs) [10] to other evolutionary algorithms such as differ-
ential evolution (DE) [11, 12], nature-inspired algorithms
[13], bio-inspired algorithms [14], hybrid algorithms such as
co-evolutionary algorithms, that divide the problem in sub-
problems and then tackle each one using an algorithm [15,
16], and memetic algorithms (MA) [17], in which several
different algorithms are used to solve the problem (usually
one does the global exploration and another improves the
achieved solutions).

These algorithms are very useful, and many of them have
been successfully applied to many different optimization
problems, including several difficult cognitive ones such as
image recognition [18], identification of diseases [19], or de-
tection of taxonomies [20].

Unfortunately, the great number of proposals makes fol-
lowing the evolution of this field difficult, and there is no clear
criterion to select the most adequate algorithms. Even so,
sometimes authors experiments on different functions and un-
der different experimental conditions, disabling the direct
comparison of results obtained by the different algorithms.

In order to give more visibility to the field, many special
sessions have been proposed in international congresses such
as the IEEE Congress on Evolutionary Computation (CEC)
and in the Genetic and Evolutionary Computation Conference
(GECCO). In these special sessions, real-parameter optimiza-
tion competitions among the algorithms have been proposed.
In these competitions, organizers have presented a specific
benchmark with the implementation of the fitness functions
to optimize and all the experimental conditions to allow fair
comparisons among the proposals. Using the results obtained
in these competitions, the evolution of this research topic can
be observed over time, obtaining interesting conclusions.

In this paper, we are going to describe the different real-
coding optimization competitions, noting the benchmark used
for each one and briefly describing for each year the winners,
obtaining several conclusions of the evolution of the compe-
tition. Then we are going to discuss several issues that we
consider interesting about the research topic, the influence of
winning algorithms over the years, and the evolution of real-
parameter optimization.
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This paper has the following structure: In “Global
Optimization Competitions” section, we are going to describe
benchmarks and winning algorithms in several competitions
for real-parameter optimization (without constraints).

In “Constraint Real-Parameter Optimization™ section, we
present the evolution of a more specific optimization, real-
parameter optimization with constraints. In “Multimodal
Optimization” section, we study the competitions related with
another particular optimization, multimodal optimization, in
which the goal is to obtain all optima. In “Large-Scale
Optimization” section, we are going to study the evolution
and algorithms tackling problems with a higher dimensional-
ity (with dimension 1000 or higher), which is called large-
scale global optimization. In “Current Trends After a Decade
of Competitions” section, we are going to discuss, considering
all the competitions, the algorithms that have shown a stronger
influence, and also the techniques that are starting to be widely
adopted for algorithms in real-parameter optimization.

In “Conclusions” section, we are going to summarize the
main conclusions obtained after this roadmap in global opti-
mization. Finally, in the Appendix, we include a list of tables
with the summary of the algorithms remarked in the different
competitions.

Global Optimization Competitions

In this section, we are going to focus on global real-parameter
optimization benchmarks with no particular constraints (only
boundary constraints) in which the aim is to find one global
optimum.

Historically, there have been different types of competi-
tions, each one organized in the international congresses
IEEE Congress on Evolutionary Computation (CEC) and
Genetic and Evolutionary Computation Congress (GECCO).
In each congress, the same group of organizers has proposed,
in different years, several special competition sessions. Even
though over time the proposed benchmark may differ, there is
usually more similarity among the competitions within the
same congress (CEC or GECCO) than among those in differ-
ent congresses. Thus, we are going to describe and analyze
each congress in different sections.

In the CEC special sessions, since 2005, several competi-
tions have been traditionally proposed. Over the years, the
proposed benchmark has evolved along with the algorithms
that have participated in them. In the GECCO competition, a
particular benchmark, called Black-Box Optimization
Benchmark (BBOB), is used for the competitions. Recently,
in 2015 and 2016, another type of competition, which is not
related to any special session, has been proposed both in CEC
and in GECCO, with the particularity of being completely
black-box, since researchers have not knowledge about the
problems to be solved.
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First, in “IEEE Real-Coding Special Session
Competitions™ section, we are going to describe the different
real-coding competitions in the CEC over the years. Then, in
“BBOB Competition” section, we describe the different com-
petitions in GECCO using the BBOB. In “Black-Box
Optimization Competition”, we describe the main results of
the black-box competitions. Finally, in “Evolution of Real-
Parameter Optimization: Lessons Learnt” section, we note
several lessons learnt through the evolution of real-parameter
competitions. Note that we will refer to each algorithm
throughout this paper by the name given by the authors in
the special session where it was proposed, without expanding
the full acronym. The motivation for this is twofold: first,
many of these methods are complex algorithms combining
multiple strategies which leads to loosely defined names with
a lot of components. Second, these names are already used to
cite them in the literature (including the competitions compar-
isons carried out by the organizers). Nonetheless, each acro-
nym is accompanied by the corresponding reference the first
time it is introduced.

IEEE Real-Coding Special Session Competitions

In 1996, a benchmark was proposed, with both real-
optimization and Traveling Salesman Problems, for a first
competition [21]. Unfortunately, it was not widely adopted.
It was not until 2005 when more consolidated benchmarks on
real-parameter optimization were proposed, for a competition
within the IEEE CEC [22, 23].

Over the following years, other special sessions with relat-
ed competitions were proposed, with small differences in the
benchmarks. However, they share the same following
features:

e They are composed of a great number of functions to
optimize with different domain searches.

» All functions have been shifted to avoid benefiting algo-
rithms with bias to the center of the domain search. Also,
several of them were rotated, especially in last
benchmarks.

*  The functions were divided in unimodal and multimodals,
and new functions were composed of previous functions.

* Each function is evaluated 25 times, and the average for
each function is used to compare results.

* The functions are evaluated with different dimension
values: 10, 30, 50 (and 100 in recent competitions).

» The stopping criterion is the maximum evaluation num-
ber, maxEvals, which depends on the dimension value,
using maxEvals = 10,000 x Dim where Dim is the
dimensionality.

We can see an interesting evolution in the proposals over
the past few years. In addition, most information regarding the

competitions is available online,' including the definition of
benchmarks, comparative slides, results data, and the source
code of several of the competitions winners.

In this section, for each one of the considered real-
parameter competitions, we are going to indicate the view of
the competitors and the winning algorithms (taken from the
analysis carried out by the competition organizers). Initially,
we are going to consider the first three algorithms, but this
value can vary considering the degree of differences among
the algorithms.

CEC'2005 Real-Parameter Special Session

As previously mentioned, CEC’2005 was the first of a
series of real-parameter competitions. Its benchmarks have
been considered references, and it has been used in many
papers.

In this first important competition, there were very different
11 algorithmsz: three GAs, two DEs, two ES algorithms, one
PSOs, and one co-evolutionary algorithm. The competition
had such a high diversity and generated great interest perhaps
because previously there had been not clear references regard-
ing the performance of each model.

The clear winners were Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [24]-based algorithms, in
particular, [POP-CMA-ES [25], called G-CMA-ES in the
competition, and L-CMA-ES [26]. CMA-ES was a previ-
ously published evolution strategy [24] with a very so-
phisticated adaptation of its parameter. L-CMA-ES [26]
applied CMA-ES with a restarting criterion. [IPOP-CMA-
ES differ from the previous one in that, at each restart, the
number of solutions generated in each step is increased,
multiplied by a factor, obtaining better behavior in multi-
modal functions. Other algorithms that obtained good re-
sults were EDA [27] in unimodals and L-SaDE [28] and
DMS-L-PSO [29] in multimodals. Both L-SaDE and
DMS-L-PSO are MAs combining an exploratory algo-
rithm with an improvement algorithm to improve obtained
solutions, using in both cases the quasi-newton algorithm.
In the case of L-SaDE, the algorithm is a self-adaptive
DE, and in DMS-L-PSO, a multi-swarm PSO that ran-
domly groups the individuals into sub-populations several
times during the run.

This competition was important not only because it
was the starting point for more popular competitions but
also because the winner, IPOP-CMA-ES, has become an
important reference in current research on real-parameter
optimization.

! http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC-05/CEC05.htm
for the CEC’2005 competitions and http://web.mysites.ntu.edu.sg/epnsugan/
PublicSite/Shared%20Documents/Forms/Allltems.aspx for the rest of CEC
special sessions

2 http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC-05/CECO05.htm
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CEC'2011 Real-World Numerical Optimization Special Session

In the CEC’2011, the benchmark was rather different of
that proposed in previous competitions and in those to
come. Instead of being composed by classical functions
like other benchmarks, this benchmark was created with
real-world numerical optimization problems [30].
Composed of 13 problems, the benchmark measures the
error for different evaluation numbers, and obtains a mean
of 25 runs.

Fourteen algorithms participate in the competition®: ten
DEgs, three GAs, and one other algorithm. Again, the majority
of proposals in real-parameter competitions were DEs (70%),
but in this case, there were a considerable number of GAs
(20% of proposals). The majority of proposals were also MAs.

The winner was GA-MPC [31], a GA that uses a multiple
parent crossover which sorts by fitness and generates three
offspring, combined with an archive of best solutions to in-
crease diversity.

The second one was DE—ACR [32], a DE that adapts the F
and CR parameters using triangular distributions to adapt the
F and CR values in function of the separability of the function,
and it uses a sequential quadratic routine as the LS method.
The winning algorithm that came last was SAMODE [33],
proposed by the same authors as GA-MPC, SAMODE is
one DE with four different mutation types and four different
crossover operators, and it self-adapts the number of applica-
tions of each one according to the performance obtained in
previous iterations.

Because there are many differences in the benchmark as
compared to other years, the tendencies are different. First, it
seems that in this benchmarks the different problems greatly
differ in behavior, so the algorithms with the best results are
those which adapt their parameters to the problem to be solved
the fastest.

CEC'2013 Real-Parameter Special Session

In 2013, there was another real-parameter optimization com-
petition in CEC that was accompanied by a new benchmark
[34]. The main changes (as compared to the previous one,
CEC’2005) are the following:

e The functions have changed, 28 instead of 25, 5
unimodals, 15 multimodal functions, and 8 composition
functions.

» All functions are rotated.

» The optimum is different for each function.

» The same search ranges are used for all test functions, with
all functions shifted to obtain a different optimum.

3 http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC11-RWP/CEC11-
RWP.htm
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The special session received 21 algorithms*: 8 DEs, 5
based on CMA-ES, 2 PSOs (one of them combining a PSO
with an ABC), and other algorithms.

The winner was iCMAES-ILS [35], a hybrid algorithm that
combines the [IPOP-CMA-ES algorithm with an iterative local
search. iCMAES-ILS applies both algorithms to the same so-
lution (to which a certain ratio of evaluations are applied), and
the best results are applied to the remaining evaluations. The
second one was NBIPOPaCMA [36] that uses active CMA-
ES, and this implies that the covariance matrix update has
been done taking into account not only the best solutions but
also the worst [37]. In addition, it has two restart regimes, one
that reduces the step-size [38] and another with the default
values. The third with best results, with worse results than
previous ones, is DRMA-LSCh-CMA [39], a memetic algo-
rithm that combines a GA with a CMA-ES as its local search
using local search chaining [40], and dividing the domain
search in hypercubes of equal size, with decreasing size during
the search. Also, several algorithms appear which, although
they do not get good results, they are the precursors of next
winning algorithms, like MVMO [41] and SHADE [42].

In this year, all winning proposals have used or BI-POP-
CMA-ES as an exploration method (with several improve-
ments) or CMA-ES as their Local Search. Thus, 8 years after
the CEC’2005 benchmark, the CMA-ES was still considered
an important part of successful algorithms.

CEC’'2014 Single Objective Real-Parameter Special Session

In this special session, two different benchmarks were
proposed:

1. One benchmark for single objective real-parameter nu-
merical optimization [43]. This benchmark was created
from comments received from previous one [34]. It re-
duces the number of unimodal functions (to 3), 13 simple
multimodal functions, 6 hybrid functions, and 7 compo-
sition functions. All functions have not only been shifted
but also rotated.

2. One new benchmark for expensive optimization [44].
This benchmark was created to find algorithms that obtain
good results with a very limited number of evaluations.
There are eight functions with dimension values: 10, 20,
and 30. Each algorithm is run 20 times for function, and
the maximum number of evaluations is 50 x Dim (in con-
trast to other benchmarks, in which it is about 10,000 x
D). This radical reduction of evaluations implies a chal-
lenge for the algorithms that could use techniques like
surrogate, or increase performance.

4 http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/CEC2013.
htm
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In the following, we are going to describe results of the two
competitions.

First, in the single objective optimization, 17 algorithms
were proposed’: with 9 DEs, showing as the more popular
category of real-parameter algorithms.

The clear winner was L-SHADE [45], an improved version
of SHADE [42] that reduces its population size during the
search to incrementally reduce the diversity during the run.
Moreover, it shares its mechanism to adapt CR and F with
SHADE using function distributions whose means change
based on a memory of previous improvement. This algorithm
is going to be used to create new algorithms in future compe-
titions. The second winner was UMOEA [46], a united mul-
tiple operator EA that randomly divides the population into
three sub-populations. In the first half of the evaluations of the
algorithm, each sub-population is improved by a different al-
gorithm (DE, GA, and the CMA-ES), and then the identified
best algorithm is applied to all sub-populations. In addition,
periodically, the worst from each sub-population are improved
using the best solutions. The third one was MVMO-SH [47], a
hybrid version of MVMO with an additional improvement
method. The proposed MVMO performs the search through
a population of particles that are classified into good particles
or bad particles: good particles evolve toward the current best,
and the bad ones are crossed with a multi-parent crossover to
create better particles.

It is remarkable that, DRMA-LSCh-CMA [48], the third in
the previous year, was also proposed but it was not placed in
the best positions, showing the continuous improvement of
real-parameter optimization algorithms year by year.

In the expensive benchmarks, three algorithms were pro-
posed: three of them using a surrogate technique, which al-
lows algorithms to approximate the fitness of solutions with-
out actually evaluating them. However, the winner was anoth-
er version of MVMO [49], which differs from that proposed
for non-expensive benchmark [47] is two aspects: first, there
is only one memory with current solutions, not one memory
for each particle (and its previous offspring), and the mutation
method to create the offspring is completely different.

CEC'2015 Real-Parameter Single-Objective Special Session

In 2015, several competitions were proposed for real-
parameter optimization:

* Alearning-based benchmark [50]. This benchmark is very
similar to previous ones, with 15 functions (unimodal,
simple multimodal, hybrid functions, and composition
functions) and dimensions 10 and 30. The main difference
to previous competitions is the fact that for the first time

3 http://www.ntu.edu.sg’/home/EPNSugan/index_files/CEC2014/CEC2014.
htm

the participants were allowed to optimize the parameter of
their proposed algorithm for each problem, in the search of
a highly tunable algorithm.

* A bound constraint single-objective computationally ex-
pensive benchmark [51]. In this benchmark, the number of
evaluations to tackle the problem is lower than others,
from 100 to 1500, in order to study the algorithm with
better performance.

* A multimodal benchmark [52], with 15 scalable multi-
modal functions with four niches. All functions were ro-
tated and shifted to create linkage among different dimen-
sions and to place the optima at different locations.

In this paper, we are going to focus our attention on the
learning-based benchmark and expensive benchmark, noting
the winners of the competitions. For more details, you can
consult the website of the competition® and the corresponding
papers.

First, we are going to introduce the results obtained with
the learning-based benchmarks. In this competition, the clear
winner was SPS-L-SHADE-EIG [53] (first in dimensions
10D and 30D, and second in 50D). SPS-L-SHADE-EIG mod-
ifies the previous winner L-SHADE [45] replacing the origi-
nal crossover operator by an eigen-based crossover operator,
and uses the successful-parent-selecting framework [54] to
select the parents differently when stagnation is detected, thus
helping avoid the situation. The globally second best algo-
rithm was DEsPA [55], an enhancement of JADE [56] that
uses a success-based parameter adaptation with resizing pop-
ulation size. However, it was the best in dimension 50 and
ranked average in dimensions 10 and 30. MVMO [57] and
LSHADE-ND [58] tie in the third position, being much more
robust than DEsSPA, thus perhaps of more interest in lower
dimensions. The proposed MVMO [57] differs from previous
MVMO in that uses an only memory, and evolves a popula-
tion of candidate solutions, each having their own memory.
These solutions are classified into good and bad solutions, and
the evolution of each solution depends on its category.
LSHADE-ND [58] is an algorithm that iteratively chooses,
in an adaptive way, to apply L-SHADE (with some minor
changes) or a neuro-dynamic optimization method [59].

In the expensive competition, the results strongly depend
on the functions. For example, the first functions are easier but
their FEs budget is lower. In the first five functions, only the
proposed MVMO [60] (with only one memory) obtained
good results. In the following ten functions, there was no clear
winner. The results obtained by MVMO were similar to other
algorithms using CMA-ES [61, 62], and the proposed PSO
algorithm [63]. However, MVMO was the clear winner in the
functions with lower FEs (especially in simple functions),

6 http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2015/CEC2015.
htm
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confirming the good behavior of MVMO in expensive
optimization.

CEC'2016 Real-Parameter Special Session

In 2016, there was no new benchmark proposed for
CEC’2016, and the authors were encouraged to use bench-
marks from previous years.

There were nine proposals for the CEC’2014 benchmark,
five for the CEC’2015 benchmark for learning-based algo-
rithms, and six for the CEC’2015 benchmark for expensive
techniques.”

These results show that CEC’2014 benchmark is of inter-
est, even 2 years later. As expected, benchmarks and results
obtained in competitions can be used as a reference to contin-
uously improve an algorithm, so it is normal for more ad-
vanced algorithms to be designed using old benchmarks.

In the following sections, we are going to describe results
obtained from each of the following benchmarks:

*  For the CEC’2014 benchmark, nine algorithms were pro-
posed, with more than half, five, based on SHADE or L-
SHADE, the previous winner of that competition. This
enforced the idea for winner of previous sessions to be
used as references for new proposals. However, the win-
ner was a very different algorithm, UMOEA-II [64], that
differing from UMOEA [46] proposed in 2014 in that the
GA is not used, a LS method and an improved adaptive
selection method are introduced. The second, LSHADE-
EpSin [65], uses a new ensemble sinusoidal approach to
adapt automatically the values of the scaling factor of the
DE. The third, i-LSHADE [66], improves L-SHADE with
different default values for Mg, and several fixed values
in the L-SHADE parameter memory (H), among other
changes. However, although UMOEA-II obtained the best
average ranking, its good results are mainly in first dimen-
sion values, in the next dimension LSHADE-ESin obtain-
ed significant better results.

» Five algorithms were proposed from the learning-based
category of the CEC’2015 benchmark. The best one was
not actually published in the congress, but as technical
report, MVMO-PHM [67], whose main feature is to com-
bine a MVMO with a population model (each individual is
a group of solutions) with an improvement method. The
second winner was LSHADE44 [68] an implementation
of L-SHADE with four strategies which compete among
themselves, applying more time which has given the best
results. The third was CCLSHADE, which uses the differ-
ential grouping decomposition [69] with L-SHADE to
optimize each one.

7 http://www.ntu.edu.sg’/home/EPNSugan/index_files/CEC2016/CEC2016.
htm
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* For the CEC’2015 benchmark in the expensive category,
six algorithms were proposed. The winner was MVMO-
PHM [67], as described in the previous paragraph. The
good performance of the algorithm means it was winner
not only in the learning-based benchmark but also in the
expensive one. The second best was an ABC algorithm,
AsBeC tuned [70], which modifies the ABC model im-
proving performance: considering distance between solu-
tions to quickly explore different regions, changes in the
onlooker solutions, and the addition of a local search, and
a systematic global search method. The third was RYYPO
[71], a yin-yang pair algorithm [72] with reduces point
evolution, which are only evaluated when they follow
certain conditions. In the results, we can see a great differ-
ence between the aforementioned algorithms and the
others (with more similarity between MVMO-PHM and
AsBeC _tuned).

To summarize, in CEC’2016, the previously successful al-
gorithms like MVMO and LSHADE are used as a starting
point for more sophisticated algorithms that improve results
in the different competitions. The different benchmarks in
these sessions have enough contributors, so researchers con-
sider them complementary (CEC’2014 and CEC’2015 are
different, mainly due to the allowed major flexibility in the
CEC’2015 benchmark). In addition, expensive benchmark is
more consolidated in the research field.

CEC'2017 Real-Parameter Special Session

In CEC’2017, a new benchmark was proposed for real-
parameter optimization.® This special session also held a com-
petition where nine papers were presented on and compared to
this new benchmark. Additionally, there was one proposal for
the CEC’2015 expensive optimization benchmark.

* Regarding the proposals for the real-parameter optimiza-
tion benchmark, the organizers compared their perfor-
mance concluding that the best three algorithms were, in
this order, jSO [73], LSHADE-cnEpSin [74], and
LSHADE _SPACMA [75]. The first algorithm, jSO [73],
is an improved version of the i-LSHADE algorithm pre-
sented at the CEC’2016 Special Session, in which the
main difference is that, within the mutation operator, the
F control parameter is multiplied by a factor whose value
increases through the execution of the algorithm. The sec-
ond algorithm, LSHADE-cnEpSin [74], is also an im-
provement over a previously presented method,
LSHADE-EpSin. There are two main differences com-
pared to its predecessor. First, instead of just one

8 http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.
htm
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sinusoidal, it uses a pool that learns which of the two
available sinusoidals to adapt and the F control parameter
to use. Second, the crossover operator is applied to the
target and trial vectors after translating them into a new
coordinate system computed from the covariance matrix
of the neighborhood of the best solution. The result of the
crossover is then translated back into the original coordi-
nate system. Finally, the third algorithm,
LSHADE SPACMA [75], combines a modified CMA-
ES that implements a new crossover operator with a var-
iant of the LSHADE algorithm where the parameter adap-
tation strategy is also changed.

* On the other hand, the only proposal dealing with the
CEC’2015 benchmark on expensive optimization intro-
duces a new social algorithm called Higher Order
Cognitive Optimization (HOCO) [76], which uses several
meta-cognitive components (personal and social) to attain
the global optimum.

As can be seen, the two best algorithms in the 2017 com-
petition are evolved versions of previously proposed methods
that also obtained very competitive results in previous special
sessions. Furthermore, in this case, the best algorithm is not an
updated version of the best one from the previous year, which
means that these competitions encourage researchers to con-
tinuously improve their proposals, especially when the differ-
ences in the performance of some of them are not very large.

BBOB Competition

Since the CEC’2005 real-parameter special sessions, there
were no other real-parameter competitions (without con-
straints) until 2009. Since 2009, a real-parameter special ses-
sion in the Genetic and Evolutionary Computation
Conference, GECCO, was proposed. In this special session,
the benchmark called Black-Box Optimization Benchmark,
BBOB, was proposed, which has been evolving over the past
few years.

The main differences between the BBOB benchmark and
the IEEE CEC’s benchmarks are the following: BBOB has
two categories: noisy functions and noiseless functions, and
there are functions with different dimension values. More in-
formation about the BBOB benchmark can be obtained in [77]
and the software and other useful information are available at
https://github.com/numbbo/coco.

In this section, we will describe the competitions that have
been organized in the GECCO using the Black-Box bench-
mark, mentioning algorithms that we consider more interest-
ing, and several conclusions, as in the previous session.
However, differing to CEC special sessions, BBOB
Competitions do not announce a ranking of winning algo-
rithms, so we are going to mention the algorithms that we
consider more interesting, considering both their good results

and their influence. The number of total competitors into the
BBOB competitions is high, about 150.° but several works
include different variations of algorithms.

Black-Box Optimization Benchmarking (BBOB) 2009

The competition was well-received by the researchers, and it
received thirty proposals'®(with several authors proposing
several proposals each). From the published analysis [78] of
the authors, the winner was BI-POP-CMAES [79], a CMA-
ES that combines two different restart mechanisms, one with
an increasing population size. The second, with very similar in
results, was AMalLGaM IDEA [80], another EDA with normal
distribution that uses maximum-likelihood estimates for the
mean and an covariance matrix that scales up to prevent pre-
mature convergence on slopes.

Black-Box Optimization Benchmarking (BBOB) 2010

In the following year, 2010, there were 31 proposal,'’ al-
though several of them had very similar algorithms.

Out of all the algorithms, [IPOP-aCMAES [37] was the
most scalable, obtaining very good results from dimension
10 to 20 (and also in more difficult functions with lower di-
mension). [IPOP-aCMAES adds to the increasing population
size of [25] the consideration not only the best solutions to
guide the search but also the worsts. For dimension 40, how-
ever, CMA+DE+MOS [81], a MOS algorithm using CMA-
ES, was able to obtain more accurate solutions in most func-
tions (as expected considering the good results of MOS [82] in
higher dimensionality)

Black-Box Optimization Benchmarking (BBOB) 2012

In the next competition in 2012, there were also many propos-
al, 29 proposals in total,'* some of them very similar to each
other.

For lower dimensionality, the most interesting (considering
results and robustness) is [IPOP-saACM [83, 84]. IPOP-
SaACM is an algorithm based on [IPOP-CMAES that approx-
imates the fitness of solutions using a surrogate technique, /:
During n” iterations, the CMA-ES is run using f*, and then the
last A are evaluated with the real fitness function. The param-
eter n” and the calculation of /* are self-adaptive to reduce the
surrogate error (using an archive of solutions and their fitness).

NBIPOP-aCMAES [85] is another algorithm with similar
results, which stands out in higher dimensions and noisy
benchmarks. NBIPOP-aCMAES is an improved version of

o http://coco.gforge.inria.fr/doku.php?id=algorithms

10 http://coco.gforge.inria.fr/doku.php?id=bbob-2009-algorithms
" hitp://coco.gforge.inria. fr/doku.php2id=bbob-2010

12 http://coco.gforge.inria.fr/doku.php?id=bbob-2012
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BIPOP-aCMAES [37] that differs in reducing the step size of
the CMA-ES after each restart.

Black-Box Optimization Benchmarking (BBOB) 2013

In the next competition in 2013, there were 30 proposals, '
with less similarity among the proposals than in previous
competitions.

From the obtained results, HCMA [86] and HMLSL [87]
obtained the best results and rather robust behavior. HCMA is
a combination of two new algorithms, BIPOP-saMCA-ES-k,
a version of BIPOP-saCMA from the previous year with two
populations and a bigger population size during the surrogate,
and BIPOP-aCMA-STEP (hybridization of BIPOP-aCMAES
with a STEP algorithm [88]). Also, BIPOP-saMCA-ES-k in
isolation obtains good results, especially in higher dimension
values. HMLSL is a hybridization of a Multi-Level Single
Linkage (MLSL) with a DE.

Black-Box Optimization Benchmarking (BBOB) 2015

In 2015, two competitions used BBOB, one in the GECCO,
where traditionally they were organized, and another in the
CEC.

In the BBOB competition, in 2015, there were 15 pro-
posals,'* from 6 different papers, and in the CEC competition
8 proposals from only 3 different papers.

From the BBOB’2015 in the CEC, there are interesting
proposals like CMA-TPA and CMA-MSR (both defined in
[89]), which change step size adaptation of CMA-ES, but
achieve slightly better results than the original.

From the BBOB’2015 in the GECCO, the most interesting
results (both in single and expensive competition) came from
R-LSHADE [90], a restart version of state-of-art L-SHADE,
obtaining a rather good robust behavior, but could not im-
prove the results obtained by HCMA.

Black-Box Optimization Benchmarking (BBOB) 2016

In 2016, the BBOB workshop mainly focused on multi-
objective optimization.'> A new bi-objective testbed was pro-
posed and most of the contributions evaluated their proposals
in that benchmark. As this is out of the scope of this paper, we
focus on the only contribution that considered the real-
parameter testbeds. In particular, the authors [91, 92] proposed
a new strategy to adapt the population size in CMA-ES and
evaluated several configurations of this strategy on both the
noiseless and the noisy testbeds, concluding that it has a sim-
ilar performance to that of the best algorithm of BBOB 2009

13 hitp://coco.gforge.inria.fi/doku.php?id=bbob-2013
14 http://coco.gforge.inria.fr/doku.php?id=bbob-2015
15 hitps:/numbbo.github.io/workshops/BBOB-2016/
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on well-structured functions, but still inferior results in the
remaining groups of functions.

Black-Box Optimization Benchmarking (BBOB) 2017

The most recent workshop of 2017 counted with participants
presenting contributions in both benchmarks (real-parameter
and multi-objective optimization).'® Again, we focus on the
first benchmark as the second one is out of the scope of this
paper. Four of the five contributions related to the real-
parameter testbed involved the CMA-ES algorithm to some
extent (either modified CMA-ES versions [93-95] or combi-
nations of CMA-ES with other algorithms [96]). This gives an
idea of the preponderance of CMA-ES in this benchmark.
However, as it was the case of the 2016 edition, none of the
contributions was able to improve the results of the best algo-
rithm of the 2009 session. Finally, the remaining contribution
presented an architecture for the distributed asynchronous
evaluation of a pool of solutions with different heterogeneous
workers (GAs and PSO, in this case) [97].

Black-Box Optimization Competition

In this section, we are going to describe the results obtained in
new black-box competitions available online, called
BBComp.17 These similar names should not be confused,
and this new model of competition has several important dif-
ferences as compared to the previous models:

» It is actually a black-box competition, not only can the
algorithm not use any information about the benchmark
but the researchers also must not have any information at
all about the problems used in the competition: neither
their mathematical expressions nor their properties. The
only information given to the optimizer and participant
is the dimension of the problem, bounds on all variables,
and a pre-defined budget of black box evaluations.

e Researchers do not have access to the code, and all the
evaluations are carried out in an external server belonging
to the organizers, so there is a library which allows the
algorithms to send their solutions to be evaluated through
the Internet.

* There is a testing track available to make all algorithms
tests, and then during each competition, the related track is
available. The experiments on each algorithm can only be
done once in the competition.

* They are sometimes problems with only one objective and
problems with several objectives in the same competition/
track (but not it is common). The ranking is done consid-
ering the error in problems with one objective and the

1o https:/mumbbo.github.io/workshops/BBOB-2017/

17 http://bbcomp.ini.rub.de/index.html
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hypercube in multi-objective problems and then each al-
gorithm receives points according to its ranking for each
function.

In the following, we are going to indicate the results of the
different competitions using this new methodology. Because
the competitions are not related to any special session, there
are also commercial or unpublished algorithms, so sometimes
the description of the algorithm is not possible.

GECCO’2015 Track

The GECCO 2015 track consisted of 1000 black box prob-
lems with different dimensions, from 2 to 64. The maximum
evaluation number was between 10 x dim — 100 x dim.

There were 28 participants,'® from algorithms published to
optimization software. The winner was KNITRO [98] version
10.1, a commercial software for non-lineal optimization from
the company Artelys,'® with a parallel multi-start method
using several interior-point or active set algorithms. MYMO
[57] was the second winner, coming in very close, and also
came the third in the learning-based benchmark (see
“CEC’2015 Real-Parameter Single-Objective Special
Session” section).?’ The third algorithm was NSMO [99],
which is based on a hierarchical partitioning of the domain
search in nodes, and approximates the gradient in each dimen-
sion to estimate the potential improvement in fitness to decide
when to expand a node, with source code freely available.?!

CEC'2015 Track

The CEC 2015 track consisted of 1000 black box problems
with different dimensions, from 2 to 64. The maximum eval-
uation number is 100 x dim®. There were 24 participants,
with very different algorithms.

The winner was UMOEA [46], presented in CEC’2014
real-parameter numerical optimization, with source code
available,”® you can see “CEC’2014 Single Objective Real-
Parameter Special Session” section for a description of the
algorithm. The second winner was a two-stage algorithm
[100], an algorithm that decides which two-stage variant to
apply on which dimension: restarted local search and cluster-
ing methods, and the local search algorithms Nelder-Mead
and CMA-ES. The source code is available.”* Curiously,
KNITRO [98], the winner in the GECCO’2015 Track, only
ranked 11th.

18 see http://bbcomp.ini.rub.de/results/BBComp2015GECCO/summary.html
19 https://www.artelys.com/en/optimization-tools/knitro

20 available at https://www.uni-due.de/mvmo/download

2 at https://github.com/ash-aldujaili/NMSO

2 see http://bbcomp.ini.rub.de/results/BBComp2015CEC/summary.html

2 at http://bbcomp.ini.rub.de/results/BBComp2015CEC/mickey.zip

2 at http://Is11-www.cs.uni-dortmund.de/staff/wessing/bbcomp

GECCO’2016 Tracks

In GECCO’2016, the organizers proposed five tracks,
consisting of 1000 black-box problems with different dimen-
sions, from 2 to 64. The differences among these tracks are the
budget of fitness evaluations and the number of objectives of
the problems.

+ Single-objective track. In this track, problems consist of
only one objective, and the number of fitness evaluations
allowed was 100 x dim®. There were 14 participants and
the winning algorithm was a new version of the second
winner at the CEC’2015 Track [100]. In this new version,
among other changes, 10% of the evaluations are devoted
to local optimization of current best solution, while the
clustering method was also improved. The source code
and description can be located at the author’s website.
There is no information about the second and third win-
ners. The fourth best algorithm was a curved trajectories
algorithm [101], and KNITRO [98] was the fifth best
algorithm.

»  Expensive single-objective track. In this track, the number
of allowed fitness evaluations has been highly reduced,
ranging from 10 x dim — 100 X dim. There were 15 partic-
ipants. The winner was the aforementioned KNITRO al-
gorithm. The second winner obtained very similar results
to the first one but, unfortunately, there is no information
about that algorithm. The third one was a version of the
single-objective winner, with a difference in the use of the
local search, and that it includes in the archive all the
sampled points.

» Several multi-objective tracks (two-objective, expensive
two-objective, and three-objective). We are not going to
describe them here, because we have not covered multi-
objective benchmarks in this paper.

GECCO’2017 Tracks

In GECCO’2017, similar to the previous year, five different
tracks were proposed, consisted of 1000 black box problems
with different dimensions, from 2 to 64. The differences, as in
the previous edition, are the budget of fitness evaluations and
the number of objectives.

» Single-objective track, with only one objective, and the
maximum number of fitness evaluations equal to 100 x
dim®. There were 13 participants. The considered winning
algorithm did not obtained the best ratio of solved prob-
lems, especially in dimension 64, in which it was only able
to obtain the optimum in less than 50% of the problems.
Unfortunately, there is no information about the winning
algorithm, neither a description nor a reference. The
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second winning algorithm was “Doubly trained surrogate
CMA-ES”, DTS-CMA-ES, with a self-adaptation of the
population size per generation (and a fallback to the orig-
inal IPOP-CMA-ES after 4 days of computation). The
third winner was the previous mentioned two-stage
algorithm.

» Expensive single-objective track. In this track, the number
of allowed fitness evaluations is much smaller, ranging
from 10-dim — 100-dim. There were 13 participants. The
winner was a combination of DTS-CMA-ES and
BOBYQAP (it initially applies DTS-CMA-ES and, for
the last evaluations, BOBYQAP). The second winner
was a restarted model-based optimization with L-BFGS-
B and a random search (see?®). The third one was the
KNITRO software.

» Several multi-objective tracks (two-objective, expensive
two-objective, and three-objective). As in the previous
section, we are not going to describe them here, because
we have not covered multi-objective benchmarks in this

paper.

EMO’2017 Track

In the 9th International Conference on Evolutionary Multi-
Criterion Optimization, EMO’2017, a real-world problems
track was proposed. In this benchmark, the ten participants
were ranked based on the overall dominated hypervolume.

The winner was Model-based HV-maximization (see®>)
that combines a HV-maximization with the SMS-EMOEA
[102] algorithm. The second winner was the Bayesian
Multi-Objective Optimization [103] algorithm, which uses a
Monte Carlo algorithm with a new extended domination rule.
The third winner was PADDS-CHC but, unfortunately, there
is no information or reference about it.

Evolution of Real-Parameter Optimization: Lessons
Learnt

In this section, we are going to indicate several lessons that we
have learnt after reviewing the competitions and their winners:

+ First, although there are several competitions taking place
(IEEE CEC and BBOB, mainly) there hardly influence
each other. It is true that these competitions are organized
in different conferences on similar dates, but it is curious
that advanced versions of the previous winner in one con-
gress usually continue participating in that same confer-
ence (IEEE or GECCO) for the next few years, but never
in the other. Thus, the influence of one algorithm is

2 at http://Is11-www.cs.uni-dortmund.de/staff/wessing/bbcomp
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unfortunately limited to the conference in which it was
proposed.

* Since the beginning of the IEEE CEC competitions, a
great majority of the proposals have been devoted to DE,
due to their good results in these benchmarks (with the
exception of the CEC’2011 competition). As consequence
of'this, DE-based methods have clearly evolved during the
last few years to become more advanced algorithms such
as L-SHADE [45], or derived methods such as L-
SHADE-EpSin [65]. However, in recent competitions,
non-DE algorithms have obtained very good results. For
example, UMOEA-II [64] was the winner of the CEC and
the Black-Box competition in 2016. Furthermore, other
recent methods such as those of the MVMO family [47,
57] have obtained very good results in several competi-
tions against multiple algorithms.

* In the BBOB competitions, most of the participating
methods are versions of the CMA-ES [24] algorithm.
This is partially due to the low dimension values used in
the first versions of the benchmark. As a result of this, 22
variants of the CMA-ES algorithm have been proposed in
the last few years, including the more robust version
known as IPOP-aCMAES [85], which reports superior
performance by also using the worst solutions to improve
the search. Additionally, the incorporation of surrogate
models has also even lead to improved results. The algo-
rithm that could be considered the current best algorithm is
HCMA [86], a combination of an algorithm using surro-
gate models with another more exploitation-oriented
method (although both are based on the CMA-ES
algorithm).

* In the BBComp competition, it is not possible to observe
any evolution as the black-box model implies that for each
competition the functions could be completely different.
For this reason, we want only to note that the proposed
algorithms, such as UMOEA [46], can improve more con-
solidate algorithms, such as KNITRO [98].

Constraint Real-Parameter Optimization

A general constraint minimization problem is a minimization
problem in which the aim is to minimize f (x) subject to the
following:

gilx) =c¢ifori=1,...,n
hi(x)>dforj=1,...,m

Constraint optimization is very important because prob-
lems with constraints appear very frequently in real problems.
Due to this popularity, several competitions have been pro-
posed over the past few years.


http://ls11-www.cs.uni-dortmund.de/staff/wessing/bbcomp
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The following sections are devoted to these constraint op-
timization special sessions, mainly held at the IEEE CEC con-
ference, for which we highlight the algorithm with the best
results, as in the previous section. There is extensive literature
on these kinds of problems. However, as the present contribu-
tion is focused on the evolution of the field through competi-
tions, we will not provide a complete review of the literature in
this section. We refer the reader to [104] for a detailed survey
on this topic.

CEC’'2006 Constraint Optimization

In 2006, a benchmark specially designed for constraint opti-
mization was proposed, and in the competition, 11 algorithms
were proposed, 9 of them DEs.*°

In the organizer analysis, the winners were EDE [105], a
DE with a new E constrained method to sort the solutions
based on their fitness and a measure of their feasibility. EDE
uses a gradient-based method to find feasible solutions using
the gradient of constraints in an infeasible solution. This EDE
obtains very good results but it strongly depends on the £
parameter. The second winner was DMS-PSO (similar to
DMS-L-PSO of previous year) and jDE-2 [106] algorithm, a
constraint implementation of jDE using a penalty to tackle the
constraints and an improved adaptive mechanism for param-
eters F and CR.

CEC’2010 Constraint Optimization

In this special session, another constraint real-optimization
benchmark was proposed [107], 18 functions with different
unequal and equal constraints for function, and run 25 times
each for two dimension values: 10 and 20, using a different
MaxEvals for each dimension.

In this special session, 12 algorithms were proposed®’: 7
DEs, 1 ABC, 1 GA, 1 PSO, a constraint version of MTS
algorithm [108] described in “Large-Scale Optimization” sec-
tion, and 2 other algorithms. Again, half of the proposals are
DEs, mainly due to their good results (three of the four best
algorithms were DEs).

From the analysis of organizers, the winner was ¢DEg
[109], a modified version of the previous winner, eDE, with
three important changes to improve results. It uses an archive
to maintain more diversity; it assures that children are not
worse than their parents, and it uses an adaptive mechanism
to adapt its € value (critical for the good behavior of eDE). The
second winner was ECHT [110], a DE algorithm that uses
four constraint methods in different populations, so the oft-
spring obtained by one constraint method compete with the

26 http://www.ntu.edu.sg/home/epnsugan/index_files/CEC-06/CEC06.htm
27 http://www3.ntu.edu.sg’/home/EPNSugan/index_files/CEC10-Const/
CEC10-Const.htm

ones. These two algorithms are clearly the winners, while
there are many algorithms in a possible third position.

Multimodal Optimization

Sometimes, in optimization problems, the aim is not to obtain
only one global optimum, but all possible optima. This is
called multimodal optimization. Finding all optima implies
changes in the algorithms, usually incorporating niching tech-
niques. Recently, several competitions have been proposed for
multimodal optimization, obtaining interesting proposals.

In this section, we are going to show the different compe-
titions and results for multimodal optimization, highlighting
the algorithms with the best results. To get all the data, includ-
ing the results of each competition, you can check the orga-
nizers’ site.”®

All these competitions use the same benchmark and the
winners of one competition are used as reference algorithms
in following competitions. This means that the winners of one
competition could be considered better than all previous pro-
posals under the compared benchmark.

Analogously to the constraint optimization section, it is not
the aim of this paper to provide a full review of the literature,
rather the evolution of the area through the different competi-
tions. We recommend our readers to refer to [111] for an
extensive survey on this issue.

CEC’2013 Niching Methods for Multimodal
Optimization

In 2013, a new benchmark specially designed for multimodal
modal optimization was presented [112]. This benchmark is
composed of 12 functions with different numbers of optima
and several dimension values (giving a total of 20 problems to
optimize). For each problem, the ratio of the found optima is
used for successful measure. These ratios are calculated for
five threshold levels: 107, 107, 107, 107%, 107,

In the competition, 9 papers were presented with 12 pro-
posals, 7 DE algorithms, and several niching versions of well-
known algorithms, like CMA-ES, VMO, or NSGA-IIL.

From the organizers results, the winner was NEA2, a pre-
viously proposed algorithm [113]. NEA2 is an algorithm that
iteratively applies the CMA-ES with a Nearest-Better
Clustering Algorithm (NBC) [114]. NBC clusters the solu-
tions obtained by previous CMA-ES, and then CMA-ES is
applied to generate one population for each detected cluster.
It is a remarkable algorithm, because it is still a very compet-
itive algorithm. The second was dADE/nrand/1 [115], a DE
that enforces diversity generating the solutions around the
nearest neighborhood, and self-adapts its parameters as the

28 hitps:/github.com/mikeagn/CEC2013/
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JADE algorithm. Also, it uses an archive to store new inserted
solutions and when the same individual is generated again, it
is re-initialized. The third was the well-known CMA-ES with
an archive (data given by the organizers) and the fourth (third
proposal) was N-VMO [116], an algorithm that uses a mesh of
solutions with different operators to center them around the
local optima.

CEC’'2015 Niching Methods for Multimodal
Optimization

In 2015, another competition was proposed, also using the
benchmark proposed in CEC’2013. From the information of
the organizers, four algorithms were submitted and they were
also compared to four algorithms from CEC’2013 (including
the winners NEA2 and dADE/nrand/1).

The winner was the Niching Migratory Multi-Swarm
Optimiser, NMMSO [117], a multi-swarm PSO with two im-
portant features: first, the number of swarms is dynamic,
merging two swarms when they are too close, or when the
mid-point between them is better than the best solution of each
of them. Second, the particles in each swarm increase (with a
limit, when it is achieved the worst are removed). The second
winner was NEA2 [113], explained in previous section. The
third (although it improves NEA2 in average ranking in the
paper) was LSEDA [117], which applies a dynamic mecha-
nism to define niches in a similar way to NMMSO and for
each niche a localized search is carried out using a different
EA (limited in its exploration to the immediate neighbor-
hood), and with an additional search oriented to top solutions.
NMMSO and LSEDA code are freely available.?’

CEC’'2016 Niching Methods for Multimodal
Optimization

In 2016, another competition was proposed with the same
benchmark, both in the CEC’2016 Congress as in the
GECCO’2016 Conference. Four new proposals were submit-
ted and they included in the comparisons five algorithms from
previous competitions (including the previous winners
NMMSO, NEA2 and dADE/nrand/1).%°

The winner was RS-CMSA [118], an algorithm that ex-
plores evolving several populations using CMSA [119], a ver-
sion of CMA-ES, including elitism and enforcing diversity
using taboo points. It considers a taboo point to be the mean
of better sub-populations and the found local optima, and it
avoids solutions that are too close to these points (using an
adaptive taboo distance).

The second winner was NMMSO [120], from last year, and
the third winner was an improved version of NEA2, NEA2+,

2 https:/github.com/fieldsend
30 http://goanna.cs.rmit.edu.au/~xiaodong/cec16-niching/
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from Mike Preuss. The next winning proposal was RLSIS:
Restarted Local Search with Improved Selection of Starting
Points, from Simon Wessing. The last two algorithms are still
in press, so there is no reference available yet.

Large-Scale Optimization

As shown in the previous section, Evolutionary Algorithms
are a very popular tool in the field of real coding optimization.
This has encouraged researchers from many different disci-
plines to use these algorithms in very different contexts, both
in the industrial and the scientific domain. However, some of
these applications can be quite challenging: complex models
need to simultaneously optimize hundreds, if not thousands,
of real parameters. For this reason, some state-of-the-art algo-
rithms with an outstanding performance in real coding opti-
mization problems of moderate size cannot deal with their
large-scale counterparts [25] (curse of dimensionality [121]).
In this context, Large-Scale Global Optimization Special
Sessions held during the last 8 years have played an important
role in designing powerful scalable EAs that are able to face
these new kinds of problems successfully.

To the best of our knowledge, the first special session of
this kind was held back in 2008 at the IEEE Congress of
Evolutionary Computation (CEC’2008) [122]. Since then, a
session has been held on this topic every year at CEC, except
in years 2009 and 2011. As well as this session, recently, there
has also been another remarkable event: a special issue in the
Soft Computing journal in 2011 [123]. In the following sub-
sections, we review each of these events, paying special atten-
tion to how the results in previous editions influenced the
development of new algorithms.

First Steps

In the initial competitions, there was no clear winner; the
proposals in each competition improved previous winners.

CEC'2008 Special Session

In this special session, a benchmark of 7 scalable continuous
optimization functions was proposed. Among these functions,
two of them were unimodal whereas five of them were multi-
modal. On the other hand, three of them were separable (they
could be easily solved optimizing each dimension individual-
ly) whereas the other four functions were non-separable.

Eight different entries were submitted to this special ses-
sion and their results were compared in the proposed bench-
mark. Given that the functions are scalable, results were pro-
vided for 100, 500, and 1000 dimensions. However, we are
mostly interested in large-scale problems, and therefore, we
have focused on the 1000D results.
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The results reported in [124] reveal several interesting
things:

» The first three positions of the ranking belong to algo-
rithms of very different nature: a combination of local
searches (MTS) [108], a variation of an Estimation of
Distribution Algorithm LSEDA-gl [125] and a Self-
Adaptive Differential Evolution algorithm with decreas-
ing population size jDEdynNP-F) [126].

+ The algorithm that reports the best results, MTS, is a com-
bination of three linear local searches. Good results for this
algorithm can be expected in separable functions, which it
obtains. However, it also gets very competitive results in
non-separable functions (best results in F; and F5 and
second best results in F, and F7).

* Algorithms based on Particle Swarm Optimization [127,
128] and Evolutionary Programming [129] do not get very
good results, even if they are improved or combined with
other algorithms.

* Dimension decomposition methods [130, 131] provide
intermediate results.

In the light of these results, many researchers realized that,
even in large-scale problems, local searches were able to sig-
nificantly improve the results of EAs and decided to incorpo-
rate them into their algorithms, as we will see in the following
subsections.

CEC'2010 Special Session

The benchmark proposed for the CEC’2010 Special Session
[132] is an improved version of the one proposed for the
CEC’2008. First, the number of functions has been increased
by up to 20. Second, it incorporates functions with different
degrees of separability by combining fully separable and non-
separable functions.

In this special session, the algorithm with the best results
(MA-SW-Chains) [133] combined a genetic algorithm with a
local search. The following special sessions will confirm this
trend: the combination of a population-based method with one
(or more) local search attains the best overall results. On the
other hand, as in the previous edition of the LSGO Special
Session, the remaining top algorithms were also of a very
different nature: a two-stage algorithm called EOEA [134] that
combines one first exploratory step carried out with a modi-
fied EDA and a second intensification phase in which a coop-
erative co-evolution with three different sub-optimizers is ap-
plied, and an ACO-based algorithm (DASA) [135] that trans-
forms a continuous problem into a graph-search problem.

The remaining contestants in the competition were
three DE-based algorithms (one of them also including
cooperative co-evolution) [136-138] and a PSO-based
algorithm [139].

A comparative analysis of the three best algorithms draws
the following conclusions:

*  MA-SW-Chains gets systematically better results than the
other two methods, except in the case of fully separable
functions. This seems to be coherent with the characteris-
tics of the three algorithms as it would probably take lon-
ger for the hybrid MA-SW-Chains algorithm to reach the
global optimum for this kind of problem whereas problem
decomposition in the case of EOEA can make it converge
much faster.

» The relative difference in the performance of the three
methods increases as the non-separability degree of the
functions gets larger. However, the performance of the
DASA algorithm gets an unexpected boost in the case of
non-separable functions, which is hard to explain.

Regarding the other algorithms, there is no clear pattern
that can help isolate the convenience of using one method or
another for a particular type of problem: some algorithms
obtain (relatively) good results in both fully separable and
non-separable functions whereas their performance degrades
for intermediate degrees of separability.

Differential Evolution Emerges

The Soft Computing special issue published in 2011 shows
how differential evolution algorithms were consolidated as the
most adequate algorithms for large-scale global optimization.

The Soft Computing Special Issue on scalability of evolu-
tionary algorithms and other metaheuristics for large-scale
global optimization problems [123] was a very successful
event with a high participation ratio (up to 13 contributions
were submitted to the special issue). This special issue was
motivated by a previous special session held at the 2009
Intelligent Systems Design and Applications conference
(ISDA’2009). As many of the proposals of the special issue
are improved versions of the algorithms presented during the
conference, we decided to consider only the latter in our re-
view. It is interesting to note that more than half of these
contributions proposed algorithms incorporating Differential
Evolution to some degree [82, 140—145]. There were also two
methods based on Particle Swarm Optimization [146, 147], a
Path Relinking algorithm [148], a Line Search [149], a
memetic algorithm based on a steady-state GA and a local
search [150], a derivative-free unconstrained optimization
method based on QR factorizations [151], and a Variable
Mesh Optimization algorithm [152].

The benchmark proposed for this special issue was made
up of 19 continuous scalable functions and participants were
requested to provide results in 50, 100, 200, 500, and 1000
dimensions. As in the case of the CEC’2008 Special Session,
we focus on high dimensional (i.e., 1000D) problems.
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In the light of the results reported by each of the partici-
pants in the special issue, we can observe the following
behavior:

+ Differential Evolution seems to perform especially well in
this benchmark. The three best algorithms (in this order):
MOS [82], GaDE [144], and jDElscop [140] used
Differential Evolution, although in different ways: MOS
combined it with a strong local search (MTS-LS1), GaDE
included self-adaptation of its parameter, and jDElscop
used three different strategies and population size
reduction.

* Small population sizes seem to be sufficient for these
problems. In the case of MOS, a population of just 15
individuals was used. On the other hand, GaDE used a
population size of 60 solutions, which is quite small for
1000D problems. Finally, jDElscop considered an initial
population size of 100 individuals, which is reduced as the
algorithm evolves.

* Both algorithms using Particle Swarm Optimization also
obtained remarkable results, coming fourth [145] and fifth
[147] in the ranking.

*  Non-DE and non-PSO obtained the worst results in this
benchmark. It seems that the benchmark might be some-
how easy to solve when using these methods as opposed
to other approaches. A more in depth analysis would be
needed to confirm this hypothesis.

The Kingdom of MOS Algorithm

In the following competitions, MOS is still the best algorithm
for large-scale global optimization.

CEC’2012 Special Session

The CEC’2012 Special Session continued using the
CEC’2010 benchmark of functions. This allowed a broader
comparison of algorithms by incorporating the results of
CEC’2010 into those of the 2012 edition.

Five papers were finally accepted in the special session,
among which a MOS-based algorithm combining two local
searches [153] obtained the best overall results. The second
place was obtained by a DE-based algorithm with multiple
operators and a small varying population size (jJDEsps)
[154], whereas the third place belonged to a new version
of the two-phase algorithm presented in the previous edi-
tion (CEC’2010), in which exploration and intensification
phases are exchanged and the algorithms used to optimize
the sub-components are also different (CCGS) [155].
Regarding the other two entries, one of them was based
on DE [156] and the other one was a memetic Artificial
Bee Colony algorithm [157].

@ Springer

It may be surprising that the best overall results were ob-
tained by an algorithm with no global search component. This
could be due to the inherent difficulty of the benchmark func-
tions (only five of them could be solved to the maximum
precision by any algorithm, and not all of them for the same
one) that can be making it impossible for algorithms to escape
from local optima. This also would explain the good behavior
of the jDEsps algorithm, which uses a small population size,
thus favoring intensification of the search.

An overall comparison including both algorithms from
CEC’2010 and 2012 sessions reveals that the best three algo-
rithms, in this order, were MOS, jDEsps, and MA-SW-
Chains. As can be seen, the two first positions correspond to
newly proposed algorithms, whereas the third one belongs to
the best algorithm of the CEC’2010 special session. This
seems to indicate an overall improvement in the performance
of' new algorithms that is confirmed if we compare the average
performance of the algorithms in each session. This means
that LSGO special sessions not only favor the creation of
new algorithms but also of more powerful ones. This issue
will be further discussed in “Evolution of Large-Scale
Global Optimizers: Lessons Learnt” section.

CEC'2013 Special Session

For this special session, a new benchmark was proposed [158]
that extends the previous one to include some missing chal-
lenging characteristics of actual large-scale problems such as
non-uniformity in the size of subcomponents, imbalance in
the contribution of subcomponents, overlapping of subcom-
ponents, and transformation of the base functions to make
them more complex (ill-conditioning, symmetry breaking, or
irregularities). This new benchmark constitutes a new chal-
lenge for large-scale optimizers as it is specifically designed
to be deceptive for most state-of-the-art techniques.

In this special session, only two entries with associated
papers were received: a MOS-based hybrid algorithm com-
bining a population-based algorithm (GA) with two local
searches (MTS-LS1-Reduced and Solis-Wets) [159 ] and a
cooperative co-evolution method with smoothing and auxilia-
ry functions [160]. Nevertheless, other three approaches were
included in the comparison: two other cooperative co-
evolution methods (DECC-G [161] and CC-CMA-ES [162])
and a combination of DE and a Variable Mesh Optimization
method (VMODE) [163].

Regarding the results of this competition, the following
conclusions have been drawn:

* Three out of five algorithms used cooperative co-
evolution methods. This is interesting because, as the
size of the problems grows, efficient decomposition
mechanisms will be needed to be able to tackle these
new scenarios.
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* The other two methods were hybrid algorithms combining
two or more search techniques trying to exploit the bene-
fits of different search strategies.

* The best results were obtained by one of these hybrid
algorithms, the MOS-based one, whereas the other hybrid
method finished second to last. This means that, to suc-
cessfully exploit the benefits of multiple algorithms, a di-
rect combination of them is not enough: this hybridization
has to be able to detect when one method or another must
be used more intensely.

* Two of the cooperative co-evolution methods obtained
competitive results, although not as good as MOS.
However, to some extent one of the local searches used
in MOS (MTS-LS1-Reduced) was conducting a decom-
position of the problem as it automatically identified and
exploited the variables that maximized the reward in the
fitness function.

CEC'2014 Special Session

In 2014, there were no competitions held on LSGO at
CEC. Instead, several of the authors who submitted pa-
pers to this special session used existing benchmarks
from previous competitions to evaluate their algorithms
and compare their results. In particular, two of them [164,
165] used the CEC’2010 benchmark, whereas another
one [166] used the CEC’2013 benchmark. However,
none of these algorithms was able to outperform the
existing best results from previous competitions. In the
case of the algorithms evaluated in the CEC’2010 bench-
mark, both methods explored the idea of co-evolution.
The first one [164] proposed a new decomposition meth-
od specific for LSGO that tries to identify the interactions
between variables to define subcomponents. The other
one [165] proposes a hybrid approach to alternate be-
tween different algorithms in the optimization of the sub-
components. However, as stated before, none of these
methods was able to deliver competitive results when
compared with the best algorithms for this benchmark
[133, 154, 159].

Results were much better for the algorithm that was evalu-
ated in the CEC’2013 benchmark [166] than those from the
other aforementioned papers, being competitive to some ex-
tent with those of the best algorithm for this benchmark [159].
This proposal considers a well-known Differential Evolution-
based algorithm, SaNSDE, which is applied to solutions
where separable and non-separable sets of variables have been
previously identified.

From these results, we can conclude that:

* Cooperative co-evaluation and problem decomposition
seem to be very popular approaches to LSGO problems.

* However, we can observe some degree of stagnation in the
results for the algorithms. This trend seems to be con-
firmed, as will be shown in the following sections.

CEC'2015 Special Session

The LSGO competition at the IEEE CEC was repeated in the
2015 special session. The benchmark used this year was that
same as in 2013 and there were two new contributions, as well
as the five entries that took part in the previous competition,
reviewed in “CEC’2013 Special Session” section. These two
new methods include a memetic algorithm that combines DE
with a local search in an iterated way [167] and a hybridization
of DE and PSO [168].

The results of this competition confirm the trend identified
in the previous year: among the four best algorithms, there is
only one new method: IHDELS [167] in the second place. The
best algorithm for this benchmark continues to be the MOS-
based hybrid [159] with CC-CMA-ES and DECC-G in third
and fourth places, respectively. Moreover, the two new algo-
rithms also confirm that research in LSGO is basically focus-
ing on two directions: hybrid approaches and cooperative co-
evolution algorithms (with decomposition methods).

CEC'2016 Special Session

This special session did not hold a companion competition.
With this in mind, some authors [169, 170] proposed new
methods that were evaluated on the benchmarks proposed in
previous editions of the special session. Some of these
methods did not consider the entire benchmarks but focused
instead on a subset of functions [171, 172] sharing a common
characteristic that they wanted to study independently. Finally,
other authors started to explore methods to solve extremely
large problems (up to 100 million variables) [173]. We will
briefly review these contributions in the following paragraphs.

In [169], the authors propose a new improved function
decomposition method to detect interactions among variables
in the context of a cooperative co-evolution algorithm. The
results obtained with this new approach were evaluated in the
CEC’2010 benchmark reporting better results than other state-
of-the-art cooperative co-evolutionary algorithms such as
DECC-G [161], but far from the results reported by the best
algorithms for this benchmark, as reported in “CEC’2010
Special Session” and “CEC’2012 Special Session” sections.
On the other hand, Salcedo-Sanz et al. [170] proposed a new
version of the Coral Reefs Optimization (CRO) algorithm that
extends the original method to deal with LSGO problems by
incorporating several substrate layers (search operators) which
establish a competitive co-evolution process. It also incorpo-
rates a LS for better performance. It was evaluated in the
CEC’2013 benchmark, and although it might be competitive

@ Springer



Cogn Comput

with some other approaches such as DECC-G, it is also far
from the best results reported by [159].

Omidvar et al. [172] proposed an improvement to an
existing Contribution-Based Cooperative Co-evolution algo-
rithm (CBCC) to better manage the exploration/exploitation
ratio and evaluated it in a subset of the CEC’2013 benchmark.
Mahdavi et al. [171] on the other hand proposed several ini-
tialization methods around the center of the search space try-
ing to improve the performance of a CC method on non-
separable functions (and thus, its evaluation was only con-
ducted in the corresponding subset of the CEC’2013
benchmark).

Finally, in [173], the authors envision the future of LSGO
by modifying a well-known LSGO algorithm (MA-SW-
Chains) to be run on GPUs and thus were able to solve prob-
lems of up to 100 million variables. The results for this ex-
tremely large dimensionality are unprecedented in the litera-
ture, and for this reason, they compared their results to those of
arandom search to analyze to which extent the algorithm was
actually progressing in the search, concluding that the results
were significantly better in most of the cases according to the
statistical tests conducted.

The results of this special session confirmed both observa-
tions made in the previous edition: cooperative co-evolution
and hybridization seem to be the two most important current
research lines and new results do not seem to improve those of
reference algorithms.

CEC’2015 Big Optimization Special Session

In 2015, a Big Data Competition®' was carried out and a new
benchmark for large-scale global optimization was proposed
[174].

This benchmark has a multi-objective version and a single
objective version (combining linearly the results of two fitness
functions). In both of them, the aim is to solve a big electro-
encephalography data optimization problem with 1024, 3072,
and 4864 variables. This is a very interesting proposal because
it is a real-world problem, with noisy and noiseless versions,
and with an increasing number of variables.

Unfortunately, although several methods were proposed
[174-176], there were not enough to run a real competition.
Among these few proposals, a multi-agent genetic algorithm
(MAGA) [175] obtained the best results.

Evolution of Large-Scale Global Optimizers: Lessons
Learnt

After almost 10 years of special sessions and issues, the field
of continuous LSGO seems to be mature enough to identify

some trends and well-defined research lines. In this section,

3 http://www.husseinabbass.net/BigOpt.html
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we summarize our findings after a careful review of the results
reported over these years:

* In our opinion, there seem to be two different (and maybe
complementary) research lines. The first one is the hybrid-
ization of multiple methods. The algorithms obtaining the
best results in all the special sessions for all the bench-
marks combined different search strategies within the
same algorithm. Furthermore, all these methods included
some kind of control mechanism to orchestrate the com-
bination of the composing methods to get the most out of
each of them. The second one is cooperative co-evolution.
Many of the approaches recently proposed implement
these kinds of methods. Though their performance has
not been, in general, comparable to that of the best hybrid
methods, they have the advantage of being potentially
more scalable than other approaches. In this sense, a lot
of effort has been put in developing new function decom-
position methods that are able to identify groups of
interacting variables that should be optimized altogether.
Good decomposition methods help to simplify the prob-
lem as subcomponents can be optimized independently.

+ Differential Evolution seems to play an important role in
many of the algorithms with the best performance.
However, in most cases, it must be combined with other
algorithms (normally, a local search) to perform as well.

* The inclusion of strong local searches also seems to be the
trend in many of the best-performing methods. If the com-
bination of a population-based method and a local search
is properly managed, a good balance between exploration
and exploitation can be obtained.

* Another interesting emergent strategy is to include mech-
anisms to manage how Fitness Evaluations (FEs) are allo-
cated, trying to expend more FEs on dimensions (or com-
ponents) with more influence on the overall fitness value.

+ Some researchers are focusing their efforts on particular
characteristics of the functions. For example, some recent
studies have only considered non-separable functions.
Although benchmarks always try to include functions
with different characteristics, real-world problems do not
always include all of them. For this reason, in these sce-
narios, using specialized methods for some particular
characteristics can be very useful.

* A new type of very large-scale problems seems to be
gaining popularity. The complexity of scientific and in-
dustrial problems is continuously increasing and we will
need to able to deal with problems of several thousands or
even millions of variables. In this sense, there are incipient
studies that explore the possibility of using GPUs to make
state-of-the-art algorithms in continuous LSGO successful
also when the problem size is pushed to the limit.

* Finally, although it is not a single algorithm rather a family
of them constructed with the same framework, Multiple
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Offspring Sampling (MOS) seems to be a clear reference
in the field of continuous LSGO, as the results in the
special sessions of 2012, 2013, and 2015 and the special
issue 2011 indicate [177].

These findings are summarized in Table 1.

Current Trends after a Decade
of Competitions

After a decade of competitions in real-optimization and many
proposed algorithms, this historical information can be used to
try to answer several important questions:

* Are there any algorithms that hold a strong influence on
the following algorithms in the field?

*  What algorithms’ components are more successful?

* Are there any techniques that use some successful algo-
rithms that other algorithms also use to improve
themselves?

In this section, we are going to try to answer these
questions.

Influential Algorithms

In any research field, a good indication of its evolution is to
what extent some algorithms have influenced others over the
years, reusing ideas from previous successful proposals. For
this reason, the first big question that we would like to answer
is: does this happen within the real-parameter competitions?
We discuss the influence of three important algorithms: CMA-
ES, L-SHADE, and MVMO.

Table 1 Summary of the identified trends in continuous LSGO

Main trends

Hybridization Good results, scalability?

Cooperative Co-Evolution Average results, better scalability
Relevant algorithms
Differential Evolution Base of many hybrid methods
Local Searches Strong LS for better exploitation
Other characteristics
FEs allocation methods
GPus

Specialized optimizers

More effort in more rewarding variables
Necessary for very large-scale problems

Focus on particular characteristics
of problems

Prominent results

Multiple Offspring
Sampling (MOS)

Not a single algorithm but a framework

The first algorithm with a strong influence in the field was
CMA-ES [24]. The algorithms based on this approach, such as
IPOP-CMA-ES [25], BIPOP-CMA-ES [79], or Ni-BIPOP-
aCMA [36], were the winners of the CEC’2005 and the
BBOB’2009 competitions, and the runner-up in the
CEC’2013 competition, respectively. Furthermore, there are
many algorithms inspired by CMA-ES that have won several
editions of the BBOB competition. It has been used as local
search method, as in DRMA-LSCh-CMA [39] or as a com-
ponent in a hybridization such as iCMAES-ILS [35], the win-
ner of the CEC’2013 competition. However, its influence is
not only constrained to global optimization. There are some
algorithms using it in large-scale global optimization, such as
CC-CMA-ES [162]. In Fig. 1, the influence of the CMA-ES
algorithm can be observed.

A second algorithm with great influence is L-SHADE [45],
which evolves from the previous algorithm SHADE [42] (an
improvement of the well-known JADE [56] method) with a
small change, the ability to reduce the population size during
the search. With this small change, L-SHADE won in 2014,
when SHADE only ranked fourth in 2013. Its good results,
and maybe the availability of its source code,”” have favored
an interesting list of winners using it in CEC’2015 (L-
SHADE-ND [58], SPS-L-SHADE-EIG [53]) and CEC’2016
(LSHADE-EpSin [65], iLSHADE [66], LSHADE44 [68],
and others with worse results). Analogously, Fig. 2 depicts
the influence of L-SHADE in the last few years, although all
these algorithms share a common origin, which is the JADE
algorithm.

A third algorithm with good results was the MVMO
scheme algorithm, which proves that being a scheme is not
only good for global optimization [47, 67] but also for when
the number of evaluations is very scarce (as shown by its good
behavior in expensive benchmark [47]). In this case, the dif-
ferent proposals came from the same authors, maybe because
that scheme is not as popular as the DE scheme. The relation-
ship among those versions is graphically shown in Fig. 3.

Obviously, the algorithms with the best results in the com-
petitions are the most influential. However, sometimes, such
as with the SHADE or VMO algorithms, their first versions
were not among the winners, but they were evolved and, over
the next few years, other methods based on them performed
better achieving winning positions.

Bio-inspired Algorithms: Increasing Scenario

In recent years, a great variety of bio-inspired algorithms
have been published in the literature [2, 14]. These algo-
rithms simulate some biological processes such as natural
evolution, where solutions are individuals that mutate and

reproduce to generate new candidate ones. When they

32 at https://sites.google.com/site/tanaberyoji/home
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Fig. 1 Influence of CMA-ES algorithm in competitions

mimic a collective behavior they are called Swarm
Intelligence [178]. These are inspired by different biolog-
ical behaviors: movements of birds [179], bats [180], or
small insects such as fireflies [181, 182], grasshoppers
[183], or even mussels [184]; mechanisms to locate food
exhibited by colony animals such as ants in Artificial Ant
Colony (ACO) [185, 186], or bees in Artificial Bee
Colony (ABC) algorithms [187]; hunting mechanisms
used by different animals, from small ones such as drag-
onflies [188], to wild wolfs [189] or marine animals such
as dolphins [190] or whales [191]; even the reproduction
of corals [192], the behavior of very small animals such
as krill [193] or the immune system in Artificial Immune
System (AIS) optimization [194], to name a few.

(BBOB'2010)
.POP-CMAES POP-saACM
(CEC2005) (BBOB'2012)
iCMAES-ILS CMA-TPA
(CEC2013) (BBOB-CEC2015)
L-CMAES CMA-MSR
CMAES \: (CEC'2005) (BBOB-CEC2015)
DRMA-LSCh-CMA
(CEC2013)
UMOEA UMOEA-II
(CEC2014) (CEC2016)
CMA+DE+MOS
MOS (BBOB2010)

These algorithms have recently proven to be especially good
for a large number of cognitive problems. For instance, grass-
hopper optimization for identifying relevant features for the
classification of diseases [19], ABC for solving cognitive wire-
less sensor networks [195], evolutionary algorithms for cogni-
tive multitasking [196], bio-inspired algorithms for denoising
biomedical images [197], PSO for estimating unknown param-
eters [198], for planning [199] and for creating cognitive tax-
onomies [20], nature-inspired chemical reaction optimization
[200], and the dolphin algorithm for learning a neural network
(used for image recognition) [201] or cuckoo search for cogni-
tive image registration [18]. Furthermore, the use of swarm
intelligence has been evaluated as a synthetic collective intelli-
gence capable of exploring decision making [202].

JADE

VAN

DEsPA
SHADE | | cgcngrs)
L-SHADE
(CEC'2014)
,/// v \x
SPS-L-SHADE-EIG | | L-SHADE-ND | | iL-SHADE | |LSHADE-EpSin| |LSHADE44| |CCLSHADE R-LSHADE
(CEC2015) (CEC2015) (CEC'2016) (CEC2016) (CEC2016) | | (CEC2016) | | (BOB-GECCO2015)

Fig. 2 Influence of L-SHADE algorithm in competitions
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Fig. 3 Influence of MVMO
algorithm in competitions
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Finally, we would also like to note that the metaheuristics
with the best results in these competitions (CMA-ES, DE, and
MVMO) are far from being bio-inspired algorithms, although
some of them retain their nature-inspired roots. In this sense,
these results remind us that the novelty of new metaheuristics
is very important but also subordinated to their performance in
solving optimization problems.

There is a continuous debate in the nature-inspired com-
munity between novelty and the need to get competitive re-
sults (see the discussion in [203-205]).

Highlighted Techniques/Components

One of the most interesting issues when studying successful
algorithms is the identification of the different components
that each algorithm uses, as they can be further used by other
methods to boost their performance.

In the following paragraphs, we are going to highlight sev-
eral popular techniques/components that are currently being
used by many different algorithms.

* A frequent problem with many algorithms is the selection
of appropriate values for their parameters, as the perfor-
mance of one algorithm can be completely different when
these values differ. As a result, they should be carefully
chosen or an automatic parameter tuning tool [205] should

Fig. 4 Evolution of Memetic
Large-Scale Global Optimizers

be used. Furthermore, the different nature of the functions
in these benchmarks requires a robust algorithm, a behav-
ior difficult to obtain with fixed values. Thus, a lot of
algorithms use self-adaptive criteria to adapt their param-
eters (a good example are parameters F and CR of DE:
most of the popular methods use techniques to adapt these
two parameters). The general idea is to generate diverse
values for these parameters by learning a function distri-
bution and maintaining a memory. This memory is used to
adapt the mean of the distribution taking into account
which values have produced the best solutions (and some-
times also the worst ones) to enforce even better ones.

Curiously, due to this trend in designing robust algo-
rithms, most of the algorithms implement this self-
adaptive behavior, even when a specific benchmark, such
as the one at CEC’2015 for learning-based optimization,
allows researchers to use different values for each
function.

*  Other algorithms not only self-adapt their parameters but
also their components, having several components that
provide the same functionality (like the crossover opera-
tor, constraint technique, etc.) and then selecting one of
them according to their performance when they were pre-
viously used. This approach is usually applied in two dif-
ferent ways. The first option is to select a component with
a certain probability and, after a number of fitness
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evaluations, to increase the probability of the component
that generates the most successful solutions (considering
which one was inserted into the population or by its fit-
ness). The second option, widely followed by several win-
ner algorithms, is to apply (to the same solutions or to a
different sub-population) different algorithms during a
certain number of evaluations. Then, the algorithm that
obtained the best results is applied to all the new solutions
until the maximum number of evaluations is reached.

*  When the self-adaptive component is not a part of an op-
timization algorithm but of a complete algorithm, the pro-
posal can be considered as a framework of algorithms.
One proposal can be designed to have a particular combi-
nation, such as in the case of iCMAES-ILS [35], or allow a
more open selection of optimization methods, as in MOS
[82].

*  Most of the proposals are memetic algorithms, because
they incorporate an improvement method to obtain accu-
rate solutions, while global exploration component is in-
corporated at the same time. The local search method used
depends on many different types of methods, from more
general ones as quasi-newton to more advanced ones such
as CMA-ES, or more specific approaches, such as the ones
used in MTS and other LSGO algorithms. Figure 4 graph-
ically depicts this scenario, showing how a majority of the
most successful algorithms in LSGO incorporate a strong
local search as the intensification component of the
method.

* In order to increase the selective pressure in the popula-
tions, one approach popularized by L-SHADE and
adopted by other algorithms is to decrease the population
size during the run. This traditionally reduced the diversity
too fast and was therefore not acceptable. However, now-
adays many algorithms use a memory of solutions to
maintain diversity in the search, and so the reduction of
the population size does not imply bad diversity and can
thus improve the search.

» Traditionally, in most of the best-performing methods, on-
ly the best solutions were considered to guide the search.
This means that a lot of information was being wasted in
each generation. In more recent algorithms, such as CMA-
aCMA [37], bad solutions are also used to guide the
search. Similarly, in the MVMO family of algorithms
[47, 49, 60], not only is the best solution considered but
also the average of a group of good solutions.

Conclusions

The use of Bio-inspired and Evolutionary Algorithms for real-
parameter optimization is of great interest today, and thus
many approaches based on this type of optimization are pro-
posed each year. This large number of proposals makes it
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difficult for researchers to follow the evolution of the field.
In this paper, we have reviewed the different competitions for
each type of real-parameter optimization problems, highlight-
ing the winners. We have observed that there are several al-
gorithms, like CMA-ES, L-SHADE, MVMO, and MOS,
which have obtained a strong influence over other algorithms.
We have also suggested several techniques that are being
widely adopted among the winning proposals and which
could be used for more competitive algorithms.

The objective of this review and analysis of the evolution
of the competitions is to offer a useful reference to new re-
searchers in this research topic and help them to continue
improving the field.

Acknowledgments This work was supported by grants from the Spanish
Ministry of Science and the European Fund (FEDER) under projects
(TIN2014-57481-C2-2-R, TIN2016-8113-R, TIN2017-83132-C2-2-R,
TIN2017-89517-P) and Regional Government (P12-TIC-2958).

Funding This work was supported by grants from the Spanish Ministry
of Science and the European Fund (FEDER) under projects (TIN2014-
57481-C2-2-R, TIN2016-8113-R, TIN2017-83132-C2-2-R, TIN2017-
89517-P) and Regional Government (P12-TIC-2958).

Compliance with Ethical Standards

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Appendix: List of algorithms in competitions

In order to summarize the most relevant algorithms in the
different competitions covered by the paper, Tables 2, 3,
4, 5, and 6 show this information, grouped by benchmark
and conference and ordered according to their ranking in
the corresponding competitions. In particular, Tables 2
and 3 show the more relevant algorithms in global opti-
mization for the different CEC and BBOB benchmarks,
respectively. On the other hand, Table 4 shows the algo-
rithms in the Black-Box Competition for the different
conferences, whereas Table 5 shows the algorithms for
other competitions such as constraint and multimodal op-
timization. Finally, Table 6 summarizes the information of
the algorithms for large-scale global optimization.

Table 2  List of algorithms in CEC global competitions (sorted by
ranking)

Benchmark Competition’Year Algorithm Reference
CEC’2005 Global CEC’2005 IPOP-CMAES [25]
Optimization L-SaDE [28]
DMS-L-PSO [29]
CEC’2011 GA-MPC [31]
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Table 2 (continued)

Benchmark

Competition’Year Algorithm

Reference

CEC’2011 Global
Optimization
CEC’2013 Global
Optimization

CEC’2014 Global
Optimization

CEC’2015
Learning-Base
d Optimization

CEC’2015
Expensive
Optimization

CEC’2014 Global
Optimization

CEC’2015
Learning-Base
d Optimization

CEC’2015
Expensive
Optimization

CEC’2017 Global
Optimization

CEC’2015
Expensive
Optimization

CEC’2013

CEC’2014

CEC’2015

CEC 2015

CEC’2016

CEC’2016

CEC’2016

CEC’2017

CEC’2017

DE-ACR
SAMODE

IPOP-CMA-ES
NBIPOPaCMA
DRMA-
LSCh-CMA
L-SHADE
UMOEA
MVMO-SH

SPS-L-SHADE-EIG

DEsPA
MVMO
LSHADE-ND

MVMOexp
TunnedCMAES
DRPSO

UMOEA-II
LSHADE-EpSin
DRPSO
MVMO-PHM
LSHADE44
CCLSHADE

MVMO-PHM
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Table 3  List of the most relevant algorithms in the Black-Box
Optimization Benchmark competitions
Congress Competition’Year ~ Algorithm Reference
GECCO’2009 BBOB’2009 BI-POP-CMAES [79]
AMaLGaM IDEAL  [80]
GECCO2010 BBOB’2010 IPOP-aCMAES [37]
GECCO2012 BBOB’2012 IPOP-saACM [83]
NBIPOP-aCMAES  [85]
GECCO2013 BBOB’2013 HCMA [86]
HMLSL [87]
GECCO™2015 BBOB’2015 R-LSHADE [90]
CEC’2015 BBOB’2015 CMA-TPA [89]
CMA-MSR [89]
GECCO2017 BBOB’2017 Modified CMA-ES  [93, 94 95]
Algorithms [97]
Distributed Pool

Table 4 List of the most relevant algorithms in the Black-Box
Benchmark competitions (BBComp)

Competition Algorithm Reference
GECCO’2015 Track ~ KNITRO [98]
MVMO’2015 [57]
NSMO [99]
CEC’2015 Track UMOEA [46]
Two-stage algorithm [100]
GECCO2016 Track Two-stage algorithm [100]
Expensive KNITRO [98]
GECCO’2016 Track Two-stage algorithm [100]
GECCO2017 Track ~ DTS-CMA-ES Unpublished
Two-stage algorithm [100]
Expensive DTS-CMA-ES-BOBYQAP Unpublished
GECCO’2017 Track Restarted model-based Unpublished
optimization with L-BFGS-B
EMO’2017 Track Model-based HV-maximization Unpublished
Bayesian Multi-Objective [103]
Optimization Unpublished
PADDS-CHC

Table 5 List of the most relevant algorithms in other competitions
Benchmark competition Algorithm Reference
CEC’2006 Constraint eDE [105]
Optimization DMS-PSO [29]
jDE-2 [106]
CEC’2010 Constraint eDEg [109]
Optimization ECHT [110]
CEC’2013 Multimodal NEA2 [113]
Optimization dADE/nrand/1 [115]
CMAES with archive Unpublished
CEC’2015 Multimodal NMMSO [120]
Optimization NEA2 [113]
LSEDA [117]
CEC’2016 Multimodal RS-CMSA [118]
Optimization NMMSO [120]
RLSIS Unpublished
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Table 6 List of the most relevant
algorithms in Large-Scale Global
Optimization competitions

Benchmark Competition Algorithm
Reference
CEC’2008 LSGO CEC’2008 LSGO MTS [108]
LSEDA-gl [125]
jDEdynNP [126]
CEC’2010 Benchmark CEC’2010 LSGO MA-SW-Chains [133]
EOEA [134]
DASA [135]
Soft Computing Soft Computing Special Issue ~ MOS [82]
Benchmark GaDE [144]
jDElscop [140]
CEC’2010 Benchmark CEC’2012 LSGO Improved MOS [153]
jDEsps [154]
Two-phase algorithm with CCGS  [155]
CEC’2013 Benchmark CEC’2013 LSGO MOS with MTS-LS1-Reduced [159]
Smoothing and auxiliary CC [160]
CEC’2010 Benchmark CEC’2014 LSGO Center-Based Initialization CC [164]
Hybrid approach [165]
CEC’2013 Benchmark CEC’2014 LSGO Variable grouping DE [166]
CEC’2013 Benchmark CEC’2015 LSGO IHDELS [167]
DEEPSO [168]
CEC’2015 BigOpt CEC’2015 Big Optimization =~ MAGA [175]
CEC’2013 Benchmark CEC’2016 LSGO CC-DIG [169]
CRO [170]
CBCC [172]
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