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a b s t r a c t 

The Synthetic Minority Over-sampling Technique (SMOTE) is a well-known resampling strategy that has 

been successfully used for dealing with the class-imbalance problem, one of the most challenging pat- 

tern recognition tasks in the last two decades. In this work, we claim that SMOTE has an important issue 

when defining the neighborhood in order to create new minority samples: the use of the Euclidean dis- 

tance may not be suitable in high-dimensional settings. Our hypothesis is that the use of a weighted 

metric that does not assume that all features are equally important could improve performance in the 

presence of noisy/redundant variables. In this line, we present a novel SMOTE-like method that uses 

the weighted Minkowski distance for defining the neighborhood for each example of the minority class. 

This methodology leads to a better definition of the neighborhood since it prioritizes those features that 

are more relevant for the classification task. A complementary advantage of the proposal is performing 

feature selection since attributes can be discarded when their corresponding weights are below a given 

threshold. Our experiments on 42 class-imbalance datasets show the virtues of the proposed SMOTE vari- 

ant, achieving the best predictive performance when compared with the traditional SMOTE approach and 

other recent variants on low- and high-dimensional settings, handling issues such as class overlap and 

hubness adequately without increasing the complexity of the method. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Imbalanced classification is a topic of high interest for nowa- 

ays applications. This issue may cause a bias during the learn- 

ng process so that minority class instances are not well-identified 

1,2] . 

One of the most straightforward approaches to overcome the 

lass-imbalance issue is via preprocessing techniques, such as data 

esampling [3] . Resampling is beneficial to rebalance the classes, 

o clean the borderline areas, and to enlarge the minority class re- 

ions [4] . The Synthetic Minority Oversampling TEchnique (SMOTE) 

as become the “de facto” standard for imbalanced classification 

ia resampling [3,5] . SMOTE generates new minority class exam- 

les in the neighboring areas of the original ones by means of in- 

erpolation. 
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We claim in this paper that SMOTE has a weakness when fac- 

ng high-dimensional problems. Generally, the classical Euclidean 

istance metric is chosen for computing the neighbors for each 

inority class instance. However, this metric may converge to the 

ame value for all instances in high-dimensional settings, becom- 

ng almost uniformly distant from each other. In the particular case 

f SMOTE, this “curse of the dimensionality” may lead to an inef- 

ective interpolation process [6] . 

The hypothesis of this study is that a weighted distance mea- 

ure can alleviate the “curse of the dimensionality” in the k -nearest 

eighbors step of SMOTE. Furthermore, this metric can be also 

seful in the presence of noisy/redundant variables, even in low- 

imensional settings. The Euclidean distance assumes that all vari- 

bles are equally important, which is seldom correct in most ma- 

hine learning tasks. A general metric that is able to weight the 

eatures according to their importance can be very useful at defin- 

ng a proper neighborhood for the minority samples, leading to a 

etter predictive performance of the base classifier [6] . 

An adequate definition of the neighborhood also strengthens 

he boundaries of the positive region, mitigating the hubness is- 
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ue [7] . This phenomenon occurs when few points in the minority 

lass account for most of the observed neighbor occurrences due 

o the skewness in the distribution. This issue is faced usually in 

igh-dimensional settings [7] . 

In this work we propose a general version of the SMOTE strat- 

gy that includes a feature weighting process that takes into ac- 

ount relevancy/redundancy. This new component is intended to 

ead to a better definition of the neighborhood of minority sam- 

les, conferring flexibility to the process of generating synthetic 

xamples. The new methodology is named after FW-SMOTE, which 

tands for Feature Weighted-SMOTE . 

During the k -nearest neighbors step, the proposed method is 

esigned to discard those variables whose weights are below a 

iven threshold. This is done for reducing the negative effect of the 

urse of the dimensionality in the construction of the neighbor- 

ood. Although the variables are not removed for the classification 

ask , FW-SMOTE has the potential to perform feature selection by 

tilizing the feature weighting strategy to select the input variables 

or classification without increasing the complexity of the method. 

e explore this approach in the present study, achieving best pre- 

ictive results compared to alternative feature selection strategies 

hat deal with the class imbalance problem. 

The feature weighting process is done by including the In- 

uced Ordered Weighted Average (IOWA) operator [8] in the def- 

nition of the distance metric. This results in a variation of the 

eighted Minkowski distance, called induced Minkowski OWA dis- 

ance (IMOWAD) [9] . The weights for the attributes are defined us- 

ng a fast feature ranking method, such as the Fisher Score [10] , 

s an input. The goal is to prioritize those features that are more 

elevant for the classification task in the k -nearest neighbors step. 

hese modifications are simple statistical operations that do not 

ncrease the complexity of the problem significantly. 

We developed a comprehensive experimental study carried out 

n 42 low- and high-dimensional datasets. The goal of this analy- 

is is three-fold: First, we show that FW-SMOTE performs much 

etter than other SMOTE variants in terms of predictive perfor- 

ance. Next, we incorporate feature selection in the learning pro- 

ess, showing the virtues of our strategy at dealing with redun- 

ant/irrelevant variables. Finally, a stability analysis is performed, 

llustrating the robustness of FW-SMOTE in terms of predictive per- 

ormance under different parameter settings. Our study is comple- 

ented with theoretical discussions on aspects such as complexity 

nd learning in an embedding space. 

In summary, this research fills an important gap in the SMOTE 

iterature when noisy/redundant attributes are present. FW-SMOTE 

s the first resampling technique that considers a weighted scheme 

or the definition of the neighborhood in the SMOTE algorithm, to 

he best of our knowledge, being also the first one that considers 

WA operators. 

The remainder of this paper is structured as follows: In 

ection 2 the class-imbalance problem and SMOTE variations are 

resented. The core of this research work where FW-SMOTE is for- 

alized in Section 3 . Next, we carry out an empirically analysis to 

onfirm the good behavior of FW-SMOTE on various low and high- 

imensional datasets in Section 4 . Finally, the main conclusions of 

his study are presented in Section 5 . 

. The class-imbalanced problem 

When it comes to addressing classification for imbalanced prob- 

ems, there are different types of approaches that can be consid- 

red. Specifically, we may highlight preprocessing techniques, cost- 

ensitive learning, one-class classification (OCC), and feature selec- 

ion [11] . 

Among these solutions, the use of resampling-based prepro- 

essing to balance class distribution has undoubtedly been the 
2 
ost widely used of them all [5] . The advantages of data resam- 

ling are clear, since it allows different proposals to be applied to 

he same or several classifiers, with the aim of identifying the one 

pproach that best adapts to the input data. There are two types of 

reprocessing techniques. On the one hand, there are oversampling 

ethods that replicate instances of the minority class. And on the 

ther hand, there are undersampling methods that eliminate ex- 

mples of the majority class. Each approach has its specific capa- 

ilities. For example, oversampling allows maintaining the original 

nformation of the problem, strengthening the borderline areas for 

he clusters of the minority class, while undersampling allows an 

mplicit cleaning of possible noisy data and helps in the treatment 

f class overlap [6] . 

A disadvantage related to resampling is that it may either 

emove relevant information (undersampling) or introduce new 

rtificially-generated data, potentially biasing the results (oversam- 

ling). To avoid these issues, algorithmic-level solutions have been 

roposed, such as cost-sensitive learning and one-class classifica- 

ion. These approaches are trained with class-imbalanced data di- 

ectly [12] . 

On the one hand, cost-sensitive techniques include an estima- 

ion of the misclassification costs, adapting existing machine learn- 

ng techniques to favor the minority class. Support Vector Machine 

SVM) is a well-known classification method that offers great flex- 

bility. Therefore, several cost-sensitive extensions have been de- 

igned with excellent predictive results [13,14] . 

On the other hand, OCC approaches addresses the class- 

mbalance problem by constructing a description of the target class. 

his is done by training the model without the information of the 

abels, as in a clustering algorithm for outlier detection [12] . Simi- 

ar to cost-sensitive techniques, several OCC variants have been de- 

eloped considering SVM as the baseline classifier, including the 

ell-known Support Vector Data Description (SVDD) [12] . 

From the myriad of different solutions in this context, in this 

esearch work we focus on SMOTE [5] , due to its good properties 

nd widespread usage. To do so, first we provide a gentle intro- 

uction to the preprocessing in general, and to the working pro- 

edure of SMOTE in particular ( Section 2.1 ). Then, we enumerate 

everal extensions of SMOTE that have been proposed in the liter- 

ture to overcome some of its initial drawbacks ( Section 2.2 ). Fi- 

ally, feature selection is discussed as a potential solution for deal- 

ng with the class-imbalance issue in high-dimensional settings 

 Section 2.3 ). 

.1. Resampling and the SMOTE preprocessing algorithm 

The baseline oversampling algorithm is random oversampling. It 

orks simply by replicating examples of the majority class, which 

asically implies a higher weight in case of misclassification; but it 

ay cause overfitting [15] . In 2002, N.V. Chawla proposed a novel 

pproach as an alternative to the former standard method [16] . 

he idea was to assist the classifier to improve its generalization 

y creating new minority instances. This technique was named 

MOTE. The basis of its procedure was to carry out an interpo- 

ation among neighboring minority class instances. As such, it was 

ble to increase the number of minority class instances by intro- 

ucing new minority class examples in their cluster areas. 

Given a sample x i from the minority class, and N randomly cho- 

en samples from its neighborhood x 
p 
i 

, with p = 1 , . . . , N, a new

ynthetic sample x 
∗p 
i 

is obtained with the following expression: 

 

∗p 
i 

:= x i + u 

(
x 

p 
i 

− x i 

)
, (1) 

here u is a randomly generated number between 0 and 1. This 

ethod has the advantages of being fast to compute and successful 

t providing balanced and accurate classification performance. 
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.2. Extensions for SMOTE preprocessing 

Many different extensions of this original approach have been 

roposed with the objective of improving some of the capabilities 

f SMOTE [16] . One common alternative is to compute which the 

est candidates are to be oversampled in the data before the pro- 

ess of synthetic example generation starts. The idea behind this 

ype of strategy is being able to address the problems of noise 

nd/or overlapping within the training dataset [17] . 

Based on the idea of data complexity, ADASYN [18] selects the 

mount of oversampling for each minority example dynamically by 

stimating its intrinsic difficulty, which is based on the ratio of ex- 

mples belonging to the majority class in the neighborhood. 

A similar approach is the Adaptive Neighbor SMOTE (AN-S.) 

19] . In this case, it uses the oversampling process with a differ- 

nt K-parameter for each minority instance. The selected value is 

ased on the density of surrounding same-class instances. 

There are also some techniques that focus on the selection 

f instances which are closer to the boundary areas, such as 

orderline-SMOTE (BL-S.), a clearly representative approach [20] . 

his algorithm draws on the premise that the examples far from 

he borderline may not provide a strong contribution to the clas- 

ification ability of the model. To obtain the borderline areas, the 

lgorithm works by considering the ratio between the majority and 

inority examples within the neighborhood of each instance to be 

versampled. 

A method inspired by BL-S. is Density Based SMOTE (DB-S.) 

21] . Its working procedure is based on a density-based approach 

f clustering called DBSCAN, and it generates the synthetic in- 

tances by computing the shortest path from each minority in- 

tance to a pseudo-centroid of a minority-class cluster. Like BL-S., 

t operates in an overlapping region, but the main difference is that 

t seeks to maintain both the minority and majority class predic- 

ions. 

Other types of techniques are based on identifying whether 

r not to generate synthetic examples by examining the actual 

umber of minority class examples belonging to the complete 

eighborhood. Such is the case with SafeLevel-SMOTE (SL-S.) [22] . 

pecifically, this technique assigns each minority example a so- 

alled “safe level” value, obtained as the ratio of the number of 

inority examples within its neighborhood area. Then, the inter- 

olation function is modified using a gap that is dependent on the 

ormer safe level ratio of each minority instance. 

A recent adaptation of the former SL-S. technique, named Relo- 

ating Safe-level SMOTE (RSL-S.) [23] , is dedicated to ensuring that 

ew synthetic positive instances are truly far from the surrounding 

reas of the negative examples. To do this, the instance generation 

rocedure is repeated while the distance to the nearest majority 

lass instance is lower than the distance to the original minority 

lass. 

Similar to the previously described techniques, MWMOTE 

24] seeks to ensure that new minority instances are generated 

ithin a “correct” class cluster. To do so, it applies a weighting 

echanism based on the distance to the nearest majority class 

oint. Then, synthetic examples are generated from the weighted 

nformative minority class instance using a clustering approach. 

Another resampling approach, called Radial-Based Oversam- 

ling (RBO), was proposed recently by Koziarski et al. [25] . The 

ain goal of RBO is to find adequate regions of interest for gen- 

rating synthetic examples from the minority class by using radial 

asis functions. 

To the best of our knowledge on SMOTE and all its extensions, 

he definition of the neighborhood is computed while giving all 

he variables the same importance. However, in a high-dimensional 

ontext, this may imply a strong bias caused by two issues. The 

rst is that the higher the number of variables, the higher the con- 
3 
ergence to a similar distance value for all examples. Secondly, it 

s not able to cope with noise and redundancy properly [26] . In 

hese cases, a smart computation of the neighborhood instances is 

andatory to guarantee the generation of useful synthetic data. 

.3. Feature selection for class-imbalanced datasets 

When addressing a classification problem, the success of any 

L algorithm depends greatly on the inner characteristics of the 

ataset [27] . Some issues that could hinder the classification abil- 

ty are as the imbalanced problem (uneven class distribution), the 

urse of dimensionality (a high number of input attributes), or the 

lass overlapping (same a priori class probability within a small 

luster) [28] . 

A common solution for this scenario is applying feature selec- 

ion methods. As its name suggests, the goal is to reduce the full 

eature set to a strong subset with the same (or possibly better) 

iscerning capacity. Irrelevant, noisy, and redundant information 

an be discarded, yielding better predictive performance since it 

educes the risk of overfitting [12] . To carry out this procedure, 

here are three types of schemes. One is using filtering methods 

hich compute the score or significance of each attribute in order 

o rank the input variables. The second one is using wrapper ap- 

roaches that use an auxiliary classification method for establish- 

ng the best cooperating variables in an iterative procedure. Finally, 

mbedded methods perform feature selection in the training pro- 

ess, and are specific to a given machine learning method [12] . 

Filter methods have been discussed in the literature in combi- 

ation with data resampling techniques or cost-sensitive classifi- 

ation approaches [29,30] . Some filter methods, such as the Fisher 

core, mutual information, or the correlation score (also known as 

orrelation-based Feature Selection, or CFS), do not require adap- 

ations in order to be suitable for class-imbalance classification [6] . 

lternatively, well-known filter methods such as Relief have been 

dapted for the task of filtering out irrelevant attributes taking the 

lass-imbalance problem into consideration [29,30] . 

There are some recent studies that propose wrapper strategies 

or simultaneous feature selection and class-imbalance classifica- 

ion. Since the exhaustive search for an optimal feature subset is 

 complex combinatorial problem, genetic algorithms and other 

etaheuristics have been proposed for this task [31] . For exam- 

le, Chen et al. [32] combined neighborhood rough set theory with 

he Particle Swarm Optimization (PSO) metaheuristic for this task. 

eighborhood rough set theory was also considered in [33] for on- 

ine feature selection based on k -nearest neighbors. 

Some embedded feature selection methods related to the class- 

mbalance problem have been proposed, especially in relation with 

he SVM method [12,14] . For example, Zhang et al. [34] proposed 

he Border-Resampling Feature Elimination (SVM-BRFE), in which 

isclassified minority samples from the boundary constructed by 

he SVM method are oversampled for a better assessment of the 

eature relevance. Alternatively, a backward iterative process based 

n balanced accuracy was proposed in [35] , resulting in the BFE- 

VM method. 

In summary, several feature selection strategies have been de- 

igned for dealing with the class-imbalanced problem. However, 

ost state of the art approaches follow two independent processes 

or feature elimination and data resampling, or evaluate different 

ombinations via metaheuristics. We propose a novel scheme, in 

hich a feature ranking step is introduced in the SMOTE strategy. 

. The FW-SMOTE method: using feature weighting and 

election generating artificial instances 

The main idea of the proposed oversampling technique is to 

eneralize the classic SMOTE approach using aggregation opera- 



S. Maldonado, C. Vairetti, A. Fernandez et al. Pattern Recognition 124 (2022) 108511 

t

d

d

a

c

d

o

n

I

s

a

S

t

s

t

i

i

b

w

v

t

a

v

s

p

t

r

p

w

l

a

N

I

a

a

i

i

3

d

i

I

t

i

O

w  

a

m

i  

e

T

a

p  

a

t

I  

w  

u  

t

p

r

o

s

d

t

d

a

v

d

f  

i

t

a

F

i

D

s

I  

w  

o

o  

[

x

c

s

a

t

d

f

a

t

w

3

u

i

c

S

r

a

t

r

E

m

ors. FW-SMOTE deals with two important issues: the curse of 

imensionality that affects distance measures in case of high- 

imensional datasets, and the fact that although SMOTE weights 

ll attributes equally for defining its neighborhood, most datasets 

ontain redundant or irrelevant covariates which can be weighted 

own to favor relevant attributes. 

FW-SMOTE replaces of the Euclidean distance used in SMOTE 

versampling by the IMOWAD distance, which is a very flexible 

orm that allows a weighting process for the attributes via the 

OWA operator. Notice that the traditional SMOTE approach is a 

pecial case of our proposal, in which the Euclidean norm is used 

nd all attributes are equally weighted. 

In spite of its simplicity and good general performance, the 

MOTE approach has a noticeable drawback. The Euclidean dis- 

ance used for computing the k nearest neighbors of a minority 

ample assumes that all variables are equally relevant; an assump- 

ion that seldom holds for most applications, and, in particular, in 

mbalanced domains [6] . A feature weighting process that takes 

nto account relevancy/redundancy into account could lead to a 

etter definition of the neighborhood. A high-dimensional setting 

orsens the problem since the Euclidean distance tends to con- 

erge to the same value for all instances, according to the curse of 

he dimensionality. 

FW-SMOTE is not only presented as a weighting strategy, but 

lso as a resampling method that has the ability of performing 

ariable selection. The weights provide an additional insight in the 

ense that attributes can be discarded from the whole learning 

rocess and not only from the definition of the neighborhood. A 

hreshold ε is defined in order to remove variables based on their 

elevancy according to the feature ranking technique. In our ex- 

erimental analysis we explore both alternatives: FW-SMOTE as a 

eighted resampling technique and its extension as a feature se- 

ection method. 

In Section 3.1 , we introduce the concept of OWA operators 

nd present the IOWA-based distance measure used in FW-SMOTE. 

ext, the feature ranking techniques that induce the order of the 

OWA operator are discussed in Section 3.2 . Then, the FW-SMOTE 

lgorithm is formalized in Section 3.3 . This section concludes with 

 theoretical analysis regarding the contribution of FW-SMOTE and 

ts relation with other pattern recognition techniques. This analysis 

s presented in Section 3.4 . 

.1. The weighted distance measure for FW-SMOTE 

The ordered weighted averaging (OWA) operator was intro- 

uced by R.R. Yager to provide a method for aggregating several 

nputs that lie between the maximum and minimum values [36] . 

t is widely used when aggregating the data according to the atti- 

udinal character of the decision-maker. The classic OWA operator 

s given by: 

WA (a 1 , a 2 , . . . , a n ) = 

n ∑ 

j=1 

w j b j (2) 

here b j is the jth largest value of the input vector (a 1 , a 2 , . . . , a n ) ,

nd w j ∈ [0 , 1] are the weights, with 

∑ n 
j=1 w j = 1 . 

The classic OWA operator assumes that the value of the ele- 

ents to be aggregated is relevant for defining the weights. This 

s not true in our case since we want to induce order using an

xternal variable, so the rankings are obtained by filter methods. 

herefore, we use the induced OWA (IOWA) operator [8] , which is 

 generalized version of the classic OWA operator. Given input tu- 

les of the form (〈 u 1 , a 1 〉 , 〈 u 2 , a 2 〉 , . . . , 〈 u n , a n 〉 ) , where the a values

re the objects to be aggregated and the u the order-inducing vec- 
4 
or, the IOWA operator has the following form: 

OWA (〈 u 1 , a 1 〉 , . . . , 〈 u n , a n 〉 ) = 

n ∑ 

j=1 

w j b j (3)

here b j is the a value of the IOWA tuple that has the jth largest

 value. Similar to those of the classic OWA operator, w j ε[0 , 1] are

he weights, with 

∑ n 
j=1 w j = 1 . 

The use of aggregation operators such as IOWA has become 

opular due to their ability to provide a more general process for 

eordering the information [37] . The flexibility provided by these 

perators can be extremely useful for designing machine learning 

chemes that are robust in the presence of problems such as noisy 

ata and/or outliers [8] . 

FW-SMOTE considers a variant of the weighted Minkowski dis- 

ance for the definition of the neighborhood. The weights for the 

istance measure are suggested to be obtained via an IOWA oper- 

tor. Given two observations x i ∈ � 

n and x i ′ ∈ � 

n , and the weight 

ector w ∈ � 

n , the weighted Minkowski distance [9] follows: 

( x i , x i ′ , w ) = 

( 

n ∑ 

j=1 

w j | x i, j − x i ′ , j | p 
) 1 /p 

, (4) 

or p ≥ 1 . Well-known options for this parameter are p ∈ { 1 , 2 , ∞} ,
.e., the Manhattan, Euclidean, and Chebyshev distances, respec- 

ively. The weights in Eq. (4) can be obtained via an IOWA oper- 

tor, leading to the induced Minkowski OWA distance (IMOWAD). 

ollowing the notation in Eq. (3) , this distance function is formal- 

zed as follows: 

efinition 1. The IMOWAD distance is a mapping R 

n × R 

n → R 

uch that: 

MOWAD (〈 u 1 , x i, 1 , x i ′ , 1 〉 , . . . , 〈 u n , x i,n , x i ′ ,n 〉 ) = 

( 

n ∑ 

j=1 

w j b 
p 
j 

) 1 /p 

, (5)

here b j is the | x i, j − x i ′ , j | value of the 3-tuple with the jth largest

f the u vector (the order-inducing variable). Similar to the IOWA 

perator, it holds for the weight vector that 
∑ n 

j=1 w j = 1 and w j ∈
0 , 1] [9] . 

Then, the distance between two samples of the minority class 

 i and x i ′ is given by a weighted sum of the differences between 

orresponding elements of these two vectors. The weights are as- 

igned to each dimension according to how relevant the variables 

re based on a feature ranking technique. This ranking results in 

he order-inducing vector u . 

Notice that the IOWA operator and the IMOWAD functions are 

ifferent concepts. The IOWA operator is a very general aggregation 

unction that confers flexibility to operators such as the weighted 

verage. In contrast, the IMOWAD function is a distance measure 

hat uses the IOWA operator, resulting in a general version of the 

eighted Minkowski distance. 

.2. The feature ranking methods for FW-SMOTE 

Since the IMOWAD operator requires an order-inducing variable 

 for obtaining the weights of the IOWA operator, a feature rank- 

ng is performed using a filter method. As it was previously dis- 

ussed in Section 2.3 , there are several alternatives for this step. 

pecifically, there are methods that rank attributes according to 

elevance (i.e. correlation between covariates and the target vari- 

ble), such as Mutual Information (MI) and the Fisher Score (FS); 

o redundancy (i.e. correlations among covariates), such as the Cor- 

elation Score (CFS); or to both relevance and redundancy, such as 

igenvector Centrality (EC) and the Minimum Redundancy Maxi- 

um Relevance (MRMR) method. 
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Algorithm 1: FW-SMOTE method for data oversampling. 

1 Input: Training tuples { ( x i , y i ) } m 

i =1 
; Minority class sample set 

M ; Amount of oversampling N; Number of nearest neighbors 

k ; Number of selected attributes r or threshold ε; Minkowski 

distance parameter p; IOWA quantifier parameter α. 

2 Output: Oversampled set of elements of the minority class 

M 

∗. 

1. M 

∗ ← M . 

2. u ← Feature ranking method F R ({ ( x i , y i ) } m 

i =1 
) . 

3. w ← RIM quantifier RIM( u , α) . 

4. S ← Take the r largest values of w , or { j ∈ X | w j > ε} . 
5. for i ∈ M 

6. for i ′ ∈ M , i � = i ′ 

7. IMOWAD ( x i , x i ′ , w ) = 

(∑ 

j∈S w j b 
p 
j 

)1 /p 

. 

8. end for 

9. T ← arg min T 
∑ 

i ′ ∈T 
IMOWAD ( x i , x i ′ , w ) , T ⊆ M \ { i } , |T | = k . 

10. for k ← 1 to N 

11. x k ← Select a random sample from T . 
12. x ∗

k 
← x i + υ( x k − x i ) . 

13. M 

∗ ← (M 

∗, x ∗
k 
) . 

14. T ← T \ { x k } . 
15. end for 

16. end for 

f

f
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Since this research study is focused on the preprocessing step, 

nly filtering techniques are presented. From them, we selected 

our different scoring functions. The first two are based on assess- 

ng the dependency between the covariates and the label vector; 

he next one computes the redundancy degree among the vari- 

bles; and, finally, the fourth one represents a synergy among all 

he previous ones. Below, the four filtering techniques are enumer- 

ted: 

1. Fisher Score [10] : It computes the absolute difference between 

the means of the two classes, normalized with a joint standard 

deviation, as follows: 

F S( j) = 

| μ j1 − μ j2 | 
σ 2 

j1 
+ σ 2 

j2 

, (6) 

where μ jl is the mean value for the jth attribute and class l, 

l = 1 , 2 , while σ jl is its respective standard deviation. 

2. Mutual Information [38] : It computes the amount of information 

on one attribute that can be gained by observing another one, 

as follows: 

MI( j) = 

∑ 

y ∈ y 

∑ 

x ∈ x j 
p(x, y ) log 

(
p(x, y ) 

p(x ) p(y ) 

)
, (7) 

where x and y are the various levels of attribute x j and the 

target vector y , respectively; whereas p(x ) and p(y ) are their 

marginal probability distributions, with p(x, y ) being their joint 

distribution. As can be seen, this approach assumes that the co- 

variates are nominal variables, unlike the Fisher Score. Mutual 

Information, however, can be used with numerical variables af- 

ter binning them [39] . 

3. Correlation Score [6] : It computes the Pearson correlation ρ j, j ′ 
for each pair of attributes j and j ′ , and subsequently computes 

the lowest absolute correlation, as follows: 

CF S( j) = min 

j ′ 
| ρ j, j ′ | . (8) 

4. Eigenvector Centrality [40] : It combines the Fisher Score, the 

Mutual Information, and the covariates’ standard deviation to 

construct an adjacency matrix A . Then, feature importance is 

assessed by computing the eigenvector related to the largest 

eigenvalue of A . The edges of A can be seen as the influence

of two attributes that are used together for classification based 

on the metrics that were mentioned previously. 

.3. The FW-SMOTE algorithm 

Having defined our generalized distance metric and the feature 

anking methods used as an input for this metric, we now de- 

cribe an algorithm that conducts data oversampling on the basis 

f this distance measure. The FW-SMOTE algorithm is formalized 

n Algorithm 1 . 

Assuming a two-class problem with objects x i ∈ � 

n , i = 

 , . . . , m , and their respective outputs y i ∈ { −1 , +1 } , FW-SMOTE 

rst computes the k nearest neighbors for each element that be- 

ongs to the set of minority class samples M . For this step, which

s done using the Euclidean norm in the classic SMOTE method 

nd most of its variations, we propose using the IMOWAD opera- 

or presented in Eq. (5) . 

In Step 1, the oversampled minority class set M 

∗ is initialized 

s the original set of minority samples in M . Next, the order- 

nducing variable u required by IMOWAD distance is computed by 

eans of the feature ranking chosen for this task (see Step 2 of 

lgorithm 1 ). 

In Step 3, the weights for the IMOWAD distance are obtained 

rom the order-inducing variable u . For this step, we explore 

our variants of the Regular Increasing Monotone (RIM) quanti- 

er, where α is an input parameter. This strategy, also known as 
5 
uzzy linguistic quantifiers, are arguably the best-known approach 

or obtaining the OWA weighting vectors [41] . The quantifiers used 

n this study are the following: 

• Basic Regular Increasing Monotone (RIM) quantifier: 

w j = 

(
j 

n 

)α

−
(

j − 1 

n 

)α

∀ j. (9) 

• Quadratic RIM quantifier [42] : 

w j = 

( 

1 

1 − α
(

j 
n 

)0 . 5 

) 

−
( 

1 

1 − α
(

j−1 
n 

)0 . 5 

) 

∀ j. (10) 

• Exponential RIM quantifier: 

w j = e −α( j n ) − e −α( j−1 
n ) ∀ j. (11) 

• Trigonometric RIM quantifier: 

w j = arcsin 

(
α

(
j 

n 

))
− arcsin 

(
α

(
j − 1 

n 

))
∀ j. (12) 

Step 4 performs feature selection within the SMOTE strategy, 

efining a subset S ⊆ X of relevant variables, in which X repre- 

ents the full set of variables. This subset is obtained from the 

eights computed in the previous step. 

The feature selection step is suggested in order to alleviate the 

urse of dimensionality when facing high-dimensional datasets. For 

his step, the literature on feature selection offers two alternatives. 

irst, a predefined threshold ε can be defined, and those attributes 

hose weights are below ε can be discarded. Alternatively, a tar- 

et number of ranked variables r ≤ n can be defined. In this case, 

hose attributes that are ranked among the n − r variables with the 

owest weights are discarded (see Step 4 of Algorithm 1 ). 

As mentioned in the introduction, FW-SMOTE is not designed 

s a feature selection method for the classification task. However, 

t can be used for this purpose, taking advantage of the feature 

anking method. In other words, the use of the set S for classifica- 

ion instead of using the full set of attributes is up to the modeler. 
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Steps 5 to 15 of Algorithm 1 are the core of the FW-SMOTE 

ethod. For each minority sample in M (Step 5), its neighborhood 

f size k is computed using the IMOWAD function (Step 6 to 9). 

et T includes the k nearest neighbors of the target sample i . 

Similar to the SMOTE algorithm, FW-SMOTE selects the N < k 

eighbors randomly once the neighborhood is defined. The values 

or k and N must be defined beforehand. Step 11 selects a random 

ample x k from T , while Step 12 creates a synthetic examples x ∗
k 

ia interpolation with the target sample. For this step, the algo- 

ithm requires a random number υ between 0 and 1. 

In Step 13, the synthetic example x ∗
k 

is appended to M 

∗. Next, 

he randomly selected sample is x k is excluded from T (see step 

4 of Algorithm 1 ). This process is repeated N times for each of 

he minority examples. 

The output of the algorithm is then the oversampled minority 

lass M 

∗ that includes all the original samples in M and the syn- 

hetic examples. 

Our approach is a generalized version of the SMOTE algorithm 

ince the IMOWAD operator becomes the traditional Euclidean 

orm when w j = 1 /n for all j, r = n (no feature selection), and

p = 2 . 

.4. Theoretical analysis and contribution 

Our main contribution is the proposed weighting strategy for 

he definition of the neighborhood in the SMOTE algorithm. It is 

mportant to notice that the proposed metric (the IMOWAD dis- 

ance) was not considered previously in the context of machine 

earning. Furthermore, the feature ranking methods have not been 

onsidered in previous studies with the purpose of developing a 

eighted distance metric. These elements make FW-SMOTE a non- 

rivial oversampling strategy with a lot of potential since it gener- 

lizes the original SMOTE algorithm. 

The introduction of a weighting process in the construction of 

istance functions showed good empirical results in unsupervised 

earning, as suggested in [43] . In this study, the authors report an 

mportant improvement in the description and interpretability of 

ata from molecular dynamics (MD) simulations. This is a very rel- 

vant high-dimensional task designed to describe biomolecules ob- 

erved in time. Although this approach considers a completely dif- 

erent weighting strategy and it is designed for a different purpose, 

t supports our hypothesis that a weighted scheme can improve 

istance-based learning strategies in high-dimensional settings. 

Our proposal is essentially similar to SMOTE in terms of com- 

lexity. FW-SMOTE is based on fast feature ranking methods, such 

s Fisher Score, and involves additional steps which are very fast 

rithmetic operations: computing the RIM function in order to ob- 

ain the weight vector, sorting the output of the feature ranking 

ethod, and finally the inclusion of the weights in the distance 

unction. The sole exception to this is the use of Eigenvector Cen- 

rality as feature ranking method, which is more time-consuming 

han the alternatives since it requires the other feature ranking 

ethods as input, and it performs the computation of eigenvalues 

or the adjacency matrix. 

The following remarks relate the proposed approach with the 

se of oversampling in combination with feature extraction meth- 

ds: 

emark 1. There is an interesting relation between FW-SMOTE 

nd the application of SMOTE oversampling on an embedding 

pace. Feature extraction strategies such as Locally Linear Embed- 

ing (LLE) have some mathematical similarities with FW-SMOTE: it 

onstructs a k-NN graph and defines weights to multiply the input 

ariables. However, this is done with a completely different pur- 

ose: to map the data into a low-dimensional manifold, where the 

atterns become more distinguishable [44] . 
6 
emark 2. FW-SMOTE is flexible enough to be able to resemble (at 

east partially) a feature extraction method. In particular, the corre- 

ation score ( Eq. (8) ) weighs down attributes that are uncorrelated 

ith others in the data matrix X . Alternatively, Eigenvector Cen- 

rality integrates different strategies that can be linked with fea- 

ure extraction, such as the computation of eigenvectors. Neverthe- 

ess, we believe that there are important differences between FW- 

MOTE and studies that apply SMOTE on the embedding space: 

a) Casting the original space into a lower-dimensional feature 

space is important in many applications, such as computer vi- 

sion or text analytics. However, in many others, such as in busi- 

ness analytics, this step seldom brings an improvement in pre- 

diction. In tabular datasets, the correlations between variables 

are usually not strong and the predictive performance is linked 

to the relationship between each one of the original variables 

and the labels. 

b) Our weighting strategy is directly linked to the original vari- 

ables, allowing the possibility of performing feature selection. 

In contrast, feature extraction methods perform combinations 

of the inputs, making it impossible to perform feature selection 

in most cases. 

c) The correlation-based weighting approach (FW-SMOTE with 

correlation score as feature ranking method) showed a worse 

performance in comparison to relevance-based feature ranking 

techniques (Fisher Score or Mutual Information). This confirms 

that the virtue of FW-SMOTE relies on the proper definition of 

the neighborhood by assessing the individual contribution of 

the original features, at least in the benchmark datasets con- 

sidered in this study. 

d) Feature extraction techniques are usually more time-consuming 

than the feature ranking techniques recommended in this 

study. Therefore, the overall complexity of an approach that 

performs SMOTE on the embedding space would be larger than 

the one of FW-SMOTE. 

e) There are ad-hoc embedding strategies depending on the task 

at hand. It is not evident which feature extraction strat- 

egy works best in a given application. These issues are task- 

dependent, while FW-SMOTE can be applied in any domain. 

We strongly believe that performing SMOTE in a feature em- 

edding space has many advantages, as shown in [44] , and it 

ould perform better than FW-SMOTE in some domains. However, 

t represents a different strategy for addressing the class-imbalance 

roblem. In order to support this claim, we evaluate empirically 

he use of Principal Component Analysis (PCA) for feature extrac- 

ion in combination with SMOTE oversampling, as suggested in 

45] , on low and high-dimensional datasets. 

. Experimental Results 

We applied the proposed FW-SMOTE and alternative oversam- 

ling approaches to well-known benchmark datasets with a wide 

ange of sample sizes and imbalance ratios. In Section 4.1 we 

resent a description of all the datasets and the experimental set- 

ing, while Section 4.2 provides a summary of the performance ob- 

ained for all techniques. Next, the influence of the different pa- 

ameters related to our approach is analyzed in Section 4.3 . Finally, 

he adaptation of the FW-SMOTE method as a feature selection 

trategy is discussed in Section 4.4 , comparing it with alternative 

eature selection approaches that deal with the class-imbalance 

roblem. 

.1. Experimental framework and available datasets 

Of the 42 datasets used for benchmarking, 12 are high- 

imensional microarray datasets reported in Maldonado et al. [6] , 
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Table 1 

Relevant metadata for all datasets. 

ID Dataset IR #Att #Samples %class(min.,maj.) 

Low-dimensional datasets 

ldd1 abalone7 9.7 8 4177 (9.3, 90.7) 

ldd2 ecoli 8.6 7 336 (10.4, 89.0) 

ldd3 ecoli-0-1 vs 5 11 6 240 (8.3, 91.7) 

ldd4 ecoli-0-1-4-6 vs 5 13 6 280 (7.1, 92.9) 

ldd5 ecoli-0-1-4-7 vs 5–6 12.28 6 332 (7.5, 92.5) 

ldd6 ecoli-0-2-3-4 vs 5 9.1 7 202 (9.9, 90.1) 

ldd7 ecoli-0-2-6-7 vs 3–5 9.18 7 224 (9.8, 90.2) 

ldd8 ecoli-0-3-4 vs 5 9 7 200 (10.0, 90.0) 

ldd9 ecoli-0-3-4-6 vs 5 9.25 7 205 (9.8, 90.2) 

ldd10 ecoli-0-3-4-7 vs 5–6 9.28 7 257 (9.7, 90.3) 

ldd11 ecoli-0-4-6 vs 5 9.15 6 203 (9.9, 90.1) 

ldd12 ecoli-0-6-7 vs 3–5 9.09 7 222 (9.9, 90.1) 

ldd13 ecoli-0-6-7 vs 5 10 6 220 (9.1, 90.9) 

ldd14 ecoli4 13.84 7 336 (6.7, 93.3) 

ldd15 glass-0-1-6 vs 2 10.29 9 192 (8.9, 91.1) 

ldd16 glass-0-4 vs 5 9.22 9 92 (9.8, 90.2) 

ldd17 glass-0-6 vs 5 11 9 108 (91.7, 8.3) 

ldd18 glass4 15.47 9 214 (6.1, 93.9) 

ldd19 image1 6 19 2310 (14.3, 85.7) 

ldd20 page-blocks-1-3 vs 4 15.85 10 472 (5.9, 94.1) 

ldd21 shuttle-c0-vs-c4 13.87 9 1829 (6.7, 93.3) 

ldd22 solar 19.4 10 1389 (4.9.95.1) 

ldd23 yeast-0-2-5-7-9 vs 3-6-8 9.14 8 1004 (9.9, 90.1) 

ldd24 yeast-0-5-6-7-9 vs 4 9.35 8 528 (9.7, 90.3) 

ldd25 yeast-1 vs 7 13.87 7 459 (6.7, 93.3) 

ldd26 yeast-1-4-5-8 vs 7 22.1 8 693 (4.3, 95.7) 

ldd27 yeast-2 vs 4 9.08 8 514 (9.9, 90.1) 

ldd28 yeast3 8.1 8 1484 (11.0, 89.0) 

ldd29 yeast4 28.1 8 1484 (3.4, 96.6) 

ldd30 yeast5 32.78 8 1484 (3.0, 97.0) 

High-dimensional datasets 

hdd1 bhat1 9.15 3312 203 (9.9,90.1) 

hdd2 bhat2 9.15 3312 203 (8.4,91.6) 

hdd3 bhat3 9.15 3312 203 (10.3,89.7) 

hdd4 bhat4 9.15 3312 203 (3.0,97.0) 

hdd5 bullinger 11.25 17,404 98 (8.2, 91.8) 

hdd6 car1 14.8 9182 174 (6.3, 93.7) 

hdd7 car2 14.8 9182 174 (6.9, 93.1) 

hdd8 car3 14.8 9182 174 (4.0, 96.0) 

hdd9 car4 14.8 9182 174 (3.4, 96.6) 

hdd10 glioma 6.14 4434 50 (14.0,86.7) 

hdd11 lung 4.85 12,533 181 (17.1,82.9) 

hdd12 srbct 6.55 2308 83 (13.2, 86.8) 
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hile the remaining 30 are low-dimensional applications from the 

CI ( http://archive.ics.uci.edu/ ) and KEEL ( http://sci2s.ugr.es/keel ) 

ata repositories. 

Regarding the relevant information of the various datasets, 

able 1 summarizes the relevant metadata, such as Imbalance Ratio 

IR), Number of Attributes (#Att), Number of Samples (#Samples), 

nd Percentage of Samples in each class (min.,maj.) for all datasets. 

The following alternative approaches were considered in the 

xperimental analysis: the classic SMOTE [16] ; the SMOTE varia- 

ions Borderline-SMOTE [20] , SL-SMOTE, [22] , ADASYN [18] , Adap- 

ive Neighbor SMOTE [19] , Density Based SMOTE [21] , MWMOTE 

24] , Relocating Safe-level SMOTE [23] , the RBO technique [25] , 

nd PCA in combination with standard SMOTE [45] . For the lat- 

er method, the number of extracted components was decided in 

uch a way that at least 90% of the variance was explained with 

he selected features, as suggested in [45] . 

A major challenge in class-imbalance classification is the choice 

f the performance measure [46,47] . Ten-fold cross-validation was 

onducted using AUC (Area Under the Curve) as the performance 

etric to perform model validation [47] . We also included a met- 

ic based on the binary confusion matrix that is able to provide 

 balance between the two class accuracies, as suggested in [46] . 

herefore, the G-mean, computed as the geometric mean of the 
7 
ensitivity and the specificity [46] , is also reported for complete- 

ess. 

The following classification techniques are used after the data 

esampling method is applied: k -Nearest Neighbors ( k -NN), Logistic 

egression (LR), and linear Support Vector Machine (SVM). While 

ogistic regression does not require parameter setting in its for- 

ulations, the values for k and C must be defined for k -NN and 

VM, respectively. We used k = 5 and C = 1 for these methods, 

ince they are suggested in the literature as good default values for 

hese methods [6] . For all the oversampling methods, the number 

f neighbors was set to k = 5 , as suggested in the original paper

y Chawla et al. [16] . We selected N = 1 and N = 3 objects from

hese five neighbors (100% and 300% oversampling, respectively). 

or the proposed method, the following values for r (the cardinal- 

ty of the subset of selected features), p (the Minkowski distance 

arameter), and α (the OWA quantifier parameter) were explored: 

 ∈ { n 2 , 
3 n 
4 , n } , p ∈ { 1 , 2 , ∞} (Manhattan, Euclidean, and Chebyshev

orms, respectively), and α ∈ { 0 . 4 , 0 . 6 } . Different combinations of

hese parameters were explored using grid search. 

The parameter tuning procedure was performed within the 

raining set for the various parameters included in our proposal. 

he only “parameter” choice that was made based on the average 

est performance was the amount of oversampling N. For all meth- 

http://archive.ics.uci.edu/
http://sci2s.ugr.es/keel
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Table 2 

Holm’s post-hoc test for pairwise comparisons. Low-dimensional datasets. 

Method Ranking AUC W/T/L (AUC) p-value (Holm test) G-mean W/T/L (G-mean) 

k-nearest neighbors 

FW-SMOTE 1.600 88.2 ±9 - - 83 ±19.5 - 

SMOTE 5.300 85.5 ±11.1 0/2/28 < 0 . 001 ∗ 80.3 ±20 1/6/23 

AN-S. 5.700 84.2 ±12.1 1/4/25 < 0 . 001 ∗ 77.9 ±22.7 1/5/24 

MWMOTE 5.867 84.7 ±12.4 0/4/26 < 0 . 001 ∗ 79.3 ±22.3 1/4/25 

BL-S. 5.883 85.6 ±10.5 0/1/29 < 0 . 001 ∗ 79.1 ±21.5 0/2/28 

RBO 6.000 85.5 ±10.8 0/2/28 < 0 . 001 ∗ 82.8 ±15.4 2/2/26 

SL-S. 6.050 84.5 ±11.6 0/5/25 < 0 . 001 ∗ 77.1 ±24 0/4/26 

RSL-S. 6.483 83.7 ±13.5 0/7/23 < 0 . 001 ∗ 75.7 ±25.5 0/6/24 

ADASYN 6.483 83.8 ±12.4 0/4/26 < 0 . 001 ∗ 77.4 ±23.4 2/2/26 

DB-S. 7.533 83.1 ±12.7 0/4/26 < 0 . 001 ∗ 76.1 ±23.8 1/3/26 

PCA-S. 9.100 72.4 ±11.8 0/0/30 < 0 . 001 ∗ 62.2 ±57.5 0/0/30 

Support Vector Machine 

FW-SMOTE 2.600 84.6 ±13.4 - - 78.5 ±25.3 - 

SL-S. 5.400 83.2 ±13 2/2/26 0.001 ∗ 75.5 ±26.9 2/4/24 

SMOTE 5.533 82.7 ±13.9 1/3/26 0.001 ∗ 75.3 ±27.8 1/3/26 

AN-S. 5.733 82.7 ±12.8 1/3/26 < 0 . 001 ∗ 77.3 ±22.6 3/2/25 

BL-S. 6.033 82.2 ±14.5 2/1/27 < 0 . 001 ∗ 74.5 ±30.1 3/1/26 

MWMOTE 6.050 82.5 ±13.1 1/2/27 < 0 . 001 ∗ 76.7 ±24 2/3/25 

RSL-S. 6.050 82.4 ±12.5 1/2/27 < 0 . 001 ∗ 76.6 ±22.3 2/2/26 

RBO 6.183 82.4 ±13.6 0/2/28 < 0 . 001 ∗ 74.8 ±27.4 0/3/27 

DB-S. 6.667 82.1 ±13.4 2/2/26 < 0 . 001 ∗ 75.7 ±24.4 1/2/27 

ADASYN 6.833 81.6 ±13.1 2/1/27 < 0 . 001 ∗ 75.2 ±23.6 3/1/26 

PCA-S. 8.917 63.8 ±16.7 1/0/29 < 0 . 001 ∗ 36.2 ±42.5 1/1/28 

Logistic regression 

FW-SMOTE 3.267 85.4 ±10.2 - - 82.2 ±17.5 - 

SMOTE 5.083 84.8 ±9.8 2/3/25 0.034 ∗ 80 ±19.2 1/8/21 

MWMOTE 5.267 83.5 ±11.8 4/3/23 0.020 ∗ 77.7 ±21.5 1/4/25 

SL-S. 5.550 84.4 ±10 1/3/26 0.008 ∗ 80.6 ±15.8 2/5/23 

BL-S. 5.617 84.2 ±10 4/2/24 0.006 ∗ 79.8 ±17.7 4/3/23 

AN-S. 5.917 83.3 ±11.7 0/5/25 0.002 ∗ 78 ±20.9 1/4/25 

RSL-S. 6.033 82.7 ±12.5 2/5/23 0.001 ∗ 75.7 ±23.7 1/5/24 

RBO 6.083 83.3 ±11.6 3/4/23 0.001 ∗ 77.9 ±20.9 0/4/26 

DB-S. 6.433 82.8 ±11.8 2/4/24 < 0 . 001 ∗ 76.7 ±21.5 1/4/25 

ADASYN 7.250 81.9 ±11.8 1/3/26 < 0 . 001 ∗ 75.8 ±21.1 2/5/23 

PCA-S. 9.500 64.4 ±15.2 0/1/29 < 0 . 001 ∗ 42.9 ±47.2 0/1/29 
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ds, we selected the best performance between these two alter- 

atives. The comparison between all models is fair since the test 

et remains unseen until the final performance assessment for all 

odels. 

Regarding model implementation, our proposal was devel- 

ped in Matlab, and the codes are available at http://github.com/ 

vairetti . The SMOTE, BL-SMOTE, and SL-SMOTE variants were im- 

lemented in Matlab by Iman Nekooeimehr ( http://github.com/ 

ekooeimehr ), while the remaining SMOTE variants were de- 

eloped in R using the imbalance package by Ignacio Cordón 

48] ( http://github.com/ncordon ). 

.2. Performance analysis 

Tables 2 and 3 summarize the results obtained for oversam- 

ling methods using k -NN, SVM, and LR as classification models, 

nd for both low- and high-dimensional datasets, respectively. For 

ach oversampling technique (presented in ascending order of av- 

rage rank) and classification method, these tables include the fol- 

owing information: 

• The average rank computed by the Friedman test with Iman- 

Davenport correction. This test was used to assess whether or 

not all ranks are statistically similar [49] . This is a common ap- 

proach for assessing classification performance among various 

supervised learning methods. For each classification method, 

the average rank is computed based on the AUC value on all 

the datasets for each oversampling approach. 
• The average AUC x100 and G-mean x100 with their correspond- 

ing standard deviations. 
8 
• The p-values obtained by the Holm test and the outcome of 

the test. This test was suggested in [49] to use in case the 

Friedman test is rejected, which is our case. This test compares 

the pairwise performance between each oversampling approach 

and the one with the best rank. The outcome is ‘reject’ when 

this p-value falls below a threshold β/ ( j − 1) , with β = 5% and 

j = 2 , . . . , 11 being the overall ranking for a given oversampling

method. This outcome implies that the corresponding SMOTE 

variant is outperformed by the one with the best rank. In this 

case, the p-value is highlighted with an asterisk. 
• The number of wins/ties/loses (W/T/L) for each method in com- 

parison with the one with the highest rank. This analysis is pre- 

sented for both performance measures (AUC and G-mean). 

The values for the Friedman F tests with Iman-Davenport cor- 

ection for the low dimensional datasets with the AUC measure are 

3.28, 7.99, and 9.11 for the k -NN, SVM, and LR methods, respec- 

ively, suggesting that the null hypothesis of equal ranks can be 

ejected for all methods with p-values below 0.01. For the high- 

imensional datasets, the values for this test are 6.26, 6.75, and 

.82 for the k -NN, SVM, and LR methods, respectively, suggesting 

hat the null hypothesis of equal ranks can also be rejected for the 

 -NN, SVM, and LR approaches with p-values below 0.01. 

It can be observed in Tables 2 and 3 that the proposed FW- 

MOTE clearly outperforms the other SMOTE variations on both 

ow and high-dimensional datasets. The only exception is the SVM 

ase on high-dimensional datasets, in which most oversampling 

ethods are equally good. This can be due to the small number of 

inority samples in the microarray datasets, leading to relatively 

imilar sets of oversampled objects. Furthermore, the use of un- 

http://github.com/cvairetti
http://github.com/Nekooeimehr
http://github.com/ncordon
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Table 3 

Holm’s post-hoc test for pairwise comparisons. High-dimensional datasets. 

Method Ranking AUC W/D/L APV (Holm test) G-mean W/D/L 

k-nearest neighbors 

FW-SMOTE 2.708 92.7 ±10.5 - - 95.7 ±23.9 - 

AN-S. 4.792 91.3 ±10.2 1/3/8 0.124 93.6 ±26.2 2/1/9 

RSL-S. 5.083 91.3 ±10.3 1/2/9 0.079 92.8 ±28.5 1/1/10 

ADASYN 5.292 90.9 ±10.1 2/1/9 0.056 92.2 ±26.5 2/2/8 

DB-S. 5.375 90.9 ±10.6 0/2/10 0.049 92.4 ±27.2 1/1/10 

MWMOTE 5.458 91.1 ±10.8 0/2/10 0.042 93.6 ±25.8 1/1/10 

SL-S. 6.417 90.4 ±10.9 0/1/11 0.006 ∗ 92.4 ±26.9 0/2/10 

SMOTE 6.625 90.5 ±10.8 0/2/10 0.004 ∗ 91.8 ±23.8 0/2/10 

RBO 7.042 89.4 ±9.8 0/2/10 0.001 ∗ 90.9 ±20.2 1/1/10 

BL-S. 7.125 90.5 ±10.8 0/1/11 0.001 ∗ 92.5 ±25 0/1/11 

PCA-S. 10.083 65.4 ±17.5 1/0/11 < 0 . 001 ∗ 19.9 ±22.6 1/0/11 

Support Vector Machine 

BL-S. 5.458 88 ±13.1 0/12/0 - 87.2 ±31.9 0/8/4 

FW-SMOTE 5.458 88 ±13.1 0/12/0 - 90 ±28.4 0/8/4 

RBO 5.458 88 ±13.1 0/12/0 - 87.2 ±30 0/8/4 

SL-S. 5.458 88 ±13.1 0/12/0 - 87.2 ±29.6 0/8/4 

SMOTE 5.458 88 ±13.1 0/12/0 - 87.2 ±30.3 0/8/4 

DB-S. 5.750 87.4 ±12.8 0/11/1 0.829 87.2 ±27.6 0/8/4 

MWMOTE 5.750 87.4 ±12.8 0/11/1 0.829 87.2 ±27.1 0/8/4 

ADASYN 5.917 87.4 ±12.8 0/11/1 0.735 86.4 ±26.6 0/7/5 

RSL-S. 5.917 87.4 ±12.8 0/11/1 0.735 87.2 ±26 0/8/4 

AN-S. 6.042 87.3 ±12.8 0/11/1 0.667 87.2 ±26 0/8/4 

PCA-S. 9.333 66.7 ±18.8 2/0/10 0.004 ∗ 38.1 ±37.0 1/0/11 

Logistic regression 

FW-SMOTE 1.083 91.3 ±11.3 - - 92.9 ±22.3 - 

MWMOTE 4.958 83.7 ±12.7 0/0/12 0.004 ∗ 75.4 ±27.3 0/0/12 

DB-S. 5.125 83.2 ±15.6 0/0/12 0.003 ∗ 73.8 ±28 0/0/12 

SMOTE 5.625 82.4 ±13.8 0/0/12 0.001 ∗ 77.9 ±25 0/0/12 

AN-S. 6.250 81.6 ±14.9 0/0/12 < 0 . 001 ∗ 75.2 ±27.4 0/0/12 

RBO 6.250 81.7 ±16 0/0/12 < 0 . 001 ∗ 68.6 ±28.1 0/0/12 

SL-S. 6.375 82 ±16 0/0/12 < 0 . 001 ∗ 74.8 ±24.7 0/0/12 

ADASYN 7.125 80.9 ±14.6 0/0/12 < 0 . 001 ∗ 70.7 ±26.3 0/0/12 

RSL-S. 7.125 79.5 ±14.7 0/0/12 < 0 . 001 ∗ 70 ±28.6 0/0/12 

BL-S. 7.583 80.6 ±16 0/0/12 < 0 . 001 ∗ 74.7 ±24.9 0/0/12 

PCA-S. 8.500 66.4 ±17.1 1/0/11 < 0 . 001 ∗ 32.2 ±32.9 1/0/11 
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Table 4 

Percentage of times a given parameter performs best. 

k -NN SVM LR 

Feature ranking method 

Fisher 46.7 64.4 44.5 

Mutual Inf. 16.7 11.1 21.1 

Eig. Centrality 16.7 7.8 16.7 

Correlation 20.0 16.7 17.8 

Number of ranked features 

r = n/ 2 58.9 67.8 50.0 

r = 3 n/ 4 22.2 15.6 28.9 

r = n 18.9 16.7 21.1 

Minkowski distance parameter 

p = ∞ 55.6 55.6 57.8 

p = 1 21.1 30.0 21.1 

p = 2 23.3 14.4 21.1 

OWA quantifier 

Basic RIM 57.8 74.4 63.3 

Quadratic 15.6 10.0 20.0 

Exponential 12.2 7.8 7.8 

Trigonometric 14.4 7.8 8.9 

Quantifier parameter 

α = 0 . 4 71.1 83.3 76.7 

α = 0 . 6 28.9 16.7 23.3 

w

t

r  

d  

n

R

t  
egularized classification approaches on high-dimensional datasets 

ay explain the small differences in methods such as SVM. 

Regarding the use of a feature extraction method such as 

CA in combination with SMOTE oversampling, we observe in 

ables 2 and 3 that this approach has the worse average rank 

nd average predictive performance in terms of AUC and G-mean. 

urthermore, it is statistically outperformed by the proposed FW- 

MOTE in all six cases. We can conclude that the use of a fea-

ure extraction method in combination with SMOTE is not recom- 

ended in tabular datasets with a low degree of redundancy, be- 

ng able to achieve best performance only on a few occasions. 

The mean AUC and G-mean values confirm the superiority of 

he proposed method in terms of average predictive performance. 

est average performance is achieved with the k -NN classifier, 

owever, our approach for feature selection and data resampling 

ead to competitive results with logistic regression, which has the 

dditional virtue of being interpretable. 

The detailed results for each method and dataset are reported 

n Appendix A , presented as supplementary material. Tables A.1 –

.3 consider AUC as performance measure, while Tables A.4 –A.6 

se G-mean. 

.3. Influence of the FW-SMOTE parameters 

As mentioned above, the proposal is a very general version 

f SMOTE oversampling, which allows several alternatives for fea- 

ure weighting and selection thanks to the use of OWA operators. 

able 4 presents the percentage of times a given parameter leads 

o the largest AUC with the FW-SMOTE strategy and the four clas- 

ification approaches. We note that four feature ranking strategies 
9 
ere explored (Fisher Score, Mutual information, Eigenvector Cen- 

rality, and Correlation Score), three alternatives for the number of 

anked features ( r ∈ { n 2 , 
3 n 
4 , n } ), three variants for the Minkowski

istance ( p ∈ { 1 , 2 , ∞} , i.e. Manhattan, Euclidean, and Chebyshev

orms, respectively), four OWA quantifiers (Basic RIM, Quadratic 

IM, Exponential RIM, and Trigonometric RIM), and two values for 

he OWA quantifier parameter ( α ∈ { 0 . 4 , 0 . 6 } ). Notice that when
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Table 5 

Holm’s post-hoc test for pairwise comparisons. Feature selection. 

Method Ranking AUC W/T/L APV G-mean W/T/L 

(Holm test) 

k-nearest neighbors 

FW-SMOTE 2.833 96.8 ±3.6 - - 96.8 ±3.7 - 

Fisher + SMOTE 5.344 90.3 ±7.1 3/0/45 0.002 ∗ 89.7 ±7.8 3/0/45 

Relief + SMOTE 5.927 89.6 ±7.3 0/0/48 < 0 . 001 ∗ 89.2 ±7.9 0/0/48 

Fisher + BL-S. 6.240 92.8 ±7.2 6/9/33 < 0 . 001 ∗ 92.3 ±7.9 5/9/34 

Fisher + SL-S. 6.240 92.8 ±7.2 6/9/33 < 0 . 001 ∗ 92.3 ±7.9 5/9/34 

Relief + BL-S. 6.313 94.1 ±5.6 4/12/32 < 0 . 001 ∗ 94 ±5.8 6/10/32 

Relief + SL-S. 7.115 90 ±7 1/0/47 < 0 . 001 ∗ 89.6 ±7.6 1/0/47 

CFS + BL-S. 7.333 91.2 ±7.6 2/0/46 < 0 . 001 ∗ 90.8 ±8.4 2/0/46 

CFS + SL-S. 8.281 92.9 ±6 6/4/38 < 0 . 001 ∗ 92.5 ±6.4 7/3/38 

CFS + SMOTE 8.448 94.2 ±5.4 7/5/36 < 0 . 001 ∗ 94 ±5.7 7/5/36 

BFE + SL-S. 8.635 91.8 ±14.9 6/3/39 < 0 . 001 ∗ 91.4 ±15.1 6/3/39 

BFE + SMOTE 8.917 90.2 ±7.4 1/0/47 < 0 . 001 ∗ 89.6 ±8.4 1/0/47 

BFE + BL-S. 9.375 90.5 ±7 0/0/48 < 0 . 001 ∗ 90.1 ±7.7 0/0/48 

Support Vector Machine 

FW-SMOTE 4.375 93.7 ±6.9 - - 93.3 ±7.5 - 

Fisher + BL-S. 5.000 93.1 ±7.1 2/27/19 0.432 92.6 ±7.7 2/27/19 

Fisher + SL-S. 5.000 93.1 ±7.1 3/26/19 0.432 92.6 ±7.7 2/27/19 

Fisher + SMOTE 5.042 88.4 ±10.8 0/12/36 0.402 87 ±12.8 0/12/36 

Relief + SL-S. 6.417 88.4 ±11 0/12/36 0.01 ∗ 87 ±12.9 0/12/36 

Relief + SMOTE 6.938 88.2 ±11.1 0/12/36 0.001 ∗ 86.8 ±13 0/12/36 

Relief + BL-S. 7.448 93 ±7 0/26/22 < 0 . 001 ∗ 92.5 ±7.7 0/26/22 

CFS + SL-S. 7.948 91.5 ±10.6 1/20/27 < 0 . 001 ∗ 90.5 ±13.4 1/20/27 

CFS + BL-S. 8.219 90.2 ±9.1 4/10/34 < 0 . 001 ∗ 89.2 ±10.8 4/10/34 

CFS + SMOTE 8.333 91.2 ±10.2 1/17/30 < 0 . 001 ∗ 90.2 ±12.6 2/16/30 

BFE + SL-S. 8.656 89.4 ±16 1/16/31 < 0 . 001 ∗ 88.5 ±17 1/16/31 

BFE + SMOTE 8.708 89.8 ±9.4 4/10/34 < 0 . 001 ∗ 88.7 ±11.2 4/10/34 

BFE + BL-S. 8.917 89.6 ±10.9 1/13/34 < 0 . 001 ∗ 88.2 ±13.9 1/13/34 

Logistic regression 

FW-SMOTE 2.677 91.1 ±9.1 - - 90.8 ±9.4 - 

Relief + BL-S. 5.615 84.9 ±12.6 4/3/41 < 0 . 001 ∗ 84.1 ±13.4 4/3/41 

Fisher + BL-S. 5.625 85 ±13.9 4/7/37 < 0 . 001 ∗ 84.1 ±15.3 4/7/37 

Fisher + SL-S. 5.625 85 ±13.9 4/7/37 < 0 . 001 ∗ 84.1 ±15.3 4/7/37 

Relief + SL-S. 5.906 79.3 ±13.3 3/1/44 < 0 . 001 ∗ 78.1 ±14.5 3/1/44 

Relief + SMOTE 6.021 79 ±13.6 2/1/45 < 0 . 001 ∗ 77.9 ±14.9 2/1/45 

Fisher + SMOTE 6.042 78.6 ±14.2 1/1/46 < 0 . 001 ∗ 77.3 ±15.9 1/1/46 

BFE + BL-S. 8.656 79.3 ±12.3 0/2/46 < 0 . 001 ∗ 77.8 ±13 0/2/46 

CFS + BL-S. 8.667 80 ±12.4 2/0/46 < 0 . 001 ∗ 79.1 ±13.2 2/0/46 

BFE + SMOTE 8.938 78.8 ±12.6 0/0/48 < 0 . 001 ∗ 77.6 ±14.2 0/0/48 

CFS + SMOTE 8.938 84.4 ±12.5 6/2/40 < 0 . 001 ∗ 83.5 ±13.7 6/2/40 

BFE + SL-S. 8.990 84.1 ±17.4 4/4/40 < 0 . 001 ∗ 83.3 ±18 4/4/40 

CFS + SL-S. 9.302 84.5 ±12.4 5/4/39 < 0 . 001 ∗ 83.5 ±13.3 5/5/38 
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wo FW-SMOTE variants achieve the same performance, the first 

ne is considered to be the one with the best performance in the 

rdering provided in Table 4 . 

According to Table 4 , the first alternatives are usually the ones 

hat achieved the best results. Fisher Score is the recommended 

eature selection strategy, while the basic RIM quantifier is the sug- 

ested OWA approach. Notice that the best performance is seldom 

chieved with r = n , suggesting that the feature selection step is 

ery important for the algorithm, and confirming the results ob- 

ained in [6] . Finally, the Chebyshev norm is preferred among the 

arious alternatives for p. Theoretically speaking, the Chebyshev 

rovides a better definition of distance in high-dimensional set- 

ings when compared with the Manhattan and Euclidean norms 

6] , and this result confirms this point. Nevertheless, there is a 

arge number of ties in terms of performance for all FW-SMOTE 

ariants. On the one hand, it suggests that the results are very 

table, and the influence of the various parameters is not strong. 

n the other hand, this analysis must be used with caution in the 

ense that most variants achieve a similar performance. 

Notice that the results obtained with the proposal were ob- 

ained via grid search based on the parameter set reported in 

ection 4.1 . Table 4 is constructed by taking into account the best 

arameter configuration with this procedure for each dataset and 

lassification method. The percentage of times a given parameter 

ead to the largest AUC (the values in Table 4 ) were computed us-
 w

10 
ng this information. In other words, only the optimal parameter 

onfiguration is used in Table 4 . 

.4. Feature selection results 

As it was previously pointed out, FW-SMOTE is designed to de- 

ne a better neighborhood for the oversampling process via feature 

eighting. In case a variable has a very low weight, it will be ig- 

ored in the definition of the neighborhood. However, the method 

oes not remove it from the classification task as it is designed 

o be an intelligent oversampling comparable to any other SMOTE 

ariant. Nevertheless, we can utilize the feature weighting strategy 

nd allow the complete exclusion of the covariates that receive a 

ow weight in the IOWA function. Table 5 reports a new set of ex- 

eriments in which feature selection is incorporated in the learn- 

ng process. 

For the twelve high-dimensional datasets, we select the top n ∗

ttributes with the filter strategies proposed for FW-SMOTE (FS, 

I, EC, or CFS) while performing the oversampling approach, with 

 

∗ ∈ { 50 , 100 , 250 , 10 0 0 } . For each feature selection+oversampling

echnique and for each classifier ( k -NN, SVM, and LR), Table 5 re-

orts the average rank, the average AUC x100 and G-mean x100 

ith their corresponding standard deviations, the number of 

ins/ties/loses, the p-values of the Holm test. 
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As alternative approaches we consider the filter methods Fisher 

core, CFS, Relief, and BFE-SVM (only as a measure for feature 

anking), in combination with the resampling techniques SMOTE, 

orderline SMOTE (BL-S.), and SafeLevel-SMOTE (SL-S.). Relief and 

FE-SVM were selected because they are relevant measures dis- 

ussed in the feature selection literature for dealing with the class- 

mbalance problem (see Section 2.3 ). 

The values for the Friedman tests with Iman-Davenport correc- 

ion for these experiments are 13.63, 15.57, and 18.38 for the k -NN, 

VM, and LR approaches, respectively. It can be concluded that the 

ypothesis of equal ranks can be rejected for all classifiers with 

p-values below 0.01. 

Similar to Tables 2 and 3 , it can be observed that the pro-

osed FW-SMOTE with the feature selection step outperforms the 

lternative approaches, being the top-ranked strategy with the 

hree classifiers. Furthermore, feature selection improves the aver- 

ge performance of the resampling techniques, including our pro- 

osal. This is particularly noticeable for SVM classification. We con- 

lude that our proposal is not only extremely useful as an over- 

ampling technique, but also as an integrated solution for dealing 

ith the class-imbalance problem in high-dimensional settings. 

. Conclusions 

In this work, we have proposed a novel oversampling approach, 

alled FW-SMOTE, designed to deal with imbalanced classification 

nder the presence of irrelevant/redundant variables. The proposal 

ses the weighted Minkowski distance for identifying the k nearest 

bjects in the minority class. This leads to a general and efficient 

MOTE variant that is able to up-weigh relevant features for a bet- 

er definition of the neighborhood. 

Our experimental analysis, carried out on 42 imbalanced 

atasets, shows the effectiveness of this new proposal, which out- 

erforms several state-of-the-art SMOTE-based variants under dif- 

erent classification algorithms. Furthermore, our strategy is also 

ble to perform feature selection and data resampling simultane- 

usly thanks to the feature weighting step. Experiments on high- 

imensional datasets prove that FW-SMOTE outperformed two- 

tep strategies for independent feature selection and oversampling. 

We must discuss about a potential FW-SMOTE limitation re- 

arding its large number of tuning parameters, which opens many 

ossible combinations of parameter configurations. Exploring a 

ide range of values for the various parameters can be a time- 

onsuming process since it requires successive model estimations 

n the resampled data. Computationally speaking, the model train- 

ng step is usually more expensive than data resampling. It is im- 

ortant to notice that our approach is faster than most alterna- 

ives: FW-SMOTE does not consider the majority class, resulting in 

 relatively similar complexity in relation to SMOTE, while being 

aster than alternatives that consider the majority samples. 

From our grid search study, we observe very stable results for 

ost parameter configurations. We can conclude from this analysis 

hat a default configuration can ease the model validation process 

hen facing large datasets. Therefore, we recommend a default 

etting based on the best-performing parameters found with our 

horough experimentation. In particular, we suggest using Fisher 

core as feature ranking method because of its superior perfor- 

ance and efficiency. 

As future work, we intend to extend this proposal to Big Data 

roblems. In a Big Data setting, both SMOTE and our variant can 

e extremely time consuming or even intractable. Some solutions 

ave been proposed, such as the use of an approximation of the 

istance function [50] . We believe that this line of research is ex- 

remely important for the future of pattern recognition and ma- 

hine learning in general. In order to address this challenge, we 

lan to design and develop a smart and scalable feature ranking 
11 
pproach that, in synergy with a distributed oversampling solu- 

ion, will be able to cope with Big Data applications. In addition, 

e plan to design hybrid undersampling-oversampling approaches 

o get the best of both worlds. 

Another important avenue for research is deep learning (DL). 

he advent of artificial intelligence and AI has created new op- 

ortunities in domains such as medical diagnosis, computer vi- 

ion, and natural language processing [51,52] . Furthermore, deep 

earning tasks can also face the class imbalance problem [51,52] . 

lthough our FW-SMOTE method is designed to weigh to original 

nput variables, it can be adapted to introduce weights on a feature 

pace, making it suitable for learning machines such as DL archi- 

ectures. 
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