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Chapter 9
Vmap-Layout, a Layout Algorithm
for Drawing Scientograms

Arnaud Quirin and Oscar Cordén

Abstract We present in this chapter a drawing algorithm to represent graphically
co-citation networks (scientograms). These networks have some interesting and un-
usual topological properties, which are often valuable to be visualized. In general,
these networks are pruned with a network scaling algorithm and then visualized us-
ing a drawing algorithm (J Vis Lang Comput 9:267-286, 1998). However, typical
drawing algorithms do not work properly, especially when the size of the networks
grows. Edge crossings appear while the drawing space is not adequately filled, re-
sulting in an unsightly display. The approach presented in this chapter is able to
print the networks filling all the available space in an aesthetic way, while avoiding
edge crossings. The algorithm is detailed and compared with the classical Kamada—
Kawai drawing algorithm on several scientograms.

9.1 Introduction

Social networks have some interesting and unusual topological properties, which are
often valuable to be printed graphically. However, the raw networks cannot be often
visualized easily, especially when their size grows proportionally with the number
of data to be dealt with, and thus specific algorithms for simplifying such large
networks have been developed. Network scaling algorithms, the goal of which is to
take proximity data and to obtain structures revealing the underlying organization
of those data, use similarities, correlations, or distances to prune a network based
on the proximity between a pair of nodes. One of the most known, the Pathfinder
algorithm [11], is used frequently because of its various mathematical properties,
including the conservation of the triangle inequalities among a path of any number
of links, the capability of modeling asymmetrical relationships, the representation
of the most salient relationships present in the data, and the fact that hierarchical
constraints in most cluster analysis techniques do not apply to Pathfinder Networks
(PENETS) [11].
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The resulting network could then be graphically represented using a network
drawing algorithm. This methodology ensures that the network is represented in an
aesthetic way, usually by adding several spatial constraints, such as the minimization
of the edges crossings, the optimal distribution of the nodes over the space, and the
minimization of the length of the edges. The final goal of this methodology is to
generate a network having some properties. If the network represents the complex
tissue of relationships between individuals or organizations, and if its goal is the
comprehension of these relationships by a domain expert, we may be interested by
some specific properties. For instance, the backbone could be better highlighted if it
is drawn in the center, and minor links could be represented in the border of the map.
The Kamada—Kawai [15] or the Fruchterman—Reingold [13] algorithm are usually
applied for this task.

There are some kinds of Social Network Analysis (SNA) applications that could
benefit from such methodology, giving to the domain expert or even a simple user
a simple access to the information contained in these networks. One of these ap-
plications is co-citation network analysis. Co-citation network models depict the
complex tissue of relationships occurring in the scientific literature. The graphical
representation of these kinds of networks while preserving their information is still
a challenge. However, some work has been done using scientograms [8, 9], visual
representations showing the spatial distribution of the scientific actors in a given
domain, wherein these actors can be as diverse as scientific categories, authors,
Jjournals, or papers. They show also additional information about the relationships
between them, for instance, the proximity between two scientific authors. Because
of the complexity of the domain they aim to represent and, more specifically, the
fact that virtually all the scientific actors are connected together, these maps usu-
ally contain a large number of links and are really dense and hard to be directly
represented.

The said methodology has already been described in the literature in the case of
the scientograms [27]. But this methodology suffers from some drawbacks. First,
the Pathfinder algorithm is very slow, avoiding the representation of the maps in
an online way. Secondly, even if the Kamada—Kawai algorithm is the most used
network drawing algorithm in this topic [19], it suffers from some aesthetic prob-
lems. In fact, this algorithm does not have an explicit procedure, either to avoid edge
crossings, or to fill properly the full space allocated for the drawing. In the litera-
ture, the slowness of the Pathfinder algorithm has already been solved using a fast
variant [24], but no algorithm has yet been proposed to overcome the drawbacks of
the visualization of the Kamada—Kawai algorithm.

In fact, for the analysis of scientograms, the drawbacks of the Kamada—Kawai
algorithm could prevent an expert from an optimal interpretation of the relationships
taking place inside the considered scientific domain. For instance, edge crossings
can make a node, and its labels overlap, thus avoiding a good reading of the map.
Another point is the absence, in the Kamada—Kawai algorithm, of specific spatial
constraints to avoid the links going back to the center of the map. Spatial artifacts,
such as nodes appearing close together even if they are spatially separated by several
links, could convey false or misinterpreting information.
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In this chapter, we propose a new drawing algorithm to overcome these
drawbacks. The structure of the current contribution is as follows. In Section 2,
we review the existing methodology to design scientograms. In Section 3, we de-
scribe our proposal. In Section 4, some experiments will be shown. Finally, some
concluding remarks are pointed out in Section 5.

9.2 A Methodology to Generate Scientograms

The achievement of a vast scientogram is a recurrent idea in the modern age. In
1998, Chen [8, 9] was the first researcher to bring forth the use of PFNETs in ci-
tation analysis. This is due to the fact that scientograms are the most appropriate
means to represent the spatial distribution of research areas, while also affording in-
formation on their interactions [26]. Taking the latter as a base, Moya-Anegén et al.
[21] proposed a method for the visualization and analysis of vast scientific domains
using the ISI'-JCR category co-citation information. They represented it as a social
network, simplified that network by means of the Pathfinder algorithm considering
q = n—1andr = oo, and graphically depicted its layout using the Kamada—Kawai
algorithm [15], thus getting a structural model of the scientific research in a vast do-
main. Note that r = oo and ¢ = n — 1 are the common parameter values when
Pathfinder is used for large domains scientogram generation. These values are very
advantageous for large network pruning [10].

The different method stages are briefly described as follows. The last step is the
one replaced by our proposal.

9.2.1 Category Co-citation Measure

Co-citation is a widely used and generally accepted technique for obtaining re-
lational information about documents belonging to a domain. Because we strive
to represent and analyze the structure of vast domains, whether they be thematic,
geographic, or institutional, we fall back on ISI-JCR co-citation categories [21] as
a tool.

Hence, once the rough information of the ISI-JCR co-citation for the categories
present in the domain to be analyzed is obtained, a co-citation measure C M is com-
puted for each pair of categories i and j as follows:

Ce(i)
Ve -c(j)

where Cc is the co-citation frequency and c is the citation frequency.

CM () = Ce(i) + ©.1)

! Currently registered as Thomson Scientific.
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Notice that the aim of this scientogram generation method is that the final
scientogram obtained is a tree. Hence, in order to avoid the existence of cycles in
the pruned network, the considered measure of association adds the normalized co-
citation (divided by the square root of the product of the frequencies of the co-cited
documents’ citations [25]) to the rough category co-citation frequency. In this way,
the network weights become real numbers, allowing us to create small differences
between similar values for the co-citation frequency, thus avoiding the occurrence of
cycles and achieving the optimal prune of each link considering the citing conditions
of each category.

9.2.2 Network Pruning by Pathfinder

Then, the Pathfinder algorithm is applied to the co-citation matrix to prune the net-
work. We should take into account the fact that the networks resulting from citation,
co-citation, or term co-occurrence analysis are usually very dense, when the cat-
egories are used as the unit for each node. Because of this fact, and especially in
the case of vast scientific domains with a high number of entities (categories in our
case) in the network, Pathfinder is parameterized to r = oo and ¢ = n — 1, in order
to obtain a schematic representation of the most outstanding existing information
by means of a network showing just the most salient links. In general, the weights
of the links of the co-citation matrix belong to R and are all different, so the final
result of the Pathfinder algorithm is a tree. To perform this step, the MST-Pathfinder
algorithm, a quick version of the original Pathfinder algorithm based on Minimum
Spanning Trees, is used [24].

9.2.3 Network Layout by Kamada—Kawai

Kamada—Kawai algorithm [15] is then used to automatically produce representa-
tions of the pruned network resulting from the Pathfinder run on a plane, starting
from a circular position of the nodes. It generates social networks with aesthetic cri-
teria such as common edge lengths, forced separation of nodes, building of balanced
maps, etc. Nevertheless, some criteria are not directly satisfied in the Kamada—
Kawai algorithm. This is the case of a number of crossed links: in fact many links
crossings appear making a lot of nodes overlap, and making the reading of the map
harder. Another point is the fact that edges can go backwards to the center of the
map, putting close two nodes linked by a long path. This can give a false impression
of closeness to the expert because of the spatial distribution of the nodes. These are
two of the main drawbacks we observed while using the Kamada—Kawai visualiza-
tion applied to co-citation networks.

An example of the render of the Kamada—Kawai applied on the co-citation net-
work of Europe is shown in Fig. 9.1.
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Fig. 9.1 An example of a scientogram corresponding to the Europe scientific domain in 2002

9.2.4 Advantages and Drawbacks of Our Methodology

Since its proposal in 2004, this methodology has been applied to compare the struc-
ture of vast scientific domains [20,27], to the macro and microstructural analysis of
a specific domain [18, 19], and even to study their evolution through time [28, 29].

Hence, it is actually a very powerful tool due to its summarization capability
as well as its simplicity to represent the relational information linked through a
series of intelligible sentences that make easier the comprehension, analysis, and
interpretation of a scientific domain. However, the critics that can be made on the
Kamada—Kawai algorithm about the crossed links make it difficult to apply for the
generation of scientograms in an automatic way, as a human post-processing is cur-
rently needed to avoid the crossings and move the labels in order so that they can be
read clearly. We aim to solve these drawbacks using a new visualization algorithm,
as we will see in the remainder of this chapter.

9.2.5 The Use of Other Network Layout Algorithms
for Social Networks Drawing

Apart from the Kamada—Kawai algorithm, an extensive number of graph drawing
algorithms have been already published in the literature [2,3]. But very few of them
have been devoted to the drawing of social networks because of the high complexity
of this kind of networks [19].
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In [6], the authors have chosen a radial-based network drawing algorithm to
represent a collaboration network, and they named it Visone. In this kind of radial
drawing, the nodes are placed in concentric circles, thus highlighting the role of the
central elements and pushing away the less important elements on the boundaries.
Other studies on the same kind of drawing algorithms for citation networks or co-
authorship networks are presented in [5, 7]. Although the obtained representation is
nice, the placement of the nodes are too much constrained, thus the length of the
links can suffer from meaningless growing, making the map harder to understand.

In general, force-directed layout algorithms are studied in the literature to deal
with social networks. The study of Katz and Stafford [16] present the results ob-
tained with the Fruchterman—Reingold algorithm compared to the Kamada—Kawai
algorithm to visualize the American Federal Judiciary network. The Fruchterman—
Reingold algorithm is also used in [ 12] for the visualization of the evolution of social
networks over time. In general, this algorithm gives interesting results as it reveals
clusters of nodes. For our application to the co-citation networks, both force-directed
layout algorithms were tested, but the Kamada—Kawai algorithm was preferred due
to its aesthetic behavior [19].

In conclusion, a few different drawing algorithms are studied in the literature,
while the need of a comprehensible and aesthetic drawing algorithm is growing as
social networks become more and more complex.

9.3 Overview of the Algorithm

This section describes our drawing algorithm. As said, our methodology ensures
that the result of the Pathfinder algorithm, the network we have to draw, is a tree.
Thus, to develop our algorithm, we took as a base the tree visualization algorithm
presented in [22], and extend it to make it applicable on scientograms. The basic
version of the algorithm is first presented, then several variants are discussed for the
specific case of scientogram design.

9.3.1 Main Algorithm

To ease the understanding of our proposal, some preliminary terminology is first in-
troduced. In the following, we consider an ordered tree T, in which each node N has
a parent P = PARENT(N), except the root node R = ROOT(T"). CHILDREN(N)
is the set of nodes having node N as their parent. ASCENDANT(N) is the
chain of nodes from node N to the root node R, defined as { N, PARENT(N),
PARENT(PARENT(N)), ..., R }. SUBTREE(N) is the subtree having node N as
its root. SIZE(N) is equal to the number of nodes in SUBTREE(/N), including
its own root. For instance, SIZE(N) is equal to 1 for a node having no children;
2 for a node having one child; etc. LEVEL(N) is the number of nodes in the set
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ASCENDANT(N). For instance, LEVEL(N) is equal to 1 for the root node; 2 for
any of the children of the root node; etc. DEPTH(N) is the maximum value for
LEVEL(M) for any node M in the tree SUBTREE(N). For instance, DEPTH(N)
is equal to 1 for a node having no child; 2 for a node having any number of children,
with none of them having children; etc. By convention, we will also use the notation
ROOT(T) to define the node having the lowest level in a subtree T'.

The algorithm is named Vimap-Layout because of the kinds of maps it draws, i.e.,
Visual Science Maps, another name for scientograms. It is divided itself into three
sub-functions, which are called in a sequential way. The first sub-function, Attribute
Computation, computes for each node the attributes needed for the remainder of the
algorithm. The second subfunction, Node Positioning, is a recursive function aiming
to compute the coordinates of each node. The third one, Node Relocation, adjusts
the location of the nodes according to some specific criteria, thus improving the final
visualization. The different sub-functions are detailed in the following sections.

9.3.2 Attribute Computation

Within the first sub-function, we compute several attributes assigned to each node:
SIZE(N), LEVEL(N ), and DEPTH(N). These attributes will be used later to facil-
itate the generation of the coordinates of each node and to improve the runtime of
the algorithm. The first step is to select a root node, the one that will be printed in
the center of the map. It will be used to compute some specific attributes that can-
not be computed without the definition of a root node. The network generated by
the Pathfinder algorithm does not selfcontain any root node; hence we have to use
an additional technique to select one. There are many ways to select a center in a
graph. Many of them are described by Bavelas [4] and Parlebas [23]. The one used
here, that gives good visual results, is the deliverer criterion: we compute the sum
of the distances between any node and all the others, and we take as the root the one
having the smaller value. Once we have selected the root node R, a number of other
attributes can be computed. Giving R, we can assign to each node N the values cor-
responding to SIZE(N ), LEVEL(N ), and DEPTH(N). As the tree is represented in
memory using lists of children, the time complexity of all these operations is O(n)
where n = SIZE(R). The complexity of Attribute Computation is thus O(n). The
sub-function is outlined in Fig. 9.2.

1. Compute the root node using the deliverer criterion: compute the sum of the distances
between a node and all the others, and take as a root the one having the smaller value.
2. Assign to each node N the values given by SIZE(N ), LEVEL(N ) and DEPTH(N).

Fig. 9.2 The Attribute Computation sub-function
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9.3.3 Node Positioning

Using the second sub-function, the algorithm fixes the location of each node as a
pair of 2D coordinates. To do so, the global idea is to fill as much space as possible.
The tree is drawn from the root node to the leaves, and the algorithm runs in a
recursive way: the root node is drawn in the center of the map and at each iteration
the algorithm draws all the nodes N having the same level L = LEVEL(N). The
algorithm starts by selecting a region of the empty space in which it can draw the tree
(we will call this region initial polygon in the following). Then, it assigns the root
node to the center of this polygon, it divides the initial polygon into several slices
(as many as the number of children in the root node), and it assigns one child of the
root node to each slice. After the application of this function, the coordinates of the
center of the polygons are assigned to each node.

There are several ways to design the initial polygon. As the whole tree will lie
inside the initial polygon, the later will determine the final shape of the full map.
This shape could be a square, a circle, or any other n-sided polygon. Figure 9.6
shows some possibilities for the initial polygon. The assignation of a center C to a
given polygon could also be done in several ways. Some techniques are shown in
Fig. 9.8. Lastly, the division of a given polygon into different slices can also been
done in several ways, which are detailed in the next sections.

Once the coordinates of the first level of the tree are fixed, the algorithm
starts again, considering each of the slices as a new polygon and the correspond-
ing node N as the root of a new subtree S = SUBTREE(N). Once no child has
been found, the algorithm stops. The sub-function is outlined in Fig. 9.4. As we are
using a recursive function based on the children on a given node, the complexity of
Node Positioning is thus O(n).

At the end of this sub-function, all the nodes of the tree have been assigned to
a pair of coordinates in the 2D-space. An example of the execution of this sub-
function on a tree is shown in Fig. 9.3.

9.3.4 Node Relocation

The goal of the third sub-function is only aesthetic. At the end of the application of
the previous sub-function, some graphical elements, such as the nodes or the text
labels, can overlap. By relocating the nodes, we improve the placement of the over-
lapping elements. Here, having the coordinates of the nodes generated previously,
the algorithm fixes the final location of each node to avoid these overlaps as much
as possible. We say that two nodes overlap when they are too close to each other,
according to a distance defined by the expert, and we call them problematic nodes.
Problematic nodes cause text labels not to be read in a clear way, and reduces in
general the readability of the map. The main idea of this function is to apply a node
relocation process in which the problematic nodes are moved according to a repul-
sive force depending on the surrounding nodes, like if they were connected with
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Fig. 9.3 An example of the execution of the Node Positioning sub-function

Let P, a 2D-space region in which to draw the tree, and 7', a tree.

Choose a central point C in P and assign to this point the root of the tree R = ROOT(T).

If CHILDREN(R) is empty, stop.

Divide P in different slices (sub-polygons), giving as many sub-polygons that the number of
children of R. Let R; be a child of R, the area of the corresponding sub-polygon P; should
be proportional to SIZE(R; ).

5. For each child R; of R, run Node Positioning on the region P; and the tree R;.

Eala s

Fig. 9.4 The Node Positioning sub-function

repulsive springs. To avoid deadlocks in some cases (e.g., when a node is located
exactly between other two nodes and at an equal distance), the problematic nodes
are also slightly moved in a random direction, until they met a criterion set by the
expert.

The sub-function is outlined in Fig. 9.5. As the time complexity of the KD-Tree
preprocessing is O(n - log(n)) and the time complexity of the KD-Tree search for
one node is O(log(n)) [1], the time complexity of Node Relocationis O(n -log(n)).
Thus, the complexity of the full algorithm is O(n - log(n)).

At the end of the third function, the final coordinates of the nodes have been
computed. During the final drawing of the nodes, additional improvements could be
made in order to improve the aesthetic aspect of the map. For instance, nodes and
label sizes can be varied depending on their depth in the tree to better highlight the
center of the map.
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1. Apply a KD-Tree technique to compute the distance between all the nodes of 7.

2. Select only the problematic nodes, i.e., the nodes close enough according to a criterion
defined by the expert.

3. For each node of this set, do:

e Apply arepulsive strength § and move the node along this force.
e Move it around its final position using a small random distance in the interval [—o,o].

4. Execute again the Node Relocation sub-function until a given amount of iterations defined by
the expert has been reached.

Fig. 9.5 The Node Relocation sub-function

Fig. 9.6 Initial polygons with four or eight sides

9.3.5 Selecting Different Initial Polygons

During the initialization of the Vmap-Layout algorithm, we have to select the initial
polygon, within which the full tree has to be drawn. This polygon encloses all the
layout and its shape will determine the global shape of the drawing.

In order to improve the general aspect of the final map and to customize the
result for several uses (paper or online drawing), several options can be used. The
definition of this shape is controlled by an expert parameter, giving the number of
sides the initial polygon should have (see Fig. 9.6). The larger this value, the more
circular the shape will be, but the slower will the algorithm run. This is due to the
fact that, as at later stages, the computation of the areas and the angles of a sub-
polygon would be more complex. This number of sides does not change in any
manner the further execution of the algorithm but has only an aesthetic aspect.

Once the initial shape is designed, it is used to draw the initial tree, composed of
its root and of all its first-level children (see Fig. 9.7). Any shape surrounding the
graph could be used. For the application to co-citation networks, we opted by a circle
because the SCImago Research Group? experts, with whom we collaborate, prefer
this shape. Thus, in order to have a good compromise between time and aesthetic,

2 http://www.scimago.es/
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Fig. 9.7 On the left, the tree to draw. On the right, the initial polygon and the center in black. The
polygon is first divided into four slices, because the node A has four children, and then we assign
the corresponding nodes to the corresponding sub-polygons. The little circle is the starting point
giving the direction of the polygon assignment

C .. X

Same angle Same area

Fig. 9.8 Centers positioned with the Center of Mass, the Angle-Based Central Point and the Area-
Based Central Point methods

a value of 15 sides seems to be well suited. Larger values than 30 will unnecessar-
ily increase the run-time and smaller values than 12 would give an impression of
discontinuity.

9.3.6 Selecting Different Ways to Compute the Central
Point of a Polygon

For each polygon, a central point has to be selected to become the starting point of
the next sub-tree to print (see step 2 in Fig. 9.4). We have explored at least three dif-
ferent methods to choose the central point C of a polygon P (see Fig. 9.8). The first
method, called ”Center of Mass,” takes for C the center of gravity of P. This cen-
ter is defined in any case, but suffers from two problems: it could be outside of the
polygon (this can occur when the polygon is nonconvex) and a polygon with a lot of
segments could attract the center far away from the natural center of the polygon.
The second method, called "Angle-Based Central Point,” uses the angle to compute
the central point. For a given polygon P, we first select a point on its border, that we
call origin O. This origin O has itself to be defined by some methods. For instance,
the origin could be the center of the parent polygon (the one used to generate the
current polygon), or the left-most point of the polygon. We then draw a line divid-
ing the angle O in two equal parts. Then we take the middle point of this line as
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Fig. 9.9 A problem that can ?
occur with the Area-Based -
Central Point method: the two

areas cannot be made equal

Same area?

the center C of the polygon. The third method, called ”Area-Based Central Point,”
applies the same procedure, but by dividing the polygon into two parts having the
same area.

Our tests have shown that the Area-Based Central Point is the best method. How-
ever, some problems could occur for some specific shapes of polygons in which it is
impossible to divide a sub-polygon into two areas of equal sizes, pushing the central
point C outside the polygon. This can happen when the polygon has internal angles
greater than pi (see Fig. 9.9), when the chosen initial polygon is nonconvex or when
the structure of the tree is quite uncommon. That is why other methods are provided.

For the Angle-Based Central Point and the Area-Based Central Point methods,
once the line dividing the polygon in two parts has been determined, we still have
to place the point C over this line. The usual way is to use the middle of the line,
as described in the first paragraph of this section. But other values for the measure
of the distance OC have been explored. This distance has a direct influence on the
length of the edges and the location of the next sub-polygons, and playing with
this value can lead to interesting results on the final drawing. An expert parameter
has been set for this measure and is named Cutpoint Value. It is the ratio between
the distance OC and the distance OX (see Fig. 9.8). With a small value for this
parameter, we get maps where the centers are close among them, and with a larger
value, we get maps where the centers are more far away among them. Several values
for this parameter have been tried, such as 0.25, 0.5, and 0.6. The best results have
been obtained with values lower or equal to 0.5.

9.3.7 Selecting Different Dividing Slice Methods

The way to divide a polygon into different slices (see step 4 in Fig. 9.4) will de-
termine the respective areas for the drawing of the next sub-polygons. Small areas
should be allocated to small sub-trees, whereas larger areas should be allocated
to larger sub-trees. This operation can be achieved by at least two methods (see
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Fig. 9.10 The result of the dividing using the Angle-Based Dividing (on the left part) and the
Area-Based Dividing (on the right part) methods

Fig. 9.10). With the first method, called Angle-Based Dividing, the algorithm de-
fines the size of the slices in order the angle around the center C is proportional
to the size of each sub-tree R;. With the second method, called Area-Based Divid-
ing, the algorithm defines the size of the slices in order the area around the center
C is proportional to the size of each sub-tree R;. In many scientograms generated
using real world data, the second method does not work properly because the non-
convex shapes of the polygons make the finding of a percentile using the area an
impossible problem (see Fig. 9.9). Therefore, in our application, we always used
the Angle-Based Dividing method.

Any use of the two previously described methods needs a measure defined
for each node in order to compute the proportion in percentage allocated to the
corresponding sub-polygon. The simplest way, called the Sub-Size-Based Ratio
Computation, is to take the size of each node (defined by the SIZE(T) attribute),
i.e., the number of nodes in a subtree 7, to compute a proportional ratio assigned
to the children of 7. Then, this ratio is used as a percentage to compute the size of
all the slices of the corresponding sub-polygons. Nevertheless, this method suffers
from a lack of customization possibilities by the expert.

Another method called the Sub-Depth-Based Ratio Computation has been ex-
plored. It uses the depth of the trees, defined by the DEPTH(T') attribute, to modify
the proportion allocated to each slice depending on whether they are close or far
away from the center of the map. The expert has to set two additional parameters,
the proportion given for the allocation of the slice of the lowest level, correspond-
ing to the initial root of the tree (this value has been named "START”), and the
proportion given for the allocation of the slice of the deepest level, corresponding
to a given leaf of the tree (this value has been named "END”). Because only these
two values, START and END, have to be specified by the expert, the remaining
values used to fix the proportion of the intermediate levels are computed using a
linear regression. Using another point of view, the START value fixes the behavior
of the nodes close to the center of the map (or the backbone), which are the most
important ones, and the END value fixes the behavior of the minor nodes shown
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in the periphery. These parameters are thus useful for our application of co-citation
networks. We have obtained the best results using 0.5 and 0.25 for the respective
values of START and END.

The behavior of the Sub-Depth-Based Ratio Computation method is very simple.
It allows us to constrain the angle of the links to go only forward when we are
close to the center of the map (see Fig. 9.11). In fact, when drawing scientograms,
having edges going mainly forward gives a better representation as nodes located
far away in terms of number of edges are spatially dissociated. That is why we
selected the Sub-Depth-Based Ratio Computation method as the default one for our
experimentations.

To show how the proportion of the slices are computed using the Sub-Size-Based
Ratio Computation and the Sub-Depth-Based Ratio Computation methods, an ex-
ample is presented in Fig. 9.12 using a small tree. For some selected nodes, the
values are computed for both methods. The proportion is always computed as a

o C o céz

Fig. 9.11 On the left, the normal behavior in which all the space is used to compute the size of
each slice. On the right, a modified behavior in which a constraint is applied before computing the
size of each slice, allowing us to direct the network in a given way

(1) Normal behavior

Measure : the ‘sub_size’ attribute

Tree Node  Measure Proportion
A B 1/8 12.5%
%\ c 5/8 62.5%
B c D E F 3/4 75%
H 1/2 50%
/ (2) Modified behavior
F G Measure : the ‘sub_depth’ attribute
Node Measure Proportion
\ B 2/2 the value ‘START’
H | C 2/4 0.5 ‘START’ + 0.5 ‘END’
F 3/4 0.25 ‘START’ + 0.75 ‘END’
H 4/4 the value ‘END’

Fig. 9.12 Different ratio computation methods for dividing the slices: an example of a tree (left);
the proportions obtained using the Sub-size-Based Ratio Computation method (fop); and the pro-
portions obtained using the Sub-Depth-Based Ratio Computation method (bottom)
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ratio between two numbers, the current attribute of the node (respectively the SIZE
and the DEPTH) and the maximum value for this attribute (so, the maximum size
of the current sub-tree or the maximum depth if the second measure is considered).
Note that the ratio computation method is totally independent from the method of
dividing these slices, i.e., the ratio can be used independently with the Area-Based
Dividing or the Angle-Based Dividing methods.

9.3.8 Details on the Node Relocation Function

Once the coordinates of the nodes have been found by the Node Positioning sub-
function (see Fig. 9.4), a node relocation stage occurs in order to improve the
location of the overlapping nodes. This stage is done by the Node Relocation sub-
function (see Fig. 9.5).

The goal of this sub-function is to identify the nodes that are too close, according
to an expert criterion, and to move them randomly in order to avoid the overlapping
of the nodes. The process is iterated several times until a perfect configuration is
found by the algorithm. Because of the cost of the computation of the distance be-
tween nodes, and since this process has to be iterated, we use a KD-Tree technique
to compute these distances. A KD-Tree allows the computation of the distance be-
tween a set of nodes in order that we can quickly know which set of nodes is closer
to any given node.’

The Node Relocation sub-function works as follows. A parameter named ra-
dius is defined by the expert to specify the minimum allowed distance between two
nodes. Only the coordinates of any node having a smaller or equal distance to this
radius will be modified by the algorithm, while the coordinates of the nodes located
at a greater distance will not be changed. Two additional parameters are defined, the
spring-strength § giving the strength of the movements during the relocation of the
nodes and the random-strength o giving the quantity of randomness applied to the
nodes that have to be relocated.

From each node N of the set defined by the radius parameter, we apply a force
defined as the sum of all the repulsive forces generated by the nodes close to N, mul-
tiplied by the value defined by the spring-strength § parameter (a repulsive strength),
and add a random value chosen into the interval [—o,o7] to it. Figure 9.13 shows how
the repulsive forces generated by all the surrounding nodes are applied on a given
node, and how this node is moved. This is done until a given number of iterations
have been completed. A higher value for this parameter can be used to establish the
convergence of the coordinates of the nodes, but at the cost of slowing down the
process. We have obtained good and fast results with a value of 100 iterations.

3 The library we have used for this process is called the ANN Library [17]. The advantage of
this library is that an approximate distance computation is used in order to speed up the process,
provided the fact that knowing the exact values of the distances is not important, which is the case
in our application.



256 A. Quirin and O. Cordén

0.07 — 0.07

Q ‘\
0.17 s 0.17
0.2 02| N

Fig. 9.13 An example of the modification of the coordinates of a node after applying the Node
Relocation function

The spring-strength § parameter is used to define the step size of movement
applied to the node. A small value moves the nodes slowly through the iterations
of the algorithm, while a bigger value allows sudden changes of the coordinates
of the nodes. A value of 0.10 was used in our experiments. The random-strength
defines the quantity of randomness applied to the location of the node at the end of
each iteration. A value of 0 disables any randomness during the movement of the
nodes. A value of 0.05 was used.

9.4 Experiments

In this section, we will show the results obtained on some scientograms. The data are
directly extracted from a database of co-citation measures for Europe, generated in
2002. Some specific criteria are set in order to select a subset of the whole database
restricted to four world regions: Europe, the USA, Spain, and Cuba. The resulting
file encodes a fully connected network, with labeled nodes and weighted links, ready
to be pruned. Thus, the first step is to use the MST-Pathfinder algorithm to prune
these networks in order to get trees. The computing time for this step is roughly 9
ms on an Intel dual-core Pentium 3.2 GHz with 2 GB of memory.

The next step is to print the maps using the Vmap-Layout algorithm. The algo-
rithm has been written in C++, and compiled on Linux with the GNU GCC compiler
with the -03 option. The computing time using the Vmap-Layout algorithm is
roughly 71 ms. The main parameters used are as follows. The initial polygon has
15 sides. The central point has been computed using the Angle-Based Central Point
method. The Cutpoint Value has been set to 0.5. The slices have been divided using
the Angle-based dividing method. Finally, the Sub-Depth-Based Ratio Computation
has been used to position the central point in the polygon.

A comparison has been performed using the Kamada—Kawai algorithm. For this
purpose, we have used the GraphViz library. GraphViz is an open source network
drawing software, freely provided by AT&T Labs, and available at: http:/www.
graphviz.org/. It integrates the Kamada—Kawai algorithm in the form of the neato
utility. This utility exports in diverse graphical formats a description of a network
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done with a proprietary language, the DOT language [14]. Thus, the second step
was to convert the previous network in the format accepted by this library. The
computing time using the Kamada—Kawai algorithm is 0.6 ms.

The last step is to generate the graphical output from the DOT description using
neato. Actually, as these maps are designed for on-line consultation, the Scalable
Vector Graphics (SVG) format was chosen. The time to generate the SVG image is
1,300 ms. The following command was used to generate this map, once the library
is installed:

dot -Kneato -Tsvg -o Europe.svg Europe.dot

The final results, for the Vmap-Layout and the Kamada—Kawai algorithms are
shown in Figs. 9.14 and 9.15 for Europe; in Figs. 9.16 and 9.17 for the USA; in
Figs. 9.18 and 9.19 for Spain; and in Figs. 9.20 and 9.21 for Cuba.

Fig. 9.14 The scientogram of Europe in 2002, drawn with the Kamada—Kawai algorithm
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Fig. 9.15 The scientogram of Europe in 2002, drawn with the Vmap-Layout algorithm

Several remarks can be made from these pictures. First, we have to notice that
the Vmap-Layout algorithm avoids the edge crossings as expected, as each sub-tree
is drawn in its own sub-space. Secondly, the nodes connected to the central node are
properly spaced, and aligned on its own circle, allowing an expert to read properly
the labels. In the case of the Kamada—Kawai maps, the reading of the top-level labels
is not so clear. Finally, all the space available in the figure is properly filled with the
Vmap-Layout, giving more space to the larger sub-trees.

9.5 Conclusion

The Vmap-Layout algorithm is an effective and a fast technique for the represen-
tation of co-citation networks. Our algorithm can print real-world networks in an
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Fig. 9.16 The scientogram of the USA in 2002, drawn with the Kamada—Kawai algorithm

aesthetic way, highlighting the backbone and pushing the less important links to
the boundaries. Several variants have been described, allowing an expert to tune the
representation depending on his needs.

We are currently investigating other improvements of this algorithm. One option
is to allow it to use extra space over the polygons in order to reduce the white space
between the edges. Another option is the use of different techniques for the node
relocation, for instance, based on the simulated annealing metaheuristic, to find a
better positioning of the nodes. We are also planning some experiments on other
kinds of real data sets, including larger networks.
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Fig. 9.17 The scientogram of the USA in 2002, drawn with the Vmap-Layout algorithm
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Fig. 9.18 The scientogram of Spain in 2002, drawn with the Kamada—Kawai algorithm
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Fig. 9.19 The scientogram of Spain in 2002, drawn with the Vmap-Layout algorithm
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Fig. 9.20 The scientogram of Cuba in 2002, drawn with the Kamada—Kawai algorithm
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Fig. 9.21 The scientogram of Cuba in 2002, drawn with the Vmap-Layout algorithm
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