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Abstract

In this paper, we focus on the aggrega-
tion problem for (trust, distrust) couples in
trust networks. In particular, we study ap-
proaches based on classical and induced or-
dered weighted averaging (OWA) operators.
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1 INTRODUCTION

In a (virtual) trust network, agents (nodes) can ex-
press their opinion about other agents through trust
and distrust statements. In this paper, opinions are
represented by means of trust scores, i.e., (trust, dis-
trust) couples drawn from a bilattice [2]. When an
agent a needs to establish an opinion about another,
unknown agent x, it can inquire about x with one of
its own trust relations, who in turn might consult a
trust connection, etc., until an agent connected to x
is reached. The process of predicting the trust score
along the thus constructed path from a to x is called
trust propagation. Since it often happens that a has
not one, but several trust connections that it can con-
sult for an opinion on x, we also require a mechanism
for combining several trust scores originating from dif-
ferent sources. This process is called trust aggregation
and it is very important to generate recommendations
in recommender systems [3].

The problem of trust aggregation was first addressed
in [1], in which we introduced a number of desirable
criteria that a trust score aggregation operator should
satisfy. We also presented a possible aggregation ap-
proach based on the use of Yager’s Ordered Weighted
Averaging (OWA, [4]) operators. In this paper, we

undertake a more general study of the use of OWA
operators for aggregating trust scores; in particular,
we consider approaches based on classical OWA oper-
ators, as well as on induced ones [5].

The remainder of this paper is structured as follows:
in Section 2, we introduce the necessary preliminaries
about OWA operators and the trust score space we
use, while in Section 3, we focus on the trust aggre-
gation problem: we first recall a number of properties
for trust score operators that were introduced in [1]
(Section 3.1), and then in Section 3.2 set out to de-
fine a number of procedures based on standard OWA
approaches and induced ones. Along the way, it will
turn out that some properties need to be sacrificed, or
at least adjusted. Finally, we offer a brief conclusion
and point out further work in Section 4.

2 PRELIMINARIES

2.1 ORDERED WEIGHTED AVERAGING
OPERATORS

The traditional OWA operator [4] models an aggrega-
tion process in which a sequence A of n scalar values
are ordered decreasingly and then weighted according
to their ordered position by means of a weighting vec-
tor W = 〈wi〉, such that wi ∈ [0, 1] and Σn

i wi = 1. In
particular, if ci represents the ith largest value in A,

OWAW (A) =
n∑

i=1

wici (1)

The OWA’s main strength is its flexibility, since it en-
ables us to model a whole range of aggregation strate-
gies. Moreover, the reordering of the arguments in-
troduces an element of non-linearity into an otherwise
linear process.

With the induced OWA operator (IOWA, [5]), the or-
dering of the arguments is not based on their value,
but on that of an induced ordering variable which is
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associated to them. In particular, let A and W be
defined as above, and let I be a sequence of (not nec-
essarily scalar) values, drawn from a linearly ordered
space (L,≤L). If ci represents the value in A associ-
ated with the ith largest value in I,

IOWAW (A, I,≤L) =
n∑

i=1

wici (2)

Since the values of the induced ordering variable need
not be scalars, IOWA operators offer even more flexi-
bility than their standard counterparts.

2.2 TRUST AND DISTRUST:
BILATTICE-BASED MODEL

In this paper, a trust network is represented as a di-
rected graph (A,E, R) in which A is the set of agents
(nodes), E is the set of trust connections (edges),
and R is an E → [0, 1]2 mapping that associates to
each couple (a, b) of connected agents in E a trust
score R(a, b) = (R+(a, b), R−(a, b)) in [0, 1]2, in which
R+(a, b) is called the trust degree of a in b and R−(a, b)
is called the distrust degree of a in b.

The set of trust scores can be endowed with a bilattice
structure. In particular, the trust score space [2]

BL¤ = ([0, 1]2,≤t, ≤k,¬)

consists of the set [0, 1]2 of trust scores, a trust order-
ing ≤t, a knowledge ordering ≤k, and a negation ¬
defined by

(t1, d1) ≤t (t2, d2) iff t1 ≤ t2 and d1 ≥ d2

(t1, d1) ≤k (t2, d2) iff t1 ≤ t2 and d1 ≤ d2

¬(t1, d1) = (d1, t1)

for all (t1, d1) and (t2, d2) in [0, 1]2.

The “trust lattice” ([0, 1]2,≤t) orders the trust scores
going from complete distrust (0, 1) to complete trust
(1, 0). The “knowledge” lattice ([0, 1]2,≤k) evaluates
the amount of available trust evidence, ranging from a
“shortage of evidence”, t+d < 1 (incomplete informa-
tion), to an “excess of evidence”, viz. t+d > 1 (incon-
sistent information). The boundary values of the ≤k

ordering, (0, 0) and (1, 1), reflect ignorance, resp. con-
tradiction. In this paper, trust scores (t, d) for which
t + d = 1 are said to have perfect knowledge, while all
others are called knowledge defective.

3 TRUST AGGREGATION

3.1 PROPERTIES

In [1], a number of desirable properties were intro-
duced for a trust score aggregation operator Ω :
([0, 1]2)n → [0, 1]2 (n ≥ 1), which are recalled below:

1. Idempotence property (RQ1).

Ω((t, d), . . . , (t, d)) = (t, d)

2. Monotonicity property (RQ2). Ω is monotonously
increasing w.r.t. both ≤t and ≤k, i.e., if (tj , dj) ≤t

(t
′
j , d

′
j), then (p, q) ≤t (p

′
, q
′
); and if (tj , dj) ≤k

(t
′
j , d

′
j), then (p, q) ≤k (p

′
, q
′
), with

Ω((t1, d1), . . . , (tj , dj), . . . , (tn, dn)) = (p, q)
Ω((t1, d1), . . . , (t

′
j , d

′
j), . . . , (tn, dn)) = (p

′
, q
′
)

3. Commutativity property (RQ3).

Ω((t1, d1), . . . , (tn, dn)) =
Ω((tπ1 , dπ1), . . . , (tπn

, dπn
))

where π is any permutation of {1, . . . , n}.
4. Neutral element property (RQ4). (0, 0) is neutral

for Ω, i.e.,

Ω((t1, d1), . . . , (tn−1, dn−1), (0, 0)) =
Ω((t1, d1), . . . , (tn−1, dn−1))

5. Opposite arguments property (RQ5). An equal
number of (1, 0) and (0, 1) arguments yields con-
tradiction, i.e.,

Ω((1, 0), . . . , (1, 0)︸ ︷︷ ︸
n times

, (0, 1), . . . , (0, 1)︸ ︷︷ ︸
n times

) = (1, 1)

3.2 AGGREGATION OPERATORS

The application of an (induced) OWA operator re-
quires scalar values as arguments. As such, OWA op-
erators are not directly applicable to aggregate trust
scores. Therefore, we propose to perform trust aggre-
gation by means of two separate OWA operators, one
for trust and one for distrust.

3.2.1 Standard OWA approaches

Below, we describe a generic procedure for applying
(standard) OWA operators to the trust score aggrega-
tion problem:

1. Determine n, the number of trust score arguments
distinct from (0, 0). Trust scores that represent
complete ignorance do not take part in the aggre-
gation process.1

2. Construct the sequences T and D, containing the
n trust values (resp., the n distrust values) of the
trust score arguments.

1If all trust scores equal (0, 0), the final result is also
set to (0, 0) and the aggregation process terminates at this
step.



3. Construct n-dimensional weight vectors WT and
WD; weights may or may not be dependent on the
actual trust score arguments.

4. Compute the aggregated trust score as
(OWAWT

(T ), OWAWD
(D)).

As it is clear from the above, the actual way of ag-
gregating the trust scores is determined by the choice
of the weight vectors. One strategy is to construct
WT and WD beforehand. For instance, the final trust
(resp., distrust) value can be evaluated as the extent to
which a predefined fraction (at least one, all of them,
a majority, . . . ) of the trust score arguments exhibits
trust (resp., distrust).

Example 1 (Fixed weights) In [1], given n trust
score arguments to aggregate (all distinct from (0, 0)),
trust and distrust weights are computed by (i =
1, . . . , n)

WTi =
2. max(0, dn

2 e − i + 1)
dn

2 e(dn
2 e+ 1)

(3)

WDi =
2. max(0, dn

4 e − i + 1)
dn

4 e(dn
4 e+ 1)

(4)

The disparity between trust and distrust weights was
motivated by the observation that a few distrust state-
ments about x (in particular, a quarter of them) may
suffice to reach a final conclusion of distrust, while the
evaluation of trust depends on the majority of the ar-
guments. Note that weights are decreasing, in a sense
that the higher trust/distrust values have a stronger
impact than the lower ones.

It can be verified, by construction and by the prop-
erties of an OWA operator, that (RQ1), (RQ3) and
(RQ4) always hold for this type of aggregation (in
fact, regardless of the fact whether weights are fixed
or not). In order for (RQ5) to hold, it suffices that
WTi = 0 and WDi = 0 as soon as i > n

2 . The proposal
in Ex. 1 fulfills this condition. (RQ2) is a harder con-
dition to fulfill in general, as the following example
shows.

Example 2 If the trust scores to aggregate are (1, 0),
(0, 0), (0, 0) and (0, 0), then the outcome by our OWA
procedure is (1, 0) (regardless of the choice of weights
vectors, because n = 1). If we change these trust
scores to (1, 0), (0.1, 0), (0.1, 0) and (0.1, 0), the num-
ber of arguments that take part in the OWA aggre-
gation equals 4; computing the weights as in Ex. 1,
i.e., WT = ( 2

3 , 1
3 , 0, 0) and WD = (1, 0, 0, 0), the fi-

nal result of the aggregation equals (0.7, 0). So, al-
though (0, 0) ≤t (0.1, 0) and (0, 0) ≤k (0.1, 0), (1, 0) 6≤t

(0.7, 0) and (1, 0) 6≤k (0.7, 0).

The reason for the failure of (RQ2) in this example
is due to the presence (and subsequent alteration) of
(0, 0) trust score arguments, which causes the appli-
cation of the OWA operators to a different number
of arguments. It can be verified, however, that if we
add the restriction to (RQ2) that (tj , dj) 6= (0, 0)
and (t′j , d

′
j) 6= (0, 0), the property holds, regardless of

the weight vectors WT and WD, provided they remain
fixed.

According to this analysis, fixed-weight OWA ap-
proaches perform well w.r.t. the criteria set out in Sec-
tion 3.1. However, they also exhibit certain drawbacks,
as the following example illustrates.

Example 3 Assume the trust scores to aggregate are
(1, 0), (δ, 0), (δ, 0) and (δ, 0), with δ a value close to 0.
In other words, three of the trust score arguments are
very close to ignorance. Intuitively, one would expect
their contribution to the final result to be very small.
However, using the same weighting vector as in Ex. 1,
the aggregated value will be (2

3 + 1
3δ, 0) ≈ ( 2

3 , 0), which
differs significantly from (1, 0), the result obtained if
the (δ, 0) values are replaced by (0, 0).

In fact, the above kind of problem occurs with any
fixed-weight approach2; it is due to the fact that in
this approach, trust scores are not discriminated w.r.t.
the amount of knowledge they contain. Intuitively, one
can argue that the closer a trust score (t, d) is to ig-
norance w.r.t. the ≤k order (i.e., t + d ≈ 0), the lower
its associated weight should be. On the other hand, it
also makes sense to penalize trust scores (t, d) which
are highly inconsistent (i.e., t + d ≈ 2), to avoid that
such “defective” trust scores influence the aggregation
result in a disproportionate way (since both their trust
and distrust values are high). In general, the “knowl-
edge defect” of a trust score (t, d) can be expressed by
the following formula:

kd(t, d) = 1− |t + d− 1| (5)

The following example illustrates a possible way to
alter the weights based on the “knowledge defect” ex-
hibited by the individual trust score arguments.

Example 4 (Knowledge-dependent weights)
Given n trust score arguments (ti, di) (i = 1, . . . , n,
all trust scores distinct from (0,0)), we can associate
with them a weight vector W kd that represents each
trust score’s degree of knowledge defect relative to the

2The only exception is when Wt1 = Wd1 = 1, i.e., only
the highest trust and distrust values are taken into account.



remaining trust scores3:

W kd
i =

kd(ti, di)
n∑

j=1

kd(tj , dj)
(6)

We cannot use W kd directly as a weight vector inside
the OWA operators, since the knowledge defect weights
are not associated to ordered positions, but rather to
the arguments themselves. We can however use them
to modify existing OWA weight vectors WT and WD

(which can be chosen as in the fixed weight approach).
The final OWA weight vectors WT and WD are ob-
tained as (i = 1, . . . , n)

WTi
=

WT
i W kd

πi

n∑
j=1

WT
j W kd

πj

, WDi =
WD

i W kd
π′i

n∑
j=1

WD
j W kd

π′j

(7)

in which π, π′ represent the permutations that map an
ordered position i to the index of the trust score that
appears at that position.

To illustrate the operation of this approach, we apply
it to the data of Ex. 3. In this case,

W kd =
(

1
1 + 3δ

,
δ

1 + 3δ
,

δ

1 + 3δ
,

δ

1 + 3δ

)
(8)

WT =
(

2
2 + δ

,
δ

2 + δ
, 0, 0

)
(9)

The final aggregation result will be
(

2+δ2

2+δ , 0
)
≈ (1, 0),

which corresponds to our intuition.

The application of knowledge-dependent OWA weights
does not affect the properties (RQ1) and (RQ3)–
(RQ5), but (RQ2) cannot be maintained, not even
in the weakened version which holds for fixed weights.

Example 5 Consider the following trust score se-
quences:

A = 〈(1, 0), (0.9, 0.2), (0, 1)〉
B = 〈(1, 0), (0.9, 0.1), (0, 1)〉
C = 〈(1, 0.9), (0.9, 0.2), (0, 1)〉

Constructing the weight vectors as in Ex. 4, we obtain
the aggregated trust scores

(
281
290 , 1

)
for A,

(
29
30 , 1

)
for

B and
(

101
110 , 1

)
for C. However, while (0.9, 0.2) ≤t

(0.9, 0.1),
(

281
290 , 1

) 6≤t

(
29
30 , 1

)
(comparing sequence A

with B). Similarly, while (1, 0) ≤k (1, 0.9),
(

281
290 , 1

) 6≤k(
101
110 , 1

)
(comparing sequence A with C).

3We assume that not all trust scores are equal to (1, 1).

In this case, the failure of (RQ2) is due to the change
of the knowledge-dependent weight vector W kd. While
it might be perceived as a disadvantage of this partic-
ular approach, it can also be argued that any attempt
to penalize trust scores for their knowledge defects is
incompatible with maintaining monotonicity. In fact,
this is already evident in the fixed-weight approach:
to guarantee that (0, 0) can play its role as the neutral
element of Ω, it needs to be handled separately.

A weakened version of trust monotonicity4, however,
can be obtained as follows:

Weak trust monotonicity property (RQ2’). If
(tj , dj) ≤t (t

′
j , d

′
j) and tj + dj = t

′
j + d

′
j , then (p, q) ≤t

(p
′
, q
′
), with

Ω((t1, d1), . . . , (tj , dj), . . . , (tn, dn)) = (p, q)
Ω((t1, d1), . . . , (t

′
j , d

′
j), . . . , (tn, dn)) = (p

′
, q
′
)

As a corollary of this property, trust monotonicity
holds in particular when all the involved trust scores
(t, d) have perfect knowledge (t + d = 1).

3.2.2 Induced OWA approaches

In this section, we consider an alternative approach,
based on IOWA operators, to take into account the
knowledge defect exhibited by trust score arguments.
As stated before, in order to use the IOWA approach,
we require an order inducing variable that takes values
drawn from a linearly ordered space. In this section,
we will consider the trust scores themselves for this
purpose. Since the bilattice orderings ≤t and ≤k are
only partial rather than linear, they do not qualify to
construct the required linearly ordered space. How-
ever, meaningful linear orderings over trust scores do
exist. In particular, if we define, for (t1, d1), (t2, d2) in
[0, 1]2,

(t1, d1) ≤t
kd (t2, d2) iff (kd(t1, d1) < kd(t2, d2)) ∨

(kd(t1, d1) = kd(t2, d2)
∧ t1 ≤ t2) (10)

(t1, d1) ≤d
kd (t2, d2) iff (kd(t1, d1) < kd(t2, d2)) ∨

(kd(t1, d1) = kd(t2, d2)
∧ d1 ≤ d2) (11)

it can be verified that ([0, 1]2,≤t
kd) and ([0, 1]2,≤d

kd)
are linearly ordered spaces. For both of them, the
smallest element is (0, 0), while (1, 0) is the largest
element for ≤t

kd and (0, 1) the largest for ≤d
kd.

The corresponding IOWA aggregation procedure is
largely analogous to that for standard OWA:

4Note that a similar property for knowledge monotonic-

ity holds only in the trivial case where (tj , dj) = (t
′
j , d

′
j),

due to the condition tj + dj = t
′
j + d

′
j .



1. Determine n, the number of trust score arguments
distinct from (0, 0). Trust scores that represent
complete ignorance do not take part in the aggre-
gation process.5

2. Construct the sequences I, T and D; I contains
the n trust scores, while T and D contain the
corresponding n trust values (resp., the n distrust
values).

3. Construct n-dimensional weight vectors WT and
WD; weights may or may not be dependent on the
actual trust score arguments.

4. Compute the aggregated trust score as
(IOWAWT

(T, I,≤t
kd), IOWAWD

(D, I,≤d
kd)).

Note that while the IOWA approach allows to take
into account knowledge defects by using the trust
score orders ≤t

kd and ≤d
kd, it still makes sense to use

knowledge-dependent weights. This becomes evident
when we apply the approach to the data in Ex. 3,
which gives the same outcome as in the standard OWA
case. On the other hand,the monotonicity property
(RQ2) is not guaranteed for the IOWA approach, even
if fixed weights are used. The following example illus-
trates this.

Example 6 Consider the following trust score se-
quences:

A = 〈(0.95, 0.05), (0.8, 0.2), (0, 0.5)〉
B = 〈(1, 0.05), (0.8, 0.2), (0, 0.5)〉

For sequence A it holds that (0.95, 0.05) ≥t
kd (0.8, 0.2)

≥t
kd (0, 0.5) and (0.8, 0.2) ≥d

kd (0.95, 0.05) ≥d
kd (0, 0.5),

while for sequence B, (0.8, 0.2) ≥t
kd (1, 0.05) ≥t

kd

(0, 0.5) and (0.8, 0.2) ≥d
kd (1, 0.05) ≥d

kd (0, 0.5). Con-
structing the weight vectors as in Ex. 1, we obtain the
aggregated trust scores (0.9, 0.8) for A and

(
13
15 , 0.8

)
for B. However, while (0.95, 0.05) ≤t (1, 0.05) and
(0.95, 0.05) ≤k (1, 0.05), (0.9, 0.8) 6≤t

(
13
15 , 0.8

)
and

(0.9, 0.8) 6≤k

(
13
15 , 0.8

)
.

The IOWA approach does satisfy the weak trust
monotonicity property (RQ2’), and this regardless of
whether fixed or variable weight vectors are used.

4 CONCLUSION AND FUTURE
WORK

In this paper, we have shown how ordered weighted
averaging operators (OWA) can be used to solve the

5If all trust scores equal (0, 0), the final result is also
set to (0, 0) and the aggregation process terminates at this
step.

trust aggregation problem. In particular, we studied
approaches where aggregation of trust scores is per-
formed by applying a pair of standard or induced OWA
operators to their trust and distrust components of the
trust score separately.

We have also introduced two different ways to take
into account that some trust scores are more useful
than others in deriving a final aggregated trust score;
specifically, the knowledge defect of a trust score can
be incorporated both into the weight vector, as well as
into the induced order used in an IOWA approach.

We also observed that taking into account knowledge
defects is incompatible with maintaining the mono-
tonicity of the trust and knowledge orders of the trust
score bilattice; instead, we proposed a weaker prop-
erty of trust monotonicity for trust scores that have
the same level of knowledge defect, which holds for all
the introduced approaches.

The choice as to which approach (OWA or IOWA,
weight generating strategy, . . . ) is most suitable also
depends on the application at hand. In our research,
we are focusing in particular on recommender sys-
tems, i.e., applications which suggest items to users
who might be interested in them. Trust information
can help to establish more, and more accurate, recom-
mendations, and its incorporation into existing rec-
ommender system technology is a topic of ongoing re-
search (see e.g. [3]).

As another part of our future work, we also aim to re-
fine the aggregation strategy to take into account cer-
tain aspects of the virtual trust network’s topology. In
particular, the current approach is indifferent as to the
length of the paths that generated the individual trust
scores, and also does not consider how many times the
same agent appears on a path.

Acknowledgements

Chris Cornelis would like to thank the Research
Foundation—Flanders for funding his research Pa-
tricia Victor would like to thank the Institute for
the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen) for fund-
ing her research. Enrique Herrera-Viedma would
like to thank the financing of andalucian excel-
lence project TIC05299, Feder Funds in FUZZYLING
project (TIN2007-61079) and PETRI project (PET
2007-0460).

References

[1] P. Victor, C. Cornelis, M. De Cock, E. Herrera-
Viedma. Aggregation of Gradual Trust and Dis-
trust. Proceedings of Eurofuse Workshop on Pref-



erence Modeling and Decision Analysis (Eurofuse
2009), Pág.259-264, 2009.

[2] P. Victor, C. Cornelis, M. De Cock, P. Pinheiro
Da Silva. Gradual Trust and Distrust in Recom-
mender Systems. Fuzzy Sets and Systems 160(10),
Pág.1367-1382, 2009.

[3] P. Victor, C. Cornelis, M. De Cock, A. Teredesai.
Trust- and Distrust-Based Recommendations for
Controversial Reviews. IEEE Intelligent Systems,
in press, 2009.

[4] R. R. Yager. On Ordered Weighted Averaging
Aggregation Operators in Multicriteria Decision
making. IEEE Transactions on Systems, Man,
and Cybernetics 18, Pág.183-190, 1988.

[5] R. R. Yager, D. Filev. Induced Ordered Weighted
Averaging Operators. IEEE Transactions on Sys-
tems, Man, and Cybernetics 29(2), Pág.141-150,
1999.


