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Resumen

In Group Decision Making problems experts
have to provide their preferences about some
alternatives to solve a particular problem.
Fuzzy Preference Relations are a very widely
preference representation format that experts
can use to express their opinions about the
alternatives. But due to their own personal
background and abilities experts are not of-
ten capable of provide complete and consis-
tent preference relations.

In this work we present two different tools
that can be used to solve GDM problems
where the experts give their preferences by
means of incomplete fuzzy preference rela-
tions. These tools are an iterative procedure
capable of estimating missing information on
the incomplete fuzzy preference relations and
the AC-IOWA operator, capable of aggregat-
ing the information provided by the experts
into a global fuzzy preference relations that
summarizes the experts opinions and that
takes into account the consistency expressed
by each expert to give more importance to
the most consistent ones.

Keywords: Group Decision Making, In-
complete Information, Fuzzy Preference Re-
lations, Additive Consistency.

1 Introduction

Decision-making procedures are increasingly being
used in various different fields for evaluation, selection
and prioritisation purposes, that is, making preference
decisions about a set of different choices. Furthermore,
it is also obvious that the comparison of different al-

ternative actions according to their desirability in de-
cision problems, in many cases, cannot be done using
a single criterion or one person. Indeed, in the major-
ity of decision making problems, procedures have been
established to combine opinions about alternatives re-
lated to different points of view. These procedures are
based on pair comparisons, in the sense that processes
are linked to some degree of credibility of preference
of one alternative over another. Many different repre-
sentation formats can be used to express preferences.
Fuzzy preference relation is one of these formats, and
it is usually used by an expert to provide his/her pref-
erence degrees when comparing pairs of alternatives
[1, 3, 6, 8].

Since each expert is characterised by their own per-
sonal background and experience of the problem to
be solved, experts’ opinions may differ substantially
(there are plenty of educational and cultural factors
that influence an expert’s preferences). This diver-
sity of experts could lead to situations where some of
them would not be able to efficiently express any kind
of preference degree between two or more of the avail-
able options. Indeed, this may be due to an expert not
possessing a precise or sufficient level of knowledge of
part of the problem, or because that expert is unable
to discriminate the degree to which some options are
better than others. In these situations such an expert
is forced to provide an incomplete fuzzy preference re-
lation [10].

Usual procedures for multi-person decision-making
problems correct this lack of knowledge of a particular
expert using the information provided by the rest of
the experts together with aggregation procedures [7].
These approaches have several disadvantages. Among
them we can cite the requirement of multiple experts
in order to learn the missing value of a particular one.
Another drawback is that these procedures normally
do not take into account the differences between ex-
perts’ preferences, which could lead to the estimation
of a missing value that would not naturally be compat-



ible with the rest of the preference values given by that
expert. Finally, some of these missing information-
retrieval procedures are interactive, that is, they need
experts to collaborate in “real time”, an option which
is not always possible.

Our proposal is quite different to the above proce-
dures. We put forward an iterative procedure which
attempts to estimate the missing information in an ex-
pert’s incomplete fuzzy preference relation, using only
the preference values provided by that particular ex-
pert. By doing this, we assure that the reconstruction
of the incomplete fuzzy preference relation is compat-
ible with the rest of the information provided by that
expert. In fact, the procedure we propose in this pa-
per is guided by the expert’s consistency which is mea-
sured taking into account only the provided preference
values. Thus, an important objective in the design of
our procedure is to maintain experts’ consistency lev-
els. In particular, in this paper we use the additive
consistency property [5] to define a consistency mea-
sure of the expert’s information.

Once the missing information in a fuzzy preference
relation is estimated we can find the solution to our
GDM problem using a particular Decision Model. To
do so we have to carry out different actions, and
one of the most important ones is aggregating the
information from every expert in order to achieve
a global fuzzy preference relation which summarizes
all the information provided by the different experts.
We have also developed an aggregation operator, the
Additive-Consistency Induced Ordered Weighted Av-
eraging (AC-IOWA) which is capable of aggregating
the fuzzy preference relations giving more importance
to the oppinions of the most consistent experts (we
asume that consistent information is more valuable
than inconsistent one).

In order to do this, the paper is set out as follows: In
Section 2 we present our preliminaries: the incomplete
fuzzy preference relation definition and the additive
consistency property. In Section 3 we present our iter-
ative procedure to estimate missing information on in-
complete fuzzy preference relations. Section 4 presents
the AC-IOWA operator and how can both the esti-
mation procedure and the AC-IOWA operator be in-
tegrated into a complete decision model. Finally, in
Section 5 we point out some conclusions and briefly
describe our current developments in this line of work.

2 Preliminaries

In this section we will present the preliminary concepts
that will be used in the following sections. First of
all we will define what an incomplete fuzzy preference
relation is and laterly we will describe the additive

consistency property, on which our iterative estimation
procedure is based.

2.1 GDM with Incomplete Fuzzy Preference
Relations

The problem we deal with is that of choosing
the best alternative(s) among a finite set, X =
{x1, ..., xn}, (n ≥ 2). The alternatives will be classified
from best to worst, using the information known ac-
cording to a set of experts, i.e., E = {e1, ..., em}(m ≥
2).

Each expert ek ∈ E, will provide his preferences by
means of a fuzzy preference relation which is one of
the most common representation formats of informa-
tion used in decision-making problems due to their ef-
fectiveness as a tool for modelling decision processes
and, above all, their utility and easiness of use when
we want to aggregate experts’ preferences into group
preferences [3, 5, 6, 9]. In particular, they have been
used in the development of many important decision-
making procedures.

Definition [6, 8]. A fuzzy preference relation P on
a set of alternatives X is a fuzzy set on the product
set X ×X, that is, is characterized by a membership
function

µP : X ×X −→ [0, 1]

When cardinality of X is small, the preference relation
may be conveniently represented by the n× n matrix
P = (pij) being pij = µP (xi, xj) ∀i, j ∈ {1, . . . , n}
interpreted as the preference degree or intensity of the
alternative xi over xj : pij = 1/2 indicates indifference
between xi and xj (xi ∼ xj), pij = 1 indicates that xi

is absolutely preferred to xj , and pij > 1/2 indicates
that xi is preferred to xj (xi Â xj). Based on this
interpretation we have that pii = 1/2 ∀i ∈ {1, . . . , n}
(xi ∼ xi).

As we have mentioned, due the fact that every expert
has his own experience on the problem being studied, a
general drawback is the lack of knowledge that experts
may have. They should have the tools to be able to
express this lack of knowledge in the fuzzy preference
relations they provide. It is important to remark the
fact that an expert not being able to express every
pij value, because he doesn’t have a clear idea of how
better is the alternative xi over the alternative xj , does
not mean that he thinks that both options are equally
preferred to be chosen ( xi ∼ xj or pij , pji = 1/2 ).

To solve this issue we introduce the new concept of
incomplete fuzzy preference relation, which allow to
express this kind of situations where some pij values
are missing:



Definition. A function f : X −→ Y is partial when
not every element in the set X necessarily maps to an
element in the set Y . When every element from the
set X maps to one element of the set Y then we have
a total function.

Definition. An incomplete fuzzy preference relation
P on a set of alternatives X is a fuzzy set on the prod-
uct set X ×X that is characterized by a partial mem-
bership function.

Following this last definition, we call a fuzzy preference
relation complete when its membership function is a
total one. Clearly, the usual definition of a fuzzy pref-
erence relation includes both definitions of complete
an incomplete fuzzy preference relations. However, as
there is no risk of confusion between a complete and an
incomplete fuzzy preference relation, in this paper we
will refer to the first type as simply fuzzy preference
relations.

In the case of an incomplete fuzzy preference rela-
tion there exists at least a pair of alternatives (xi, xj)
for which pij is unknown. We will introduce and use
throughout this paper the letter x to represent these
unknown preference values, that is pij = x.

2.2 Additive Consistency

The definition of a fuzzy preference relation does not
imply any kind of consistency. In fact, preferences ex-
pressed in the fuzzy preference relation can be contra-
dictory. As studied in [5], for making a rational choice,
a set of properties to be satisfied by such fuzzy pref-
erence relations have been suggested. Transitivity is
one of the most important properties concerning pref-
erences, and it represents the idea that the preference
value obtained by comparing directly two alternatives
should be equal to or greater than the preference value
between those two alternatives obtained using an in-
direct chain of alternatives. One of these properties is
the additive transitivity [9]:

(pij−0.5)+(pjk−0.5) = (pik−0.5) ∀i, j, k ∈ {1, . . . , n}
(1)

This kind of transitivity has the following interpre-
tation: suppose we do want to establish a ranking
between three alternatives xi, xj and xk. If we do
not have any information about these alternatives it
is natural to start assuming that we are in an indif-
ference situation, that is, xi ∼ xj ∼ xk, and therefore
when giving preferences this situation is represented
by pij = pjk = pki = 0.5. Suppose now that we have a
piece of information that says alternative xi ≺ xj , that
is pij < 0.5. It is clear that pjk or pki have to change,

otherwise there would be a contradiction, because we
would have xi ≺ xj ∼ xk ∼ xi. If we suppose that
pjk = 0.5 then we have the situation: xj is preferred
to xi and there is no difference in preferring xj to xk.
We must then conclude that xk has to be preferred to
xi. Furthermore, as xj ∼ xk then pji = pki, and so
pij +pjk+pki = pij +pjk+pji = 1+0.5 = 1.5. We have
the same conclusion if pki = 0.5. In the case of being
pjk < 0.5, then we have that xk is preferred to xj and
this to xi, so xk should be preferred to xi. On the other
hand, the value pki has to be equal or greater than pji,
being equal only in the case of pjk = 0.5 as we have
seen. Interpreting the value pji−0.5 as the intensity of
preference of alternative xj over xi, then it seems rea-
sonable to suppose that the intensity of preference of
xk over xi should be equal to the sum of the intensities
of preferences when using and intermediate alternative
xj , that is, pki − 0.5 = (pkj − 0.5) + (pji − 0.5). The
same reasoning can be applied in the case of pjk > 0.5.

From the previous equations we obtain the following
expression:

pij + pjk − 0.5 = pik ∀i, j, k ∈ {1, . . . , n} (2)

In this paper, we will consider a fuzzy preference rela-
tion to be be additive consistent when for every three
options in the problem xi, xj , xk ∈ X their associated
preference degrees pij , pjk, pik fulfil Expression 2. An
additive consistent fuzzy preference relation will be re-
ferred as consistent throughout the paper, as this is the
only transitivity property we are considering.

3 Estimating Missing Values in
Incomplete FPR

In this section we present an iterative estimation pro-
cedure capable of reconstructing, under some circun-
stances, the missing values on incomplete fuzzy pref-
erence relations. We will also provide sufficient condi-
tions which assure that the procedure can succesfully
estimate all missing information, and will finally point
out some considerations about using the additive reci-
procity property to design a more powerful procedure,
capable of estimating some of the missing values that
the previous procedure was not capable to estimate.

3.1 Additive Consistency Measure

As it has been said in the previous sections additive
consistency is a property that can be satisfied by fuzzy
preference relations. However, it is usually difficult for
an expert to express its preferences in a completely
consistent way. In this section we will develop a mea-
sure of the additive consistency property for the fuzzy



preference relations, that is, a measure which gives a
degree on which they are more or less additive consis-
tent.

Expression 2 presented above can be used to calculate
the value of a preference degree pik using other pref-
erence degrees in a fuzzy preference relation. Indeed,

cpj
ik = pij + pjk − 0.5 (3)

where cpj
ik means the calculated value of pik via j, that

is, using pij and pjk. Obviously, if the information
provided in a fuzzy preference relation is completely
consistent then cpj

ik, ∀j ∈ {1, . . . , n} and pik coincide.
However, the information given by an expert usually
does not fulfil Equation 2, because experts are not al-
ways fully consistent. In these cases, the value

εpik =

n∑

j=1;j 6=i,k

∣∣∣cpj
ik − pik

∣∣∣

n− 2
(4)

can be used to measure the error expressed in a pref-
erence degree between two options. This error can be
interpreted as the consistency level between the prefer-
ence degree pik and the rest of the preference values of
the fuzzy preference relation. Clearly, when εpik = 0
then there is no inconsistency at all, and the higher the
value of εpik the more inconsistent is pik with respect
to the rest of information.

The Consistency Level for the whole fuzzy preference
relation P is defined as follows:

CLP =

n∑

i,k=1;i 6=k

εpik

n2 − n
(5)

When CLP = 0, then the preference relation P is
fully consistent, otherwise, the higher CLP the more
inconsistent is P .

We also introduce the following sets:

A = {(i, j) | i, j ∈ {1, . . . , n} ∧ i 6= j} (6)

MV = {(i, j) | pij = x, (i, j) ∈ A} (7)

EV = A \MV (8)

MV is the set of pairs of alternatives for which the
preference degree of the first alternative over the sec-
ond one is unknown or missing; EV is the set of pairs

of alternatives for which the expert provide preference
values. Notice that we do not take into account the
preference value of one alternative over itself as this is
always assumed to be equal to 0.5.

When working with an incomplete fuzzy preference re-
lation, we note that Expression 4 cannot be to estimate
the error on a particular pair of alternatives. An ob-
vious consequence of this is the need to extend the
above definition of CLP to include the cases when the
fuzzy preference relation is incomplete. We do this as
follows:

Hik = {j | (i, j), (j, k) ∈ EV } ∀i 6= k (9)

εpik =

∑

j∈Hik

∣∣∣cpj
ik − pik

∣∣∣

#Hik
(10)

CEP = {( i, k) ∈ EV | ∃j : (i, j), (j, k) ∈ EV } (11)

CLP =

∑

(i,k)∈CEP

εpik

#CEP
(12)

We call CEP the Computable Error set because it con-
tains all the elements for which we can compute every
εpik. Clearly, this redefinition of CLP is an extension
of Expression 5. Indeed, when a fuzzy preference rela-
tion is complete, both CEP and A coincide and thus
#CEP = n2 − n.

3.2 An Iterative Procedure to Estimate
Missing Values

We have developed an iterative procedure capable of
estimating missing values on an incomplete fuzzy pref-
erence relation, only using the information expressed
in the proper preference relation and the additive con-
sistency property. This procedure, opposed to classical
approaches where missing information is acquired us-
ing information from other experts, does not make use
of information from other sources, and tries to main-
tain the consistency level expressed by the expert.

To develop the iterative procedure to estimate missing
values two different tasks have to be carried out:

A) To establish the elements that can be estimated
in each step of the procedure, and

B) To produce the particular expression that will be
used to estimate a particular missing value.



A) Elements to be estimated in step h

The subset of the missing values MV that can be esti-
mated in step h of our procedure is denoted by EMVh

(Estimable Missing Values) and defined as follows:

EMVh = {(i, k) ∈MV \
h−1⋃

l=0

EMVl |

∃j : (i, j), (j, k) ∈ EV ∪
(

h−1⋃

l=0

EMVl

)
}

with EMV0 = ∅.

When EMVmaxIter = ∅ with maxIter > 0 the
procedure will stop as there will not be any more
missing values to be estimated. Furthermore, if
maxIter⋃

l=0

EMVl = MV then all missing values are esti-

mated and consequently the procedure was successful
in the completion of the fuzzy preference relation.

B) Expression to estimate a particular pik value

In order to estimate a particular value pik with (i, k) ∈
EMVh, in iteration h, we propose the application of
the the following three steps function:

function estimate p(i,k)

1. Iik =

{
j | (i, j), (j, k) ∈ EV ∪

(
h−1⋃

l=0

EMVl

)}

2. Calculate cp′ik =

∑

j∈Iik

cpj
ik

#Iik

3. Make pik = cp′ik + z with z ∈ [−CLP , CLP ] ran-
domly selected, subject to 0 ≤ pik + z ≤ 1

end function

With this procedure, a missing value pik is estimated
using Expression 3 when there is at least one chained
pair of known preference values pij , pjk that allow this.
If there is more than one pair of preference values that
allow to estimate pik using that equation, then we use
the average value of all them as an estimate of the
missing value, cp′ik. Finally, we add a random value
z ∈ [−CLP , CLP ] to this estimation in order to main-
tain the consistency level of the expert, but obviously
forcing the estimated value to be in the range of fuzzy
preference values [0, 1].

The iterative estimating procedure pseudo-code is as
follows:

0. EMV0 = ∅
1. h = 1

2. while EMVh 6= ∅ {
3. for every (i, k) ∈ EMVh {
4. learn p(i,k)

5. }
6. h++

7. }

When this procedure ends successfully all missing val-
ues that could be estimated would have been calcu-
lated. However, as we have previously mentioned,
there are cases when not every missing value of an
incomplete fuzzy preference relation can be estimated
using this iterative procedure. In the following, we
provide an example illustrating this situation.

3.3 Some Missing Values Cannot Be
Estimated By The Iterative Procedure

In this section we provide sufficient conditions to as-
sure the estimation of all missing values in the incom-
plete fuzzy preference relation and an example where
not all missing values can be estimated.

A) Sufficient conditions to be able to estimate
all missing values

As we will see later, there are cases where all miss-
ing information can not be learnt using our procedure.
However, to obtain conditions that guarantee that all
missing information in an incomplete fuzzy preference
relation can be estimated is of great importance. In
the following, we provide sufficient conditions on the
success of the above estimating procedure.

It is clear that if there exist a value j such that for
all i ∈ {1, 2, . . . , n} both (i, j) and (j, k) do not belong
to MV , then all missing information can be estimated
in the first iteration of our procedure (EMV1 = MV )
because for every pik ∈ MV we can use at least the
pair of preference values pij and pjk to estimate it.

In [5], a different sufficient condition that guarantees
the estimation of all missing values was given. This
condition states that any incomplete fuzzy preference
relation can be converted into a complete one when
the set of n− 1 values {p12, p23, . . . , pn−1n} is known.



Missing value (i, k) Pairs to estimate pik

(1, 4) (1, 2), (2, 4)
(2, 3) (2, 1), (1, 3)
(2, 5) (2, 4), (4, 5)
(4, 2) (4, 1), (1, 2)
(4, 3) (4, 1), (1, 3); (4, 5), (5, 3)
(5, 1) (5, 4), (4, 1)

Tabla 1: Pairs of values which allow to estimate miss-
ing values in iteration 1 of the procedure.

An equivalent condition to this one is obtained when
at least one value different to those from the leading
diagonal is known from each different row (column) of
the incomplete fuzzy preference relation. However, in
these two last cases the additive reciprocity property
is also assumed.

B) Impossibility to estimate all missing values

The following is an illustrative example of an incom-
plete fuzzy preference relation where our procedure is
unable to estimate all missing values.

Suppose an expert that provides the following incom-
plete fuzzy preference relation

P =




− e e x x
e − x e x
x x − x x
e x x − e
x x e e −




over a set of five different alternatives, X =
{x1, x2, x3, x4, x5}, where x means ”a missing value”
and e means ”a value is known”.

Remark. We note that the actual values of the
known preference values are not relevant for the pur-
pose of this example.

At the beginning of our iterative procedure we get:

EMV1 = {(1, 4), (2, 3), (2, 5), (4, 2), (4, 3), (5, 1)}

as we can find pairs of preference values that allow
us to calculate the missing preference values in those
positions. Indeed, the following table shows all the
pairs of alternatives that are available to estimate each
one of the above missing values:

The other missing values cannot be estimated in this
first iteration of the procedure. If we substitute all
the x′s values calculated in this iteration by a number

Missing value (i, k) Pairs to estimate pik

(1, 5) (1, 2), (2, 5); (1, 4), (4, 5)
(5, 2) (5, 1), (1, 2); (5, 4), (4, 2)

Tabla 2: Pairs of values which allow to estimate miss-
ing values in iteartion 2 of the procedure.

1 (indicating the step in which they have been esti-
mated) we get:

P =




− e e 1 x
e − 1 e 1
x x − x x
e 1 1 − e
1 x e e −




In the next iteration, to construct the set EMV2 we
can use the values expressed directly by the expert as
well as the values previously estimated in iteration 1.
In our case we have EMV2 = {(1, 5), (5, 2)}:

and the incomplete fuzzy preference relation at this
point is:

P =




− e e 1 2
e − 1 e 1
x x − x x
e 1 1 − e
1 2 e e −




In the next iteration EMV3 = ∅. The procedure ends
and it does not succeed in the completion of the fuzzy
preference relation. The reason of this failure is that
the expert did not provide any preference degree of
the alternative x3 over the rest of alternatives. For-
tunately, this kind of situation is not very common in
real problems, and therefore the procedure will usually
be successful in estimating all missing values. Clearly,
if additive reciprocity is also assumed (this is a direct
consequence of additive transitivity property) then the
chances of succeeding in the estimation of every miss-
ing value would increase, as we will show in what fol-
lows.

3.4 Additive reciprocity property

In the literature, preference relations are usually as-
sumed reciprocal. In particular, additive reciprocity is
used in many decision models as one of the properties
that fuzzy preference relations have to verify [1, 6].
Additive reciprocity is defined as:

pij + pji = 1 ∀i, j ∈ {1, 2, . . . , n} (13)



Our iterative procedure does not imply any kind of
reciprocity. In fact, it allows to estimate missing val-
ues in fuzzy preference relations when this condition
is not satisfied. Furthermore, the procedure itself does
not assure that the estimated values will fulfil the reci-
procity property.

However, if we assume that the fuzzy preference rela-
tion has to be reciprocal, this would allow to calculate
some of the missing values that were not possible to es-
timate without it. In the previous example all p3k val-
ues that could not be estimated could have been easily
calculated assuming additive reciprocity over the pk3

values.

In what follows, we describe how our procedure has
to change to implement the use of the additive reci-
procity, and to assure that the estimated values fulfil
this property.

Firstly, we need to guarantee that the incomplete
fuzzy preference relation given by the expert fulfils
the reciprocity property, i.e., we have to check that
pik + pki = 1 ∀(i, k), (k, i) ∈ EV .

Once this first check if carried out we have to complete
the EV matrix by means of computing those missing
values with a known reciprocal one as the first step of
our procedure, i.e.

pki ← 1− pik ∀(k, i) ∈MV ∧ (i, k) ∈ EV. (14)

The following steps of our procedure will be as de-
scribed in Section 3.2 but restricted to the estimation
of missing values above the leading diagonal of the in-
complete fuzzy preference relation, i.e. to learn every
pik with i < k. We define the EMV ↑

h sets as the Learn-
able Missing Values in every iteration h restricted to
the values above the leading diagonal:

EMV ↑
h = {(i, k) ∈ EMVh | (i < k)} (15)

Once every pik value has been estimated we use again
the reciprocity property to calculate its reciprocal
value pki (and thus, the values under the leading di-
agonal are also estimated, and obviously the recon-
structed fuzzy preference relation will obey the reci-
procity property).

The iterative estimation procedure that makes use of
the additive reciprocity property pseudo-code is as fol-
lows:

0. Check that pik + pki = 1 ∀(i, k), (k, i) ∈ EV /*
reciprocity property is satisfied in EV */

1. for every (k, i) ∈MV ∧ (i, k) ∈ EV {

2. pki ← 1−pik /* Computing missing values in EV
directly using reciprocity property */

3. }

4. EMV0 = ∅

5. h = 1

6. while EMV ↑
h 6= ∅ {

7. for every (i, k) ∈ EMV ↑
h {

8. learn p(i,k)

9. pki ← 1− pik /* Use reciprocity to learn values
under the leading diagonal */

10. }

11. h++

12. }

As it has been shown in this section, in many cases
we can estimate the missing values on incomplete
fuzzy preference relations using our iterative proce-
dure. Moreover, if we impose new conditions as ad-
ditive reciprocity, we can make our procedure more
efficient, allowing the estimation of some missing val-
ues that were not possible to obtain with the original
procedure. Posteriorly this reconstructed fuzzy pref-
erence relation can be aggregated with the rest of the
information provided by other experts using, for ex-
ample, the AC-IOWA operator.

4 Integrating the Consistency
Measure and the Estimation
Procedure on a Decision Model

Once the fuzzy preference relations are completed we
can apply a resolution process to obtain the solution
of our GDM problem. To do so we need an aggrega-
tion operator to obtain a global fuzzy preference rela-
tion that summarizes all information from the differ-
ent experts. In this section we present the AC-IOWA
operator, capable of integrating fuzzy preference re-
lations biasing the aggregation with the consistency
level for every fuzzy preference relation, that is, our
operator gives more importance to the most consistent
preference relations, because consistent information is
usually more valuable than information with contra-
dictions. Laterly we will present the whole resolution
process that must be followed to obtain the solution
for a GDM problem with incomplete fuzzy preference
relations.



4.1 Additive Consistency based IOWA
Operator

In this work we assume that experts that are more con-
sistent when expressing their preferences should have
more influence on the final solution (consistent infor-
mation is much more valuable that inconsistent one),
that is, we deal with an heterogeneous GDM problem,
and thus, the aggregation process should be biased by
the consistency property.

In particular, we can measure the experts’ consistency
by means of the Consistency Level of the fuzzy prefer-
ence relation (CLP h) given by each expert eh as it was
defined in Section 3.1. The general procedure for the
inclusion of these Consistency Level values in the ag-
gregation process involves the transformation of the
preference values, ph

ik, under the Consistency Level
CLP h to generate a new value, ph

ik. This activity is
carried out by means of a transformation function g:

ph
ik = g

(
ph

ik, CLP h

)
(16)

Examples of functions g used in these cases include
the minimum operator [4] , the exponential function
g(x, y) = xy [11], or generally any t-norm operator.

In our case we can implement this consistency level by
an alternative method, which consists of using it as
the order inducing variable of an IOWA operator.

The IOWA operator was defined by Yager and Filev
[13] as an extension to the OWA operator to allow dif-
ferent reorderings of the values to be aggregated:

Definition. An IOWA operator of dimension n is a
function

ΦW : (<× <)n → <, (17)

to which a set of weights or weighting vector is as-
sociated, W = (w1, ..., wn), such that wi ∈ [0, 1]
and Σiwi = 1, and it is defined to aggregate the
set of second arguments of a list of n 2-tuples
{〈u1, p1〉 , ..., 〈un, pn〉} according to the following ex-
pression,

ΦW (〈u1, p1〉 , ..., 〈un, pn〉) =
n∑

i=1

wi · pσ(i) (18)

being σ a permutation of {1, ..., n} such that uσ(i) ≥
uσ(i+1), ∀i = 1, ..., n−1, i.e.,

〈
uσ(i), pσ(i)

〉
is the 2-tuple

with uσ(i) the highest value in the set {u1, ..., un}.
In the above definition, the reordering of the set of
values to be aggregated, {p1, ..., pn}, is induced by the

reordering of the set of values {u1, ..., un} associated
to them, which is based upon their magnitude. Due
to this use of the set of values {u1, ..., un}, Yager and
Filev called them the values of an order inducing vari-
able and {p1, ..., pn} the values of the argument vari-
able [15, 13, 14].

A natural question in the definition of the OWA
and IOWA operators is how to obtain the associated
weighting vector. In [12] Yager proposed two ways to
obtain it for OWA operators, but it can as well be
used for IOWA operators. The first approach is to use
some kind of learning mechanism using some sample
data; and the second approach is to try to give some
semantics or meaning to the weights. The latter pos-
sibility has allowed multiple applications on areas of
fuzzy and multi-valued logics, evidence theory, design
of fuzzy controllers and the quantifier-guided aggrega-
tions.

We are interested in the area of quantifier-guided ag-
gregations. Our idea is to calculate weights for the ag-
gregation operations using linguistic quantifiers that
represent the concept of fuzzy majority. In [12], Yager
suggested an interesting way to compute the weights
of the aggregation operator using fuzzy quantifiers,
which, in the case of a non-decreasing relative quanti-
fier Q, is given by the expression

wi = Q(i/n)−Q((i− 1)/n), i = 1, . . . , n. (19)

When a fuzzy quantifier Q is used to compute the
weights of the OWA operator φ, it is symbolized by
φQ.

Our new IOWA operator, based on Additive Consis-
tency property (AC-IOWA) uses the consistency level
presented in Section 3.1 as the order inducing variable,
and thus, biases the aggregation process according to
the consistency expressed by the experts in their fuzzy
preference relations. More specifically it uses the op-
posite of the CLP h values, because the σ permutation
in the IOWA operator needs the order inducing vari-
able to be higher when the order of the value is low:

Definition. If a set of experts, E = {e1, ..., em},
provide preferences about a set of alternatives, X =
{x1, ..., xn}, by means of the fuzzy preference relations,
{P 1, ..., Pm}, then, the AC-IOWA operator of dimen-
sion m, ΦAC

W , is an IOWA operator whose set of order
inducing values is the set {−CLP 1 , ...,−CLP m}.

This new operator is an example of a Consistency IOW
operator (C-IOW) as it is defined in [2], where the set
of consistency index values is obtained from the ex-



perts’ own information, applying the additive consis-
tency property over their fuzzy preference relations.

4.2 Resolution Process of a GDM with
Incomplete Fuzzy Preference Relations

In this context, to obtain a set of solution alternatives
Xsol ⊂ X, the first step of a resolution process of GDM
problems with incomplete fuzzy preference relations
might be the application of the iterative procedure to
estimate the missing values. Therefore, the resolution
process presents the scheme given in Fig. 4.2.

Figura 1: Resolution Process of a GDM with Incom-
plete FPR.

Once the experts provide their (incomplete) preference
relations, two main steps are applied: (1) Estimation
of missing information, and (2) Application of a selec-
tion process.

1. Estimation of missing information. In this step,
incomplete fuzzy preference relations are com-
pleted by using the iterative procedure presented
in Section 3.

2. Application of a selection process, which is carried
out in two sequential phases:

(a) Aggregation phase. A collective fuzzy pref-
erence relation is obtained by aggregating
all the individual fuzzy preference relations.
This aggregation is carried out by applying
the AC-IOWA operator guided by a linguistic
quantifier representing the concept of fuzzy

majority (of experts) desired to implement
in the resolution process.

(b) Exploitation phase. Using again the con-
cept of fuzzy majority (of alternatives), two
chocie degrees of alternatives are used: the
quantifier-guided dominance degree(QGDD)
and the quantifier-guided non-dominance de-
gree (QGNDD) [1]. These choice degrees will
act over the collective preference relation re-
sulting in a global ranking of the alternatives,
from which the set of solution alternatives
will be obtained.

5 Conclusions and Current Works

In this work we have presented some tools that are
used to resolve GDM problems with incomplete infor-
mation. We have centered our attention on incom-
plete fuzzy preference relations, and have developed
an iterative procedure capable of estimating the miss-
ing information on them. We have also presented the
AC-IOWA operator, capable of aggregating the infor-
mation provided by different experts into a global one
which summarizes all the opinions of the experts. Both
the iterative procedure and the AC-IOWA operator are
based on a new measure of the additive consistency
property of the fuzzy preference relations. Finally we
have briefly presented how can both tools be integrated
into a global decision model to solve GDM problems.

We are also working on how to extend the iterative pro-
cedure to different kinds of preference relations: mul-
tiplicative preference relations, interval-valued prefer-
ence relations and linguistic preference relations and
in the design of a new decision model capable of in-
tegrating those different kinds of preference relations,
that is, allowing the experts to express their prefer-
ences in their preferred kind of preference relation.

Another point where we are focusing our attention is
on the developement of a consensus model for GDM
problems with different kinds of incomplete preference
relations. This consensus model will allow to follow
a consensus process without a moderator by means
of a feedback mechanism capable of substituting the
actions of the moderator.

Referencias

[1] Chiclana, F., Herrera, F., Herrera-Viedma, E.:
Integrating three representation models in fuzzy
multipurpose decision making based on fuzzy
preference relations. Fuzzy Sets and Systems 97
(1998) 33–48

[2] Chiclana, F., Herrera, F., Herrera-Viedma, E.:
Rationality of Induced Ordered Weighted Oper-



ators Based on the Reliability of the Source of
Information in Group Decision-Making. Kyber-
netika 40 (2004) 121-142

[3] Fodor, J., Roubens, M.: Fuzzy preference mod-
elling and multicriteria decision support. Kluwert,
Dordrecht (1994)

[4] Herrera, F., Herrera-Viedma, E., Verdegay J. L.:
Choice processes for non-homogeneous group de-
cision making in linguistic setting. Fuzzy Sets and
Systems 94 (1998), 287-308

[5] E. Herrera-Viedma, E., Herrera, F., Chiclana, F.,
Luque, M.: Some issues on consistency of fuzzy
preference relations. European Journal of Opera-
tional Research 154 (2004) 98–109

[6] Kacprzyk, J.: Group decision making with a fuzzy
linguistic majority, Fuzzy Sets and Systems 18
(1986) 105–118

[7] Kim, S. H., Choi, S. H., Kim, J. K.: An interac-
tive procedure for multiple attribute group deci-
sion making with incomplete information: Range-
based approach. European Journal of Operational
Research 118 (1999) 139–152

[8] Orlovski, S. A.: Decision-making with fuzzy pref-
erence relations, Fuzzy Sets and Systems 1 (1978)
155–167

[9] Tanino, T.: Fuzzy preference orderings in group
decision making. Fuzzy Sets and Systems 12
(1984) 117-131

[10] Xu, Z. S.: Goal programming models for obtain-
ing the priority vector of incomplete fuzzy pref-
erence relation. International Journal of Approx-
imate Reasoning, (2004) to appear.

[11] Yager, R. R.: Fuzzy decision making including
unequal objectives. Fuzzy Sets and Systems 1
(1978) 87-95

[12] Yager, R. R.: On ordered weighted averaging ag-
gregation operators in multicriteria decision mak-
ing. IEEE Transactions on Systems, Man and Cy-
bernetics. 18 (1) (1988) 183-190.

[13] Yager, R. R., Filev, D. P.: Operations for granular
computing: mixing words and numbers. Proceed-
ings of the FUZZ-IEEE World Congress on Com-
putational Intelligence, Anchorage (1998) 123-
128.

[14] Yager, R. R., Filev, D. P.: Induced ordered
weighted averaging operators. IEEE Transactions
on Systems, Man and Cybernetics 29 (1999) 141-
150.

[15] Yager, R. R.: Induced aggregation operators.
Fuzzy Sets and Systems 137 (2003) 59-69.


