Organization & Editorial Activities: Edited Books
Accuracy Improvements in Linguistic Fuzzy Modeling
J. Casillas, O. Cordón, F. Herrera, L. Magdalena (Eds.)
Table of Contents
Foreword
P. Bonissone
Preface
J. Casillas, O. Cordón, F. Herrera, L. Magdalena
1. OVERVIEW
Accuracy improvements to find the balance interpretability-accuracy in linguistic fuzzy modeling: an overview
J. Casillas, O. Cordón, F. Herrera, L. Magdalena
p. 3
2. ACCURACY IMPROVEMENTS CONSTRAINED BY INTERPRETABILITY CRITERIA
COR methodology: a simple way to obtain linguistic fuzzy models with good interpretability and accuracy
J. Casillas, O. Cordón, F. Herrera
p. 27
Constrained optimization of genetic fuzzy systems
F. Cheong, R. Lai
p. 46
Trade-off between the number of fuzzy rules and their classification performance
H. Ishibuchi, T. Yamamoto
p. 72
Generating distinguishable, complete, consistent and compact fuzzy systems using evolutionary algorithms
Y. Jin
p. 100
Fuzzy CoCo: balancing accuracy and interpretability of fuzzy models by means of coevolution
C.A. Peña-Reyes, M. Sipper
p. 119
On the achievement of both accurate and interpretable fuzzy systems using data-driven design processes
J. Valente de Oliveira, P. Fazendeiro
p. 147
3. EXTENDING THE MODELING PROCESS TO IMPROVE THE ACCURACY
Linguistic hedges and fuzzy rule based systems
C.-Y. Chen, B.-D. Liu
p. 165
Automatic construction of fuzzy rule-based fuzzy systems: A trade-off between complexity and accuracy maintaining interpretability
H. Pomares, I. Rojas, J. González
p. 193
Using individually tested rules for the databased generation of interpretable rule bases with high accuracy
T. Slawinski, P. Krause, H. Kiendl
p. 220
4. EXTENDING THE MODEL STRUCTURE TO IMPROVE THE ACCURACY
A description of several characteristics for improving the accuracy and interpretability of the fuzzy rule learning algorithms
E. Aguirre, A. González, R. Pérez
p. 249
An iterative learning methodology to design hierarchical systems of linguistic rules for linguistic modeling
R. Alcalá, O. Cordón, F. Herrera, I. Zwir
p. 277
Learning default fuzzy rules with general and punctual exceptions
P. Carmona, J.L. Castro, J.J. Castro-Schez, M. Laguia
p. 302
Integration of fuzzy knowledge
T.-P. Hong, C.-H. Wang, S.-S. Tseng
p. 338
Tuning fuzzy partitions or assigning weights to fuzzy rules: which is better?
L. Sánchez, J. Otero
p. 366