Data Mining and Soft Computing
Post-Graduate Program Course: Data Mining and Soft Computing Dottorato di Ricerca in Ingegneria dell'Informazione
Francisco Herrera (Dpto. de Ciencias de la Computación e I.A.)
Summary of Sessions
Additional Slides:
- Session 0: Presentation.
- Session 1: Introduction to Data Mining and Knowledge Discovery.
- Session 2: Data Preparation.
- Session 3: Introduction to Prediction, Classification, Clustering and Association.
- Session 4: Data Mining - From the Top 10 Algorithms to the New Challenges. Part I: , Part II:
- Session 5: Introduction to Soft Computing. Focusing our attention in Fuzzy Logic and Evolutionary Computation.
- Session 6: Soft Computing Techniques in Data Mining: Fuzzy Data Mining and Knowledge Extraction based on Evolutionary Learning.
- Session 7: Genetic Fuzzy Systems: State of the Art and New Trends. Part I: , Part II: .
- J. Alcalá-Fdez et al. (March 2008). KEEL: A Software Tool to Assess Evolutionary Algorithms for Data Mining Problems
- H. Ishibuchi (July 2007). Multiobjective Genetic Fuzzy Systems: Review and Future Research Directions
- Session 8: Some Advanced Topics I: Classification with Imbalanced Data Sets.
- Session 9: Some Advanced Topics II: Subgroup Discovery.
- Session 10: Some advanced Topics III: Data Complexity.
- Session 11: Final talk: How must I Do my Experimental Study? Design of Experiments in Data Mining/Computational Intelligence. Using Non-parametric Tests. Some Cases of Study.
Bibliography
J. Han, M. Kamber. Data Mining. Concepts and Techniques. Morgan Kaufmann, 2006 (Second Edition) http://www.cs.sfu.ca/~han/dmbook | |
I.H. Witten, E. Frank. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition, Morgan Kaufmann, 2005. http://www.cs.waikato.ac.nz/~ml/weka/book.html | |
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining (First Edition). Addison Wesley, (May 2, 2005) http://www-users.cs.umn.edu/~kumar/dmbook/index.php | |
Margaret H. Dunham. Data Mining: Introductory and Advanced TopicsPrentice Hall, 2003 http://lyle.smu.edu/~mhd/book | |
Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann, Mar 15, 1999 | |
Mamdouh Refaat. Data Preparation for Data Mining Using SAS. Morgan Kaufmann, Sep. 29, 2006) | |
O. Cordón, F. Herrera, F. Hoffmann, L. Magdalena. Genetic Fuzzy Systems. Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, Vol. 19 of Advances in Fuzzy Systems - Applications and Theory. World Scientific, 2001 http://sci2s.ugr.es/publications/geneticFuzzySystems.php | |
H. Ishibuchi, T. Nakashima, M. Nii Classification and modeling with linguistic information granules: Advanced approaches to linguistic data mining, Springer, 2004. | |
M. Basu and T.K. Ho (Eds.) Data Complexity in Pattern Recognition, Springer, 2006 | |
J.H. Zar. Biostatistical Analysis, Prentice Hall, 1999. | |
D. Sheskin. Handbook of parametric and nonparametric statistical procedures. Chapman & Hall/CRC, 2003. |
- Qiang Yang and Xindong Wu (Contributors: Pedro Domingos, Charles Elkan, Johannes Gehrke, Jiawei Han, David Heckerman, Daniel Keim, Jiming Liu, David Madigan, Gregory Piatetsky-Shapiro, Vijay V. Raghavan, Rajeev Rastogi, Salvatore J. Stolfo, Alexander Tuzhilin, and Benjamin W. Wah), 10 Challenging Problems in Data Mining Research, International Journal of Information Technology & Decision Making, Vol. 5, No. 4, 2006, 597-604
- Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, Dan Steinberg. Top 10 algorithms in data mining. Knowledge Information Systems (2008) 14:1–37
- Hans-Peter Kriegel, Karsten M. Borgwardt, Peer Kröger, Alexey Pryakhin, Matthias Schubert, Arthur Zimek. Future trends in data mining. Data Mining and Knowledge Discovery (2007) 15:87–97
- Gregory Piatetsky-Shapiro. Data mining and knowledge discovery 1996 to 2005: overcoming the hype and moving from “university” to “business” and “analytics”. Data Mining and Knowledge Discovery (2007) 15:99–105
- Piero P. Bonissone. Soft computing: the convergence of emerging reasoning technologies. Soft Computing (1997) 1:6-18
- José L. Verdegay, Ronald R. Yager, Piero P. Bonissone. On heuristics as a fundamental constituent of soft computing. Fuzzy Sets and Systems (2008) 159:7 846-855
- G.E.A.P.A. Batista, R.C. Prati, M.C. Monard. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations 6:1 (2004) 20-29.
- T. Ho and M. Basu. Complexity measures of supervised classification problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3):289–300, 2002.
- N. Lavrac, B. Cestnik, Gamberger D, Flach P (2004) Decision support through subgroup discovery: three case studies and the lessons learned. Machine Learning 57:115-143
- E. Hüllermeier. Fuzzy methods in machine learning and data mining: Status and prospects. Fuzzy Sets and Systems 156(3), 2005, 387-406.
- Demsar, J., Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research. Vol. 7. pp. 1–30. 2006.
- S. García, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-Parametric Tests for Analyzing the Evolutionary Algorithms' Behaviour: A Case Study on the CEC'2005 Special Session on Real Parameter Optimization. Journal of Heuristics, in press (2008), (ENLACE ROTO)
- S. García, F. Herrera, An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons. Journal of Machine Learning Research, in press (2008), (ENLACE ROTO)