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Abstract Recently, multi-objective evolutionary algo-

rithms have been applied to improve the difficult tradeoff

between interpretability and accuracy of fuzzy rule-based

systems. It is known that both requirements are usually

contradictory, however, these kinds of algorithms can

obtain a set of solutions with different trade-offs. This

contribution analyzes different application alternatives in

order to attain the desired accuracy/interpr-etability bal-

ance by maintaining the improved accuracy that a tuning of

membership functions could give but trying to obtain more

compact models. In this way, we propose the use of multi-

objective evolutionary algorithms as a tool to get almost

one improved solution with respect to a classic single

objective approach (a solution that could dominate the one

obtained by such algorithm in terms of the system error and

number of rules). To do that, this work presents and ana-

lyzes the application of six different multi-objective

evolutionary algorithms to obtain simpler and still accurate

linguistic fuzzy models by performing rule selection and a

tuning of the membership functions. The results on two

different scenarios show that the use of expert knowledge

in the algorithm design process significantly improves the

search ability of these algorithms and that they are able to

improve both objectives together, obtaining more accurate

and at the same time simpler models with respect to the

single objective based approach.

1 Introduction

Many automatic techniques have been proposed in the

literature to extract a proper set of fuzzy rules from

numerical data. Most of these techniques usually try to

improve the performance associated to the prediction error

without pay a special attention to the system interpret-

ability, an essential aspect of fuzzy rule-based systems

(FRBSs). In the last years, the problem of finding the right

trade-off between interpretability and accuracy, in spite of

the original nature of fuzzy logic, has arisen a growing

interest in methods which take both aspects into account

(Casillas et al. 2003a, b). Of course, the ideal thing would

be to satisfy both criteria to a high degree, but since they

are contradictory issues generally it is not possible. A way

to do that, is to improve the system accuracy but trying to

maintain the interpretability to an acceptable level (Casillas

et al. 2003b).

A widely-used technique to improve the accuracy of

linguistic FRBSs is the tuning of membership functions

(MFs) (Alcalá et al. 2006, 2007b, c; Casillas et al. 2003b,

2005), which refines a previous definition of the data base

once the rule base has been obtained. The classic approach

to perform tuning consists of refining the three definition

parameters that identify triangular MFs associated to the

labels comprising the initial data base. Although tuning is

one of the most powerful techniques to improve the system

performance (Casillas et al. 2003b, 2005), sometimes an

excessive number of rules is initially considered to reach

the highest degree of accuracy. In order to maintain the
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interpretability to an acceptable level, a recent work (Ca-

sillas et al. 2005) has considered the selection of rules

together with the tuning of MFs within the same process

(not in different stages) and considering performance cri-

teria. In this way, rules are extracted only if it is possible to

maintain or even improve the system accuracy. A very

interesting conclusion from (Casillas et al. 2005) is that

both techniques can present a positive synergy in most of

the cases (similar or more accurate models could be

obtained by reducing the number of rules) when they are

combined within the same process.

On the other hand, since this approach presents a multi-

objective nature the use of multi-objective evolutionary

algorithms (MOEAs) (Coello et al. 2002; Deb 2001) to

obtain a set of solutions with different degrees of accuracy

and number of rules could represent an interesting way to

work (by considering both characteristics as objectives).

Although there are some works in the literature using stan-

dard or specific MOEAs to improve the difficult trade-off

between interpretability and accuracy of Mamdani FRBSs

(Cococcioni et al. 2007; Cordon et al. 2001; Ishibuchi et al.

1997, 2001; Ishibuchi and Yamamoto 2003, 2004; Naruk-

awa et al. 2005), practically all these works were applied to

classification problems trying to obtain the complete Pareto

(set of non-dominated solutions with different trade-off) by

selecting or learning the set of rules better representing the

example data, i.e., improving the system classification

ability and decreasing the system complexity but not con-

sidering learning (Alcalá et al. 2007a) or tuning (Alcalá

et al. 2006, 2007a, b; Casillas et al. 2003a, 2005) of the

fuzzy system parameters, which involves another degree of

trade-off and type of Pareto front, a more complicated

search space and therefore needs different considerations

with respect to the works in the existing literature.

Indeed, to directly apply the most recognized MOEAs

for general use in order to perform together tuning and rule

selection could present some important problems. As

David Goldberg stated in (Goldberg 2000), the integration

of single methods into hybrid intelligent systems goes

beyond simple combinations. For him, the future of

Computational Intelligence ‘‘lies in the careful integration

of the best constituent technologies’’, and subtle integration

of the abstraction power of fuzzy systems and the inno-

vative power of genetic systems requires a design

sophistication that goes further than putting everything

together. This is the case when parameter tuning and rule

selection are performed by directly applying the most

known MOEAs for general use, where several problems

arise due to the complex search space concerning this

problem.

The main problem is that it is practically impossible to

obtain the complete optimal Pareto. This is due to several

reasons:

1. There exist a lot of different subsets of rules with more

or less the same number of rules (different rule

configurations) but representing really different or

alternative tuning possibilities.

2. It is easier to decrease the number of rules than to

reduce the system error (which is more dependent of

the tuning task). This provokes a faster tuning of the

simplest solutions before exploring more promising

rule configurations (which are dominated by such

premature solutions).

3. The obtained parameters (in general) tends to be

optimal for these premature solutions making difficult

the appearance of better alternative solutions.

In this way, it is necessary to include any expert

knowledge in the MOEA design process. An adequate

application of standard MOEAs could partially deal with

this problem by focusing the search in the most interesting

zone of the Pareto frontier. Taking into account that non-

dominated solutions with a small number of rules and high

errors are not interesting since they have not the desired

trade-off between accuracy and interpretability, we could

focus the search only in the Pareto zone with the most

accurate solutions trying to obtain the least possible num-

ber of rules. The best way to do this is to start with

solutions selecting all the possible rules, which favours a

progressive extraction of bad rules (those that do not

improve with the tuning of parameters), only by means of

the mutation at the beginning and then by means of the

crossover.

A secondary problem is that it is difficult to obtain very

accurate solutions by favoring the crossing of solutions

with very different rule configurations (those in the Pareto),

which should obtain the best accuracy by learning different

parameters for the MFs. Although this is not the major

problem (MOEAs can obtain good results considering the

established mechanisms), significant improvements could

be achieved by addressing this problem in the proper way,

i.e., standard algorithms can be specifically improved to

perform rule selection and tuning together. A way to do

that is to establish mating restrictions. However, again it

should be done based on the experience by taking into

account that exploration and exploitation are both mainly

needed at different stages. In this way, a new method was

recently proposed in (Alcalá et al. 2007d), which by

modifying the Strength Pareto Evolutionary Algorithm 2

(SPEA2) (Zitzler et al. 2001) progressively concentrates

the search in the most promising solutions, allowing

exploration at first and favoring the exploitation of the most

accurate solutions at the end (the Accuracy-Oriented

SPEA2, SPEA2Acc). Another possibility could be the

application of two versions of the well-known Nondomi-

nated Sorting Genetic Algorithm II (NSGA-II) (Deb et al.
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2002) for finding knees (Branke et al. 2004) (theoretically

the most promising Pareto zones in these kinds of prob-

lems), since the modifications proposed in (Alcalá et al.

2007d) were not successful by considering the NSGA-II

approach.

Our main aim in this contribution is to analyze different

alternatives in order to attain the desired accuracy/inter-

pretability balance by maintaining the impro-ved accuracy

that a tuning of MFs could give but trying to obtain more

compact models. In this way, we propose the use of

MOEAs as the tool to get almost one improved solution

with respect to the classic single objective algorithm (a

solution that could dominate the one obtained by such

algorithm in terms of the system error and the number of

rules). To do that, this work presents and analyzes the

application of six different MOEAs to obtain simpler and

still accurate linguistic fuzzy models by performing rule

selection and a classic tuning of the MF parameters (an

analysis on the classic tuning could help to extend the

better approaches in order to consider other kinds of

techniques or new interpretability measures for further

works, e.g., another tuning types, learning, etc.). These

methods are the well-known SPEA2, NSGA-II and two

versions of NSGA-II for finding knees (standard MOEAs

adapting and applying proper genetic operators), and two

extended MOEAs for specific application, SPEA2Acc and

an extension of it proposed in this paper that by applying a

more intelligent crossover operator (specific for this problem)

is able to extract more useful information from parents

with different configurations, SPEA2Acc2 : The results on

two different scenarios show that the use of expert

knowledge in the MOEAs design process significantly

improves the search ability of these algorithms.

In order to do that, this contribution is arranged as fol-

lows. Next section presents a brief study of the existing

MOEAs for general purpose which usually are modified or

directly applied to obtain FRBSs with good interpretabil-

ity-accuracy trade-off. In order to show the main

differences with the previous works, Sect. 3 briefly ana-

lyzes the state of the art on the use of MOEAs to get the

desired trade-off in different application areas of FRBSs. In

Sect. 4, we describe the different MOEAs and appropriate

genetic operators for their proper application. Section 5

shows an ex-pe-ri-men-tal study of these me-thods in two

complex and interesting problems. Finally, Sect. 6 points

out some conclusions and further research lines.

2 Multi-objective evolutionary algorithms

Evolutionary algorithms simultaneously deal with a set of

possible solutions (the so-called population) which allows

to find several members of the Pareto optimal set in a single

run of the algorithm. Additionally, they are not too sus-

ceptible to the shape or continuity of the Pareto front (e.g.,

they can easily deal with discontinuous and concave Pareto

fronts).

The first hint regarding the possibility of using evolu-

tionary algorithms to solve a multi-objective problem

appears in a PhD thesis from 1967 (Rosenberg 1967) in

which, however, no actual MOEA was developed (the

multi-objective problem was restated as a single-objective

problem and solved with a genetic algorithm). David

Schaffer is normally considered to be the first to have

designed an MOEA during the mid-1980s (Schaffer 1985).

Schaffer’s approach, called vector evaluated genetic algo-

rithm (VEGA) consists of a simple genetic algorithm with

a modified selection mechanism. However, VEGA had a

number of problems from which the main one had to do

with its inability to retain solutions with acceptable per-

formance, perhaps above average, but not outstanding for

any of the objective functions.

After VEGA, the researchers designed a first generation

of MOEAs characterized by its simplicity where the main

lesson learned was that successful MOEAs had to combine

a good mechanism to select non-dominated individuals

(perhaps, but not necessarily, based on the concept of

Pareto optimality) combined with a good mechanism to

maintain diversity (fitness sharing was a choice, but not the

only one). The most representative MOEAs of this gener-

ation are the following: Nondominated Sorting Genetic

Algorithm (NSGA) (Srinivas and Deb 1994), Niched-

Pareto Genetic Algorithm (NPGA) (Horn et al. 1994) and

multi-objective genetic algorithm (MOGA) (Fonseca and

Fleming 1993).

A second generation of MOEAs started when elitism

became a standard mechanism. In fact, the use of elitism

is a theoretical requirement in order to guarantee con-

vergence of an MOEA. Many MOEAs have been

proposed during the second generation (which we are still

living today). However, most researchers will agree that

few of these approaches have been adopted as a reference

or have been used by others. In this way, SPEA2 and

NSGA-II can be considered as the most representative

MOEAs of the second generation, also being of interest

some others as the Pareto Archived Evolution Strategy

(PAES) (Knowles and Corne 2000). Table 1 shows a

summary of the most representative MOEAs of both

generations.

Finally, we have to point out that nowadays NSGA-II

is the paradigm within the MOEA research community

since the powerful crowding operator that this algorithm

uses usually allows to obtain the widest Pareto sets in a

great variety of problems, which is a very appreciated

property in this framework. In this way, the question

is: ‘‘Is NSGA-II the best MOEA to get the desired
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interpretability-accuracy trade-off of FRBSs following our

concrete approach?’’ (tuning and rule selection). In this

work, we analyze the behavior of this algorithm, SPEA2

and two versions of NSGA-II developed to find knees

(Branke et al. 2004) in the optimal Pareto front, which

could be a better way to find still accurate solutions but

presenting the least possible number of rules. Addition-

ally, we consider two algorithms based on SPEA2 that are

specifically designed to address our problem. Next section

presents the state-of-the-art on the use of the MOEAs to

get this difficult trade-off in order to see how different

researchers have faced this problem.

3 Use of MOEAs to get the interpretability: accuracy

trade-off of FRBSs

As mentioned, MOEAs generate a family of equally valid

solutions, where each solution tends to satisfy a criterion

to a higher extent than another. For this reason, MOEAs

have been also applied to improve the difficult trade-off

between interpretability and accuracy of FRBSs, where

each solution in the Pareto front represents a different

trade-off between interpretability and accuracy (see

Fig. 1).

The most continuous and prolific research activity in the

application of MOEAs to Mamdani FRBS generation for

finding the accuracy-interpretability trade off has been

certainly performed by Ishibuchi’s group. Earlier works

(Ishibuchi et al. 1997) were devoted to the application of

simple MOEAs of the first generation to perform a rule

selection on an initial set of classification rules involving

‘‘do not care’’ conditions and considering two different

objectives (classification accuracy and number of rules).

Then, a third objective was also included in order to

minimize the length of the rules by rule selection (Ishibuchi

et al. 2001) or rule learning (Ishibuchi et al. 2001). In

(Ishibuchi and Yamamoto 2004), they apply a better

MOEA, the Multi-Objective Genetic Local Search

(Ishibuchi and Murata 1996) (MOGLS), following the

same approach for rule selection with three objectives. And

finally, two algorithms based on an MOEA of the second

generation (NSGA-II) have been proposed respectively for

rule selection (Narukawa et al. 2005) and rule learning

(Ishibuchi and Nojima 2007) considering the same con-

cepts. In the literature, we can also find some papers of

other researchers in this topic. For instance in (Cordon

et al. 2001), Cordon et al. use MOGA for jointly per-

forming feature selection and fuzzy set granularity learning

with only two objectives.

At this point, we can see that all the methods mentioned

were applied to classification problems for rule selection or

rule learning, without learning or tuning the MFs that were

initially fixed. Most of the works in this topic only consider

quantitative measures of the system complexity in order to

improve the interpretability of such systems, rarely con-

sidering qualitative measures. Moreover, MOEAs

considered were slight modifications of MOEAs proposed

for general use (MOGA, NSGA-II, etc.) or based on them.

Notice that, although NSGA-II improves the results with

respect to other MOEAs, since to cross non-dominated rule

sets with very different numbers of rules and different rule

structures (forced by NSGA-II crowding operator) usually

gives a bad accuracy, this MOEA could need of an adap-

tation to favor the cross of similar solutions in order to also

get good results for the accuracy objective (see Narukawa

et al. 2005). A possibility could be the use of similarity

measures as the work in Narukawa et al. (2005) (by also

favoring the crossover of similar solutions), and other

possibility could be to modify the crowding measure as the

work in Branke et al. (2004) to find knees in multi-objec-

tive optimization problems.

On the other hand, there are a few works in the frame-

work of fuzzy modeling for regression problems. In

Table 1 Classification of MOEAs

Reference MOEA 1st

Gen.

2nd

Gen.

Fonseca and Fleming (1993) MOGA 4

Horn et al. (1994) NPGA 4

Srinivas and Deb (1994) NSGA 4

Coello and Toscano (1993) micro-GA 4

Erickson et al. (1993) NPGA 2 4

Deb et al. (2002) NSGA-II 4

Knowles and Corne (2000) PAES 4

Corne et al. (2000, 2001) PESA & PESA-II 4

Zitzler and Thiele (1999),

Zitzler et al. (2001)

SPEA & SPEA2 4

Complexity

E
rr

or

Low High

L
ow

H
ig

h

A small number
    of short rules

A large number
      of long rules

Fig. 1 Trade-off between the error and the interpretability of rule sets
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Ishibuchi and Yamamoto (2003), authors show how a

simple MOGA can be applied to a three-objective

optimization problem to obtain Mamdani FRBSs. In

Cococcioni et al. (2007), an adaptation of the efficient

(2 ? 2)PAES (Knowles and Corne 2000) has been applied

to the identification of Mamdani FRBSs for regression

problems by considering two minimization objectives (the

system error and the number of variables involved in the

antecedent of the obtained rules). Again, these approaches

do not consider learning or tuning of parameters. However,

a new method was recently proposed in Alcalá et al.

(2007d) to perform rule selection and parameter tuning of

Mamdani FRBSs by establishing mating restrictions to

concentrate the search in the most promising solutions,

allowing exploration at first and favoring the exploitation

of the most accurate solutions at the end (SPEA2Acc). This

last approach will be also analyzed and described in this

contribution.

Some applications of MOEAs have been also discussed

in the literature to improve the difficult trade-off between

accuracy and interpretability of Takagi–Sugeno models

(Takagi and Sugeno 1985). In Jimenez et al. (1993), Wang

et al. (2005a, b), accuracy, interpretability and compact-

ness have been considered as objectives to obtain

interpretable and very accurate Takagi–Sugeno models.

However, since Takagi–Sugeno models have a linear

function in the consequent part of each fuzzy rule, they are

close to accuracy representing another type of trade-off

with less interpretable models (Ishibuchi and Yamamoto

2003). For this reason, the type of rule most used to achieve

the trade-off between accuracy and complexity are the

fuzzy rules with linguistic terms in both the antecedent

and consequent parts, i.e., Mamdani rules (Mamdani and

Assilian 1975).

4 Six different MOEAs for rule selection and tuning of

membership functions

As we explain in the previous section most works in the

field of fuzzy systems are applied to classification prob-

lems by learning or selecting rules, not considering tuning

of the MF parameters. The main reason of this fact is that

a tuning of parameters implies a lost of the interpretability

to some degree. However, it is known that this way to

work greatly improves the performance of the linguistic

models so obtained, being another alternative to improve

the interpretability-accuracy trade-off. For this reason, we

would like to show six examples of applications that

focus the research in the linguistic fuzzy modeling area,

in order to evaluate the performance of MOEAs in a field

which is still less explored, and with the objective of

inject some ideas or recommendations in this open topic

(improvement of the interpretability of very accurate

models).

The proposed algorithms will perform rule selection

from a given fuzzy rule set together with a parametric

tuning of the MFs. To do that, we apply the most used

multi-objective algorithms of the second generation,

SPEA2 (Zitzler et al. 2001) and NSGA-II (Deb et al.

2002), and two versions of NSGA-II (Branke et al. 2004)

for finding knees. Moreover we consider two extended

MOEAs for specific application to this concrete problem,

SPEA2Acc in Alcalá et al. (2007d), and an extension of

that, called SPEA2Acc2 : All of them consider two different

objectives, system error and number of rules.

In the next subsections, we present SPEA2, NSGA-II,

NSGA-IIA, NSGA-IIU and SPEA2Acc algorithms and we

propose SPEA2Acc2 applied for linguistic fuzzy modeling.

At first, the common components of these algorithms are

proposed and then the main steps and characteristic of them

are described.

4.1 Main components of the algorithms

As mentioned, we propose six algorithms to perform rule

selection and tuning of MFs and with the aim of improving

the desired trade-off between interpretability and accuracy.

In the following, the common components needed to apply

these algorithms in this concrete problem are explained.

They are coding scheme, initial gene pool, objectives and

genetic operators:

• Coding scheme and initial gene pool

A double coding scheme for both rule selection (CS) and

tuning (CT) is used:

Cp ¼ Cp
SCp

T

In the CS
p = (cS1, ...,cSm) part, the coding scheme consists of

binary-coded strings with size m (with m being the number

of initial rules). Depending on whether a rule is selected or

not, values ‘1’ or ‘0’ are respectively assigned to the

corresponding gene. In the CT part, a real coding is

considered, being mi the number of labels of each of the n

variables comprising the data base,

Ci ¼ ðai
1; b

i
1; c

i
1; . . .; ai

mi ; bi
mi ; ci

miÞ; i ¼ 1; . . .; n;

Cp
T ¼ C1C2; . . .;Cn:

The initial population is obtained with all individuals

having all genes with value ‘1’ in the CS part. And in the CT

part the initial data base is included as first individual.

The remaining individuals are generated at random within

the corresponding variation intervals. Such intervals are

calculated from the initial data base. For each MF,
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Ci
j = (aj,bj,cj), the variation intervals are calculated in the

following way:

½Il
aj ; Ir

aj � ¼ ½aj � ðbj � ajÞ=2; aj þ ðbj � ajÞ=2�
½Il

bj ; Ir
bj � ¼ ½bj � ðbj � ajÞ=2; bj þ ðcj � bjÞ=2�

½Il
cj ; Ir

cj � ¼ ½cj � ðcj � bjÞ=2; cj þ ðcj � bjÞ=2�

• Objectives

Two objectives are minimized for this problem: the

number of rules (interpretability) and the mean squared

error (accuracy),

MSE ¼ 1

2 � jEj
XjEj

l¼1

ðFðxlÞ � ylÞ2;

with |E| being the size of a data set E, F(xl) being the output

obtained from the FRBS decoded from the said chromo-

some when the l-th example is considered and yl being the

known desired output. The fuzzy inference system con-

sidered to obtain F(xl) is the center of gravity weighted by

the matching strategy as defuzzification operator and the

minimum t-norm as implication and conjunctive operators.

• Genetic operators

The crossover operator depends on the chromosome part

where it is applied: the BLX-0.5 (Eshelman and Schaffer

1993) in the CT part and the HUX (Eshelman 1991) in the

CS part.

Finally, four offspring are generated by combining the

two from the CS part with the two from the CT part (the two

best replace to their parent). The mutation operator changes

a gene value at random in the CS and CT parts (one in each

part) with probability Pm.

• Importance of the initial population

Besides, we have to highlight that the way to create the

solutions of the initial population for the part of rule

selection is a very important factor. Usually, a genetic

algorithm generates the initial population totally at random

(random selection of the initial rules). However, in this

case, to get solutions with a high accuracy we should not

lose rules that could present a positive cooperation once

their MF parameters have been evolved. The best way to

do this is to start with solutions selecting all the possible

rules which favors a progressive extraction of bad rules

(those that do not improve with the tuning of parameters),

only by means of the mutation at the beginning and then by

means of the crossover. Different proofs were performed

considering a completely random initialization, obtaining

simpler solutions but with really worse error values in

training and test.

4.2 SPEA2 based approach

SPEA2 algorithm (Zitzler et al. 2001) was designed to

overcome the problems of its predecessor for general

multi-objective optimization, SPEA algorithm (Zitzler and

Thiele 1999). In contrast with SPEA, SPEA2: (1) incor-

porates a fine-grained fitness assignment strategy which

takes into account for each individual the number of indi-

viduals that it dominates and the number of individuals by

which it is dominated; (2) uses the nearest neighbour

density estimation technique which guides the search more

efficiently; (3) has an enhanced archive truncation method

which guarantees the preservation of boundary solutions.

Next, we briefly describe the complete SPEA2 algorithm.

SPEA2 uses a fixed population and archive size. The

population forms the current base of possible solutions,

while the archive contains the current solutions. The

archive is constructed and updated by copying all non-

dominated individuals in both archive and population into a

temporary archive. If the size of this temporary archive

differs from the desired archive size, individuals are either

removed or added as necessary. Individuals are added by

selecting the best dominated individuals, while the removal

process uses a heuristic clustering routine in the objective

space. The motivation for this is that one would like to try

to ensure that the archive contents represent distinct parts

of the objective space. Finally, when selecting individuals

for participating in the next generation all candidates are

selected from the archive using a binary tournament

selection scheme.

Considering the components defined and the descrip-

tions of the authors in Zitzler et al. (2001), SPEA2

algorithm consists of the next steps:

Input : Nðpopulation sizeÞ;
Nðexternal population sizeÞ;
Tðmaximum number of generationsÞ:
Output : Aðnon-dominated setÞ:

1. Generate an initial population P0 and create the empty

external population P0 ¼ ; .

2. Calculate fitness values of individuals in Pt and Pt:

3. Copy all non-dominated individuals in Pt [ Pt to Ptþ1:

If jPtþ1j[ N apply truncation operator. If jPtþ1j\N

fill with dominated in Pt [ Pt:

4. If t C T, return A and stop.

5. Perform binary tournament selection with replacement

on Ptþ1 in order to fill the mating pool.

6. Apply recombination (BLX–HUX) and mutation oper-

ators to the mating pool and set Pt?1 to the resulting

population. Go to step 2 with t = t ? 1.
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4.3 NSGA-II based approach

NSGA-II algorithm (Deb et al. 2002) is one of the most

well-known and frequently-used MOEAs for general

multi-objective optimization in the literature. As in other

evolutionary algorithms, first NSGA-II generates an initial

population. Then an offspring population is generated

from the current population by selection, crossover and

mutation. The next population is constructed from the

current and offspring populations. The generation of an

offspring population and the construction of the next

population are iterated until a stopping condition is sat-

isfied. NSGA-II algorithm has two features, which make

it a high-performance MOEA. One is the fitness evalua-

tion of each solution based on Pareto ranking and a

crowding measure, and the other is an elitist generation

update procedure.

Each solution in the current population is evaluated in

the following manner. First, Rank 1 is assigned to all non-

dominated solutions in the current population. All solutions

with Rank 1 are tentatively removed from the current

population. Next, Rank 2 is assigned to all non-dominated

solutions in the reduced current population. All solutions

with Rank 2 are tentatively removed from the reduced

current population. This procedure is iterated until all

solutions are tentatively removed from the current popu-

lation (i.e., until ranks are assigned to all solutions). As a

result, a different rank is assigned to each solution. Solu-

tions with smaller ranks are viewed as being better than

those with larger ranks. Among solutions with the same

rank, an additional criterion called a crowding measure is

taken into account.

The crowding measure for a solution calculates the

distance between its adjacent solutions with the same rank

in the objective space. Less crowded solutions with larger

values of the crowding measure are viewed as being better

than more crowded solutions with smaller values of the

crowding measure.

A pair of parent solutions are selected from the current

population by binary tournament selection based on the

Pareto ranking and the crowding measure. When the next

population is to be constructed, the current and offspring

populations are combined into a merged population. Each

solution in the merged population is evaluated in the same

manner as in the selection phase of parent solutions using

the Pareto ranking and the crowding measure. The next

population is constructed by choosing a specified number

(i.e., population size) of the best solutions from the merged

population. Elitism is implemented in NSGA-II algorithm

in this manner.

Considering the components previously defined and the

descriptions of the authors in Deb et al. (2002), NSGA-II

consists of the next steps:

1. A combined population Rt is formed with the initial

parent population Pt and offspring population Qt

(initially empty).

2. Generate all non-dominated fronts F = (F1, F2, ...) of

Rt.

3. Initialize Pt?1 = 0 and i = 1.

4. Repeat until the parent population is filled.

5. Calculate crowding-distance in Fi.

6. Include i-th non-dominated front in the parent

population.

7. Check the next front for inclusion.

8. Sort in descending order using crowded-comparison

operator.

9. Choose the first (N-|Pt?1|) elements of Fi.

10. Use selection, crossover (BLX–HUX) and mutation

to create a new population Qt?1.

11. Increment the generation counter.

4.4 NSGA-II with angle-measure based approach

As mentioned, the performance of NSGA-II relies on two

measures when comparing individuals: the first is the non-

domination rank and, if two individuals have the same non-

domination rank, as a secondary criterion, a crowding

measure is used.

In Branke et al. (2004), authors presented a different

version of NSGA-II in order to find knees in the Pareto

front by modifying the secondary criterion, and replacing

the crowding measure by either an angle-based measure or

an utility-based measure. Again, this algorithm was pro-

posed for multi-objective optimization in general.

However, in our case, a knee could represent the best

compromise between accuracy and number of rules. So we

propose the use of these kinds of measures to search for

these interesting Pareto zones in our concrete problem. In

this subsection, the use of the angle-based measure is

explained in order to replace the crowding measure of

NSGA-II.

In the case of only two objectives, the trade-offs in

either direction can be estimated by the slopes of the two

lines through an individual and its two neighbors. The

angle between these slopes can be regarded as an indication

of whether the individual is at a knee or not. For an

illustration, consider Fig. 2. Clearly, the larger the angle a
between the lines, the worse the trade-offs in either

direction, and the more clearly the solution can be classi-

fied as a knee.

More formally, to calculate the angle measure for a

particular individual Ci, we calculate the angle between the

individual and its two neighbors, i.e. between (Ci-1,Ci) and

(Ci,Ci?1). These three individuals have to be pairwise lin-

early independent, thus duplicate individuals (individuals
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with the same objective function values, which are not

prevented in NSGA-II per se) are treated as one and are

assigned the same angle-measure. If no neighbor to the left

(right) is found, a horizontal (vertical) line is used to cal-

culate the angle. Similar to the standard crowding measure,

individuals with a larger angle-measure are preferred.

Calculating the angle measure in 2D is efficient. For

more than two objectives, however, it becomes impractical

even to just find the neighbors. Thus, we restrict our

examination of the angle-based focus to problems with two

objectives only. Another important issue is that the values

of the different objectives have to be normalized in order to

calculate fair angle values. In our case, the sides of the

triangles used to compute the final value of a are divided by

the difference between the best and the worst values of the

corresponding objective in the current Pareto front, as it is

done in the original NSGA-II to compute the crowding

measure.

4.5 NSGA-II with utility-measure based approach

An alternative measure for a solution’s relevance was also

proposed in (Branke et al. 2004). This subsection explains

the use of this measure (utility-based measure) in order to

provide a different way to replace the crowding measure of

NSGA-II.

The proposed alternative measure is the expected mar-

ginal utility that a solution provides to a decision maker,

assuming linear utility functions of the form U(C, k) =

k f1(C) ? (1 - k) f2(C), with all k [ [0,1] being equally

likely. For illustration, let us first assume we would know

that the decision maker has a particular preference function

U(C, k0), with some known k0. Then, we could calculate,

for each individual Ci in the population, the decision

maker’s utility U(Ci, k0) of that individual. Clearly, given

the choice among all individuals in the population, the

decision maker would select the one with the highest

utility. Now let us define an individual’s marginal utility

U0(C, k0) as the additional cost the decision maker would

have to accept if that particular individual would not be

available and he/she would have to settle for the second

best, i.e.

U0ðCi;k0Þ

¼ minj 6¼iUðCj;k0Þ�UðCi;k0Þ : i¼ argminUðCj;k0Þ
0 : otherwise

�

The proposed utility measure assumes a distribution of

utility functions uniform in the parameter k in order to

calculate the expected marginal utility. For the case of only

two objectives, the expected marginal utility can be cal-

culated exactly by integrating over all possible linear utility

functions. However, the expected marginal utilities can be

approximated simply by sampling, i.e. by calculating the

marginal utility for all individuals for a number of ran-

domly chosen utility functions, and taking the average as

expected marginal utility. Sampling can be done either

randomly or, as was proposed in Branke et al. (2004) in

order to reduce variance, in a systematic manner (equi-

distant values for k). The number of utility functions used

for approximation was called precision of the measure.

Authors recommend a precision of at least the number of

individuals in the population. Naturally, individuals with

the largest overall marginal utility are preferred.

Notice, however, that the assumption of linear utility

functions makes it impossible to find knees in concave

regions of the non-dominated front. Unlike the angle

measure, the utility measure extends easily to more than

two objectives, by defining U (C, k) = Rkifi (C) with

Rki = 1.

In this paper, the marginal utilities have been computed

by sampling, considering equi-distant values for k and a

precision of exactly the number of individuals in the pop-

ulation. As in the case of the angle-measure based

approach, the values of the different objectives have to be

normalized in order to calculate fair utility values. In our

case, objective values considered for computing utility

values were normalized considering the best and the worst

values of the corresponding objective in the current Pareto

front. In this way, an objective value can be normalized as,

f 0i ðCÞ ¼ ðfiðCÞ � f MIN
i Þ=f MAX

i ;

providing values between 0.0 and 1.0.

4.6 Accuracy-oriented based approach: SPEA2Acc

algorithm

SPEA2Acc algorithm was very recently proposed in Alcalá

et al. (2007d), and is a particularization of SPEA2 based

approach presented in Sect. 4.2 to better solve the problem

of rule selection and tuning of FRBSs. This algorithm tries

to focus the search on the desired Pareto zone, high accuracy

with least possible number of rules, proposing two main
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Fig. 2 Calculation of the angle measure
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changes on SPEA2 algorithm with the aim of giving more

selective pressure to those solutions that have a high accu-

racy (crossing dissimilar solutions in principle and similar

ones at the end). These changes were also applied and

analyzed on NSGA-II in Alcalá et al. (2007d) showing not

so good results. The proposed changes are described next:

• A restarting operator is applied exactly at the mid of the

algorithm, by maintaining the most accurate individual

as the sole individual in the external population (Ptþ1

with size 1) and obtaining the remaining individuals in

the population (Pt?1) with the same rule configuration

of the best individual and tuning parameters generated

at random within their corresponding variation inter-

vals. This operation is performed in step 4 (see Sect.

4.2) as a second condition, then returning to step 2 with

t = t ? 1. In this way, the search is concentrated only

in the desired Pareto zone (similar solutions in a zone

with high accuracy).

• In each stage of the algorithm (before and after

restarting), the number of solutions in the external

population ðPtþ1Þ considered to form the mating pool is

progressively reduced, by focusing only on those with

the best accuracy. To do that, the solutions are sorted

from the best to the worst (considering accuracy as

sorting criterion) and the number of solutions consid-

ered for selection is reduced progressively from 100%

at the beginning to 50% at the end of each stage.

4.7 Extension of SPEA2Acc algorithm: SPEA2Acc2

SPEA2Acc algorithm tries to focus the search in the Pareto

zone containing the most accurate solutions. This algorithm

represents a good way to obtain more accurate solutions by

maintaining only a few more rules with respect to its

counterpart (SPEA2). However, sometimes this fact could

represent a problem since there are problems in which to

obtain accurate solutions could be easy but not so easy to

remove unnecessary rules. In this subsection, we propose

an extension of this algorithm in order to solve this prob-

lem. To do that, we propose two changes based on our

experience in this concrete problem:

• An intelligent crossover that is able to profit even more

from the corresponding parents, replacing the HUX

crossover for the CS part. To obtain each offspring the

following steps are applied:

1. The BLX crossover is applied to obtain the CT part

of the offspring.

2. Once the real parameters are obtained determining

a the data base, for each gene in the CS part the

corresponding rule is independently extracted

from each individual involved in the crossover

(offspring and parents 1 and 2). In this way, the

same rule is obtained three times with different

MFs (those concerning these three individuals).

3. Euclidean normalized distances are computed

between offspring and each parent by only consid-

ering the center points (vertex) of the MFs involved

in the extracted rules. The differences between

each two points are normalized by the amplitude of

their respective variation intervals.

4. The nearest parent is the one that determines if this

rule is selected or not for the offspring by directly

copying its value in CS for the corresponding gene.

5. This process is repeated until all the CS values are

assigned for the offspring.

• Four offspring are obtained repeating this process four

times (after considering mutation, only the two most

accurate are taken as descendent). By applying this

operator, exploration is performed in the CT part and

the CS part is directly obtained based on the previous

knowledge each parent has about the use or not of a

specific configuration of MFs for each rule. This avoid

to recover a bad rule that was discarded for a concrete

configuration of MFs, or allow to recover a good rule

that is still considered for a concrete configuration of

MFs, increasing the probability of succeed in the

selection or elimination of a rule for each concrete

configuration of MFs.

• Since a better exploration is performed for the CS part,

the mutation operator does not need to add rules (rules

that were eliminated in the parents for a similar bad

configuration of the MFs involved in these rules). In

this way, once an offspring is generated the mutation

operator changes a gene value at random in the CT part

(as in the previous algorithm) and directly sets to zero a

gene selected at random in the CS part (one gene is

considered in each part) with probability Pm.

Applying these operators two problems are solved.

Firstly, crossing individuals with very different rule con-

figurations is more productive. And secondly, this way to

work favors rule extraction since mutation is only engaged

to remove unnecessary rules.

5 Experiments

To evaluate the goodness of the proposed approaches, two

real-world problems with different complexities (different

number of variables and available data) are considered to

be solved:

• An electrical distribution problem (Cordón et al. 1999)

that consists of estimating the maintenance costs of

Adaptation and application of multi-objective evolutionary algorithms 427

123



medium voltage lines in a town (1,059 cases; 4

continuous variables).

• The Abalone dataset (Waugh 1995) that concerns the

task of trying to predict the number of rings in the shells

of abalone (which is related to their age) based on a

series of biometric measures of these animals (4,177

cases; 7 continuous variables; 1 nominal variable).

Methods considered for the experiments are briefly

described in Table 2. In both problems, WM method is

considered to obtain the initial set of fuzzy rules. To do so,

we will consider symmetrical fuzzy partitions of triangular-

shaped MFs. Once the initial rule set is generated, the

proposed post-processing algorithms will be applied. T and

S methods perform the tuning of parameters and rule

selection respectively. TS indicates tuning together with

rule selection in the same algorithm. All of them consider

the accuracy of the model as the sole objective. MOEAs

studied in this work (TS-SPEA2, TS-NSGA-II, TS-NSGA-

IIA, TS-NSGA-IIU, TS-SPEA2Acc and TS-SPEA2Acc2Þ
perform rule selection from a given fuzzy rule set together

with the parametric tuning of the MFs considering two

objectives, system error and number of rules.

In the next subsections, the named problems are intro-

duced and solved to analyze the behavior of the proposed

methods. To do that, the experimental set-up is first

described. Finally, at the end of this section an internal

study on alternative possibilities to select solutions from

final Paretos and on the initialization influence is also

performed (considering the initialization presented in Sect.

4.1 or a completely random initialization).

5.1 Experimental set-up

To develop the different experiments, we consider a 5-

folder cross-validation model, i.e., 5 random partitions of

data each with 20%, and the combination of 4 of them

(80%) as training and the remaining one as test. For each

one of the five data partitions, the post-processing methods

have been run 6 times (6 different seeds), showing for each

problem the averaged results of a total of 30 runs.

In the case of methods with multi-objective nature

(TS-SPEA2, TS-NSGA-II, TS-NSGA-II A, TS-NSGA-IIU,

TS-SPEA2Acc and TS-SPEA2Acc2Þ; the averaged values are

calculated considering the most accurate solution from

each Pareto obtained. In this way, the multi-objective

algorithms can be compared with several single objective

based methods. This way to work differs with the previous

works in the specialized literature (see Sect. 3) in which

one or several Pareto fronts are presented and an expert

should after select one solution. Our main aim following

this approach is to compare the same technique when

only the accuracy objective is considered (algorithm

WM ? TS) with the most accurate solution found by the

proposed multi-objective algorithms in order to see if the

Pareto fronts obtained are not only wide but also optimal

(almost similar solutions to that obtained by WM ? TS

should be included in the final Pareto).

The values of the input parameters considered by S, T

and TS (single objective oriented algorithms) are:1 popu-

lation size of 61, 100,000 evaluations, 0.6 as crossover

probability and 0.2 as mutation probability per chromo-

some. In the case of MOEAs, the most important parameter

is the population size. In the case of SPEA2 based algo-

rithms, a good proportion between standard population and

external population is 3/1 or 4/1. Different population sizes

were probed showing not very different results but pre-

senting the best performance when the external population

took values between 50 and 100 individuals. It is, when the

population used for parent selection has similar sizes than

Table 2 Methods considered

for comparison
Method Ref. Description

WM Wang and Mendel (1992) Wang & Mendel algorithm

T Casillas et al. (2005) Tuning of Parameters

S Casillas et al. (2005) Rule Selection

TS Casillas et al. (2005) Tuning & Selection

Application of standard MOEAs for general use

TS-SPEA2 Alcalá et al. (2007d) Tuning & Selection by SPEA2

TS-NSGA-II Alcalá et al. (2007d) Tuning & Selection by NSGA-II

TS-NSGA-IIA Tuning & Selection by NSGA-IIangle

TS-NSGA-IIU Tuning & Selection by NSGA-IIutility

Extended MOEAs for specific application

TS-SPEA2Acc Alcalá et al. (2007d) Accuracy-Oriented SPEA2

TS-SPEA2Acc2 Extension of SPEA2Acc

1 With these values we have tried to ease the comparisons selecting

standard common parameters that work well in most cases instead of

searching for very specific values to each method. Moreover, we have

set a large number of evaluations in order to allow the compared

algorithms to achieve an appropriate convergence.

428 M. J. Gacto et al.

123



those considered by single objective oriented algorithms in

these kinds of problems. In this way, we have considered

an external population size of 61 (the same size used by the

named algorithms with single objective) and a proportion

of 1/3 rounded to 200 as standard population size. In the

case of NSGA-II based algorithms, since the archive and

the population have the same size and they have been

usually used with values of 200 and 100 as population size

in general problems for continuous optimization, a good

value could be 200 as population size (the same that

SPEA2 based approaches). However, although 100, 200

and 400 presented a similar and reasonable performance

for these algorithms, the best results were obtained by

taking similar sizes than those considered by S, T and TS

(with single objective) in these kinds of problems (i.e.,

when the size of the population used for parent selection

takes these values). Therefore, we recommend the use of

this simple rule of thumb to fix the population size in these

kinds of prob lems. Finally, the values of the input

parameters considered by the MOEAs are shown in the

next: population size of 200 (61 in the case of NSGA-II

based algorithms), external population size of 61 (in the

case of SPEA2 based algorithms), 100000 evaluations and

Pm = 0.2 as mutation probability per chromosome.

5.2 Estimating the maintenance costs of medium

voltage lines

Estimating the maintenance costs of the medium voltage

electrical network in a town (Cordón et al. 1999) is a

complex but interesting problem. Since a direct measure is

very difficult to obtain, it is useful to consider models.

These estimations allow electrical companies to justify

their expenses. Moreover, the model must be able to

explain how a specific value is computed for a certain

town. Our objective will be to relate the maintenance costs

of the medium voltage lines with the following four vari-

ables: sum of the lengths of all streets in the town, total

area of the town, area that is occupied by buildings, and

energy supply to the town. We will deal with estimations of

minimum maintenance costs based on a model of the

optimal electrical network for a town in a sample of 1,059

towns. As said, five data partitions2 considering an 80%

(847) in training and a 20% (212) in test are considered for

the experiments. The initial linguistic partitions are com-

prised by five linguistic terms with equally distributed

triangular shaped MFs.

The results obtained by the analyzed methods are shown

in Table 3, where #R stands for the number of rules,

MSEtra and MSEtst respectively for the averaged error

obtained over the training and test data, r for the standard

deviation and t for the results of applying a student’s t-test

(with 95 percent confidence) in order to ascertain whether

differences in the performance of the best results are sig-

nificant when compared with that of the other algorithms in

the table. The interpretation of this column is:

* represents the best averaged result.

? means that the best result has better performance than

that of the corresponding row.

Analysing the results showed in Table 3 we can high-

light the following facts:

• Methods based on SPEA2 show a reduction of MSEtra

and MSEtst with respect to the models obtained by only

considering the accuracy objective (WM ? TS). More-

over, a considerable number of rules have been

removed from the initial FRBS, obtaining simpler

models with a better performance.

• NSGA-II based algorithms statistically obtain the same

accuracy than the models obtained with TS-SPEA2

considering the most accurate result of each obtained

Pareto. However, all of them present a higher number of

rules (from one to three) and worse average values than

TS-SPEA2. Moreover, a difference with TS-SPEA2 is

that comparing each of the NSGA-II based approaches

with WM ? TS (single objective-based approach) the

Student’s t test would show that they are statistically

equal in their generalization ability (MSEtst). Therefore,

we could consider that these algorithms get good

solutions, since in any case, they are quite similar to

the application of the standard SPEA2 (specially in the

case of TS-NSGA-IIA and TS-NSGA-IIU).

• The best results were obtained by TS-SPEA2Acc2 and

TS-SPEA2Acc, showing that the use of expert knowl-

edge in the design process can help to obtain more

Table 3 Results obtained by the studied methods in the electrical

distribution problem

Method #R MSEtra rtra t MSEtst rtst t

WM 65.0 57,605 2,841 ? 57,934 4,733 ?

WM?T 65.0 17,020 1,893 ? 21,027 4,225 ?

WM?S 40.9 41,158 1,167 ? 42,988 4,441 ?

WM?TS 41.3 13,387 1,153 ? 17,784 3,344 ?

TS-SPEA2 28.9 11,630 1,283 ? 15,387 3,108 =�

TS-NSGA-II 31.4 11,826 1,354 ? 16,047 4,070 ?

TS-NSGA-IIA 29.7 11,798 1,615 ? 16,156 4,091 ?

TS-NSGA-IIU 30.7 11,954 1,768 ? 15,879 4,866 ?

TS-SPEA2Acc 32.3 10,714 1,392 = 14,252 3,181 =

TS-SPEA2Acc2 29.8 10,325 1,121 * 13,935 2,759 *

Bold values represent the best results in each column

�? with 94% confidence

2 These data sets are available at: http://decsai.ugr.es/*casillas/fmlib

.
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optimal Pareto fronts. Moreover, TS-SPEA2Acc2 is able

to obtain the best average values with even less rules

than the TS-SPEA2Acc algorithm.

All MOEAs considered obtain significantly simpler

models that those obtained by only considering the accu-

racy based objective and almost the same results

(presenting minor average values in all the cases and sta-

tistical differences in the case of the extended MOEAs).

This is a positive fact since an appropriate use of MOEAs

can improve the desired trade-off with respect to the classic

accuracy-based approaches, and specific adaptations can

help to improve the performance of standard MOEAs.

These results (more simple and accurate models by

applying a multi-objective approach) are due to the large

search space that involves these kinds of problems. There are

some initial rules that should be removed since they do not

cooperate in a good way with the remaining ones. Even in

the case of only considering an accuracy-based objective,

the large search space that supposes the tuning of parameters

makes very difficult to remove these kinds of rules since bad

rules are tuned together with the remaining ones searching

for their best cooperation. The use of a multi-objective

approach favors a better selection of the ideal number of

rules, preserving some rule configurations until the rule

parameters are evolved to dominate solutions including bad

rules, which can finally lead to solutions with more freedom-

degrees to tune the corresponding parameters involving a

better cooperation among the different rules.

In Fig. 3, we can see the Pareto evolution in a repre-

sentative run for each multi-objective algorithm and also

the evolution of the best solution in the population in a

representative run of WM?TS. Each type of symbol in the

figure represents the Pareto solutions at different stages of

the evolution (caption ‘Evaluations’ shows the number of

evaluations in which each Pareto was taken in a simple run

and the symbol associated). We can observe as the Pareto

moves along without having a wide extension but
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Fig. 3 Example of the Pareto front evolution along one representa-

tive run of TS-SPEA2, TS-NSGA-II, TS-NSGA-IIA, TS-NSGA-IIU,

TS-SPEA2Acc and TS-SPEA2Acc2 in the Electrical distribution

problem. Evolution of the best solution in a representative run with

WM?TS is also included together with TS-SPEA2Acc2

430 M. J. Gacto et al.

123



dominating the solution obtained by WM?TS at the end.

Although these figures only represent a run for each

algorithm, the obtained Pareto fronts in the different runs

(5 fold, six seeds, 30 runs, after 100,000 evaluations) are in

general very similar to those showed in Fig. 3 for each

algorithm. In this way, the most accurate solution of each

Pareto can be considered as the position in which we can

find a sort set of close solutions representing different

trade-offs in the Pareto zone with still accurate solutions.

Another important fact is that in the final Pareto fronts

of TS-SPEA2Acc2 and TS-SPEA2Acc there are one or two

solutions (those with the minor number of rules) showing a

bad performance with respect to the remaining ones in their

respective Paretos. This situation is typical in practically all

the obtained Pareto fronts and in all the approaches con-

sidered. These solutions represent new individuals that

appeared at the end of the evolution practically without

time to evolve their associated MFs in a zone in which to

extract a rule without severely affecting the accuracy is

more difficult.

Figure 4 shows the convergence of the best solution of

the population from WM?TS and the most accurate

solution in the Pareto from TS-SPEA2Acc2 in a represen-

tative run for the electrical distribution problem. An

interesting fact is that the WM?TS (single objective)

algorithm is faster at the beginning (in training and number

of rules) while TS-SPEA2Acc2 takes a bit more time for

exploration in order to take further advantage. Another

interesting fact is to see how to perform restarting at the

mid of the TS-SPEA2Acc2 process positively affects the

values in training and number of rules.

Figures 5 and 6, respectively show the most accurate

models obtained with WM?TS and TS-SPEA2Acc2 in the

electrical distribution problem. To ease graphic represen-

tation, in these figures, the MFs are labeled from l1 to lmi.

Nevertheless, such MFs are initially associated to a lin-

guistic meaning determined by an expert. In this way, if the

l1 label of the X1 variable represents ‘Very Small’, l10

could be also interpreted as ‘Very Small’ as classically has

been considered when tuning is applied or based on the

expert opinion, maintaining the original meaning of such

label or renaming it if possible. This is the case of Figs. 5

and 6, where in principle practically all the new labels

could maintain their initial meanings.

5.3 Predicting the Abalone age

The Abalone dataset (Waugh 1995) is concerned with

predicting the age of an Abalone specimen (a type of

shellfish) based on physical measurements. Why is it

interesting to predict age? For ecologic and commercial

fish farming purposes, the age composition of abalone

populations are relevant. Here the number of rings is proxy

for age. The age of abalone is determined by cutting the

shell through the cone, staining it, and counting the number

of rings through a microscope.

However, this is a boring, time-consuming and expensive

task. Other measurements, which are easier to obtain, are

therefore used to predict the age. Recorded measurements on
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Fig. 5 DB with/without tuning (black/gray) and RB of the best

model (in training) obtained by WM?TS in the electrical distribution

problem
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4,177 Abalone,3 of interest in determining relationships

useful to predicting the age of future abalone from easily

made physical measurements, were obtained from the

Marine Resources Division at the Department of Primary

Industry and Fisheries, Tasmania, and can be used for this

task. The goal is to predict the number of rings based on the

following eight variables (seven continuous and one nomi-

nal): sex (nominal), length, diameter, height, whole weight,

shucked weight, viscera weight, and shell weight. As

explained, five data partitions considering an 80% (3,342) in

training and a 20% (835) in test are considered for the

experiments. In this case, the initial linguistic partitions are

comprised by three linguistic terms with equally distributed

triangular shaped MFs. The accuracy of the models obtained

is quite similar by considering three or five linguistic terms

in this problem and therefore a number of three labels per

variable is preferable since the final models are comprised of

a smaller number of rules.

The results obtained in this problem by the analyzed

methods are shown in Table 4 (these kinds of table was

described in the previous subsection). On the Abalone data

set (with very high level of noise), all of the MOEAs and

even WM ? TS achieved almost identical performance,

however they present different numbers of rules. This

problem is quite different to that in the previous section. As

can be seen, WM?S obtains the models with the smaller

number of rules, which indicates that there are a lot of rules

that can be removed from the initial system. So, in this

problem, the real challenge would be to remove these rules

in an appropriate manner instead of trying very important

accuracy improvements. Analyzing the results presented in

Table 4 we can stress the following facts:

• In this case, although TS-SPEA2Acc method presents

the best average results in MSEtra and MSEtst with

respect to the remaining models, TS-SPEA2Acc2 could

be considered as the best approach since practically the

same values were obtained in training and test, and the

best value in number of rules has been obtained.

• In this case, NSGA-II based algorithms are statistically

equal than those models obtained by application of the

standard SPEA2, but again, all of them present a higher

number of rules (about 2). However, accuracy differ-

ences are practically not appreciated showing results

quite similar to TS-SPEA2. This time, TS-NSGA-IIA

and TS-NSGA-IIU obtain more or less the same number

of rules than TS-NSGA-II, although their average

numbers of rules are still better.

• All MOEAs considered obtain significantly simpler

models that those obtained by only considering the

accuracy based objective and almost the same results,

improving again the desired trade-off with respect to

the classic accuracy-based approaches.

In Fig. 7, we can see the Pareto evolution in a repre-

sentative run for each multi-objective algorithm (these

kinds of figures were described in the previous subsection).

Once more, the different Pareto fronts move along without

having a wide extension. TS-NSGA-IIU, TS-SPEA2Acc and

TS-SPEA2Acc2 show the wider Pareto fronts in their cor-

responding figures. However, the front obtained by TS-

SPEA2Acc2 is again located more to the top right zone (the

zone with less rules and more accurate models).

Figure 8 shows the most accurate model obtained with

TS-SPEA2Acc2 in the electrical distribution problem (these
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Fig. 6 DB with/without tuning (black/gray) and RB of the best

model (in training) obtained by TS-SPEA2Acc2 in the electrical

distribution problem

Table 4 Results obtained by the studied methods in the Abalone

dataset

Method #R MSEtra rtra t MSEtst rtst t

WM 68.2 8.407 0.443 ? 8.422 0.545 ?

WM?T 68.2 2.688 0.063 ? 2.770 0.242 ?

WM?S 18.0 4.825 1.078 ? 4.795 1.165 ?

WM?TS 28.4 2.473 0.097 ? 2.582 0.290 =

TS-SPEA2 20.0 2.383 0.078 = 2.518 0.246 =

TS-NSGA-II 22.4 2.398 0.084 = 2.526 0.242 =

TS-NSGA-IIA 22.1 2.404 0.098 = 2.535 0.265 =

TS-NSGA-IIU 21.8 2.407 0.082 = 2.520 0.237 =

TS-SPEA2Acc 22.2 2.368 0.085 * 2.511 0.263 *

TS-SPEA2Acc2 18.6 2.372 0.075 = 2.517 0.230 =

Bold values represent the best results in each column

3 Available from the UCI Machine Learning Repository (http://www.

ics.uci.edu/*mlearn/MLRepository.html).
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kinds of figures were also described in the previous sub-

section). Although practically all the MFs could maintain

their original meanings (from a subjective point of view),

there are two cases that probably should be renamed by

experts if possible, l2’ and l3’ in X1 and X6, respectively.

From a subjective point of view we show a way to rename

them. The most accurate model obtained from WM?TS

has been not included for this problem in order to avoid an

excessive length of the paper since, as in the previous

problem, its MFs are similar to those obtained by TS-

SPEA2Acc2 (even with any MFs that should be renamed).

5.4 Analysis on the solution selection and importance

of the initialization

As said, an internal study on alternative possibilities to

select solutions from final Pareto fronts and on the

initialization influence is also performed by focusing on the

electrical problem (the one with more possibilities to

reduce not only the rule number but also the system error).

Although we propose as final solution the most accurate

one since our main objective is to reduce the number of

rules but maintaining or improving the accuracy of the

obtained models, there is another motivation that rein-

forced our decision. If this solution is maintained as a part

of the final Pareto is because no other rule configuration is

able to obtain a better parameter tuning (the main reason of

the improved accuracy of these kinds of models). So we

can be sure that this solution had the time to be evolved

more or less in the proper way. However, the more we look

for simpler solutions in the final Pareto the less we can be

sure that these solutions had the time to be tuned (if a

simpler solution appears at the end of the evolutionary

process probably this solution had not the time to be
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Fig. 7 Example of the Pareto front evolution along one representa-

tive run of TS-SPEA2, TS-NSGA-II, TS-NSGA-IIA, TS-NSGA-IIU,

TS-SPEA2Acc and TS-SPEA2Acc2 in the Abalone dataset. Evolution

of the best solution in a representative run with WM?TS is also

included together with TS-SPEA2Acc2
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properly tuned). In any case, the output of MOEAs really is

a set of solutions from which an expert could choose the

most convenient one.

In Table 5, we consider two different possibilities

applied on the results obtained in Sect. 5.2 with TS-NSGA-

IIA, TS-NSGA-IIU and TS-SPEA2Acc2 : In this case, we

choose the solution with the best angle or utility measure in

the Pareto fronts obtained from TS-NSGA-IIA and TS-

NSGA-IIU, respectively, and the i-th most accurate solution

in the Pareto fronts obtained from TS-SPEA2Acc2 : As can

be seen, the results obtained by choosing the proper i-th

solution from TS-SPEA2Acc2 outperform the results

obtained by knee based approaches. Since a knee is an

ideal solution in the ideal Pareto but a promising one in a

population of non dominated solutions, the knee based

measure can be good to favor the evolution of promising

solutions but it seems not so good to choose the final

solution from evolved Pareto fronts that could present false

knees (for example one solution with too few rules but

without time to be properly tuned can be identified as a

knee). In fact, standard deviations in the table show the

diversity of solutions proposed considering knee measures

(different knees appears in different runs, and for example

a solution with 20 rules 27,426 in training and 38432 in test

is proposed by TS-NSGA-IIU - k in one of the 30 runs). In

any case, independently of the mechanism considered to

propose a final solution the most important thing is if the

obtained front can be nearer of the optimal one, and the

situation of the most accurate solution seems to be very

indicative in this sense.

A study has been also performed on the importance of

the initialization component for the rule selection part in

the chromosome (considering a completely random ini-

tialization instead of the one presented in Section 4.1).

Table 6 presents the results (again considering the most

accurate solution in the final fronts) obtained by all the

MOEAs considered for comparison starting with the initial

rules selected at random (the best result in Table 3 is also

included to show differences). By considering random

initialization the results obtained present too low numbers

of rules with much worse results especially in the test. This

shows that to add rules that were not selected at the

beginning is not easy since the MF parameters are quickly

adapted to those rules that are just selected giving way to

sub-optimal Pareto fronts. In any case, there are two

important facts in these results:

• TS-SPEA2Acc and TS-SPEA2Acc2 methods were not

very affected by the random initialization, presenting

solutions that were also interesting from the trade-off

point of view (very low number of rules and a good

accuracy).

• Fixing the number of rules in the initial population can

be a way to regulate the desired trade-off since this

biases the number of rules in the final solutions.
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Fig. 8 DB with/without tuning (black/gray) and RB of a model

obtained by TS-SPEA2Acc2 in the Abalon dataset

Table 5 Results obtained by choosing the knee or the i-th most

accurate solution in the electrical distribution problem

Method #R MSEtra rtra t MSEtst rtst t

TS-NSGA-IIA-k 25.5 13,242 2,383 ? 17,541 4,184 ?

TS-NSGA-IIU-k 24.2 15,797 3,945 ? 20,528 6,802 ?

TS-SPEA2Acc2 -1 29.8 10,325 1,121 * 13,935 2,759 *

TS-SPEA2Acc2 -2 28.3 10,496 1,126 = 14,268 2,925 =

TS-SPEA2Acc2 -3 27.0 10,835 1,191 = 14,460 2,782 =

TS-SPEA2Acc2 -4 25.9 11,217 1,307 ? 14,806 3,069 =

TS-SPEA2Acc2 -5 24.9 12,194 2,078 ? 15,417 3,328 =

Bold values represent the best results in each column
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6 Concluding remarks

In this work, we have analyzed the application of different

MOEAs to obtain simpler but still accurate linguistic fuzzy

models by performing rule selection and a classic tuning of

the MF parameters. In order to show the main differences

with the previous works, a brief analysis of the state of the

art on the use of MOEAs to get FRBSs with good accu-

racy-interpretability trade-off has been performed at first.

From this study we can stress the following points:

• Most of the works only consider quantitative measures

of the system complexity to determine the FRBS

interpretability since the use of qualitative measures is

still an open topic that needs of further and intense

research efforts.

• None of the works (but the one in Alcalá et al. (2007d))

considered a learning or tuning of the MFs, only

performing rule learning or selection.

• Algorithms considered were slight modifications of

MOEAs proposed for general use (MOGA, NSGA-II,

etc.) or specifically developed for this concrete and

difficult problem. It is due to the special nature of this

problem, in which to improve the accuracy objective is

more difficult than simplifying the fuzzy models, by

which the Pareto front finally obtained still becomes

sub-optimal with respect to the accuracy objective.

Therefore, MOEAs considering specific information

about the problem are usually needed.

Since combining rule selection and tuning of the system

parameters represents a more complex search space and

therefore needs of different considerations with respect to

the works in the existing literature, some considerations

based on the experience are needed in the MOEA design

process in order to get good solutions. From the results

obtained, we can conclude that:

• The results obtained have shown that an appropriate use

of MOEAs can represent a way to obtain even more

accurate and simpler linguistic models than those

obtained by only considering performance measures.

• Population initialization is an important component that

can help to regulate the desired trade-off since this

biases the number of rules in the final solutions. In this

way, the results obtained by selecting all the rules in the

initial population are able to find solutions in the most

accurate Pareto zone.

• The best results were obtained by TS-SPEA2Acc2 on

two different scenarios. These results show that the use

of experience based knowledge in the MOEAs design

process can significantly improve the search ability of

these algorithms.

Finally, we would like to point out that the analysis

presented in this work could help to extend this approach in

order to consider other kinds of techniques or new inter-

pretability measures for further works, e.g., another tuning

types, learning, combination with the use of quality mea-

sures, etc.
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