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Abstract—One-vs-One is a commonly used decomposition
strategy to overcome multi-class problems, even when the base
classifier supports directly addressing the multi-class problem.
This paper analyzes the fact that, in this strategy, less attention
is given to the difficult classes, favoring the easier ones. Different
evaluation criteria are used, and a novel fusion strategy, which
generalizes the weighted voting, is presented to enhance the
difficult classes classification. The new methodology is able to
increase the recognition of the difficult classes, thus obtaining a
more balanced performance over all classes, which is a desirable
behavior.

I. INTRODUCTION

Decomposition strategies [1] are often used to overcome
multi-class problems. Error Correcting Output Codes (ECOC)
[2] framework comprises most of these techniques. Among
them, One-vs-One (OVO), which divides the original problem
in as many pairs of classes as possible, is a commonly used
strategy. The new binary subproblems are faced by independent
base classifiers, whose outputs are then combined in order to
obtain the final class label for a given instance [3], [4].

In other respects, the characteristics of each class within
a problem are usually different, e.g., the number of instances,
the inter-class relations and the overlapping with other classes,
may vary. As a consequence, some of the classes might be
more difficult to distinguish than others. Difficult classes can
be considered those obtaining a lower classification rate; that
is, the number of correctly classified examples from the class
divided by the total number of examples from that class (True
Positive Rate, TPR).

This contribution focuses on those problems where all
classes are equally important, that is, their recognition rate
must be as similar and high as possible. Evaluating a balanced
data-set with accuracy rate, all the classes have a priori the
same importance. Nonetheless, it does not reflect the difficult
classes problem, since it averages the results over all instances,
without taking into account the accuracy over each class
independently. As a consequence, difficult classes are present
in a data-set, it is usually easier to increase the accuracy rate
by improving the classification of the easiest classes, whereas
some of the instances from the difficult ones are misclassified.
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We intend to explain why OVO strategy weakens when
we aim to achieve a good prediction for all the classes in
the problem. Besides, we introduce a new aggregation model
based on Restricted Equivalence Functions (REFs) [5], which
allows one to modify the decision boundaries of the base
classifiers to boost the classification of the difficult classes,
without changing the underlying base classifiers. To do so,
this aggregation performs an optimization stage using the CHC
genetic algorithm (GA) [6] to learn the appropriate set of
parameters to enhance the difficult classes (while maintaining
the global accuracy rate).

The experiments carried out include a set of twenty-eight
real-world problems from UCI [7] and the KEEL data-set
repository [8]. In addition to the usage of the accuracy rate
to evaluate the performance of the classifiers, we include
other measures accounting for the problem of difficult classes.
The comparisons among the results obtained are contrasted
using the proper statistical tests [9], [10]. In order to analyze
the capabilities of the new aggregation, we consider Support
Vector Machines (SVMs) [11] as base classifiers.

The remainder of this paper is as follows. In Section II,
the problem of difficult classes in OVO strategy is analyzed.
Next, Section III shows our proposal to enhance the difficult
classes. The tuning of the parameters is presented in Section
IV. The set-up of the experimental framework is explained in
Section V. In Section VI, the experimental analysis is carried
out. Finally, Section VII concludes the paper.

II. DIFFICULT CLASSES PROBLEM IN ONE-VS-ONE
STRATEGY

This section recalls the basis of OVO strategy and its
simplest aggregation (Subsection II-A), which are then used
to explain the difficult classes problem in general (Subsection
II-B), and more specifically in OVO scheme (Subsection II-C).

A. One-vs-One decomposition

OVO divides a m-class problem into m(m — 1)/2 inde-
pendent binary subproblems considering all the possible pairs
of classes, which are faced by independent base learners. In
order to classify a new instance, it is presented to all the
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(a) A three class problem with one difficult class.
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base classifiers. Each classifier distinguishing between a pair
of classes {C;, C;} outputs a confidence degree r;; € [0,1] in
favor of Cj; thus, the confidence in favor of C; is computed
as r;; = 1 — ;. All the confidence degrees can be organized
within a score-matrix:
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Different aggregations have been presented in the literature
to obtain the final output [3]. The simplest aggregation, yet
powerful is the voting strategy, where each classifier votes for
its predicted class, and the class obtaining the largest number
of votes is predicted.

B. Difficult Classes Problem

In a classification problem, the degree of separability of
the classes usually vary owing to their different characteristics.
The simplest way of showing the difficult classes problem is
by the usage of the illustrative example in Figure 1(a). It can be
observed that one of the classes is more difficult to distinguish
than the other two because of the class overlapping. A classifier
aiming at maximizing accuracy rate would define the three
regions in Figure 1(b), which shows up the problem we are
dealing with in this work.

In this problem, the difficult class have obtained a TPR
of 60%, whereas the easier ones have achieved a high TPR
(TPR = 95%). In case of the difficult class being at least
as important as the rest ones, it would be better to obtain a
balanced classification, i.e., a TPR = 83.33% (homogeneous)
for all the classes, which would produce the same global
accuracy rate. This situation highly differs from the real one
and could be more recommendable in many problems requiring
an equal recognition of all classes [12], [13]. For this reason,
one can observe that the most commonly used metric to assess
the performance of classifiers may not properly reflect the
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(b) Classifier maximizing accuracy rate, even though a low TPR is achieved
for the difficult class.

An example of the difficult classes problem. The class in the center is more difficult to be correctly classified due to its overlapping with the other two

problem, and this is why we need to consider other measures
[14]. Recall that the accuracy rate is computed as
1 m
accuracy = — Z TPR; -n;, 2)
nr i=1

where n; is the number of examples of class ¢ and ny is the
total number of examples evaluated. In fact, the accuracy rate
is the weighted mean of the TPRs over each class, where the
weights are given by the proportion of examples from each
class, which makes it inadequate to evaluate problems with
difficult classes. Therefore, we need measures considering the
TPR over each class, but they must not take into account the

number of examples. The following two measures fulfill the
mentioned characteristics:

e  The Average Accuracy rate (AvgAcc) [15],

1 m
AvgAcec = — TPR;. 3
vgAce = ; R 3
e  The Geometric Mean (GM) [16],
“4)

The problem with the AvgAcc is that a low rate on one
class can be overlooked, partially accounting for the problem
explained. Otherwise, the GM strongly penalizes those solu-
tions achieving low a TPR in any of the classes. Along this
work, we will show that whereas the GM properly models
the difficult classes problem, the AvgAcc could only serve as
a complementary measure. Table I represents all these facts,
showing the values that would be obtained in each performance
measures with two different classification scenarios.

C. A Weakness of One-vs-One Strategy

In the case of OVO strategy, the difficult classes problem is
accentuated, as we will show following the previous example.
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Fig. 2. OVO decomposition of the problem in Figure 1(a) and the base classifiers learned for this decomposition.

TABLE 1. BEHAVIOR OF DIFFERENT PERFORMANCE MEASURES.
Classifier TPR, TPR- TPR3 accuracy AvgAcc GM
Heterogeneous 0.95 0.6 0.95 83.33% 83.33%  0.8151
Homogeneous 0.8333 0.8333 0.8333 83.33% 83.33%  0.8333

Homogeneous classifier refers to that obtaining the same TPR for all classes, whereas
Heterogeneous refers to that obtaining a different TPR. for each class.

The problem in OVO is that even though the binary classifiers
are optimal (in terms of accuracy, AvgAcc, GM and balance
between the TPRs over both classes in the subproblem),
the resulting combination need not be globally optimal (in
terms of all the evaluation measures). The problem in Figure
1(a) is decomposed into three subproblems (Figure 2(a), 2(b),
2(c)), face by independent base classifiers shown in Figures
2(d), 2(e), 2(f). The TPRs obtained in each base classifier
can be considered to be equal (in the same classifier), and
hence balanced for both classes, i.e., locally optimal in terms
of accuracy, AvgAcc, GM. Nevertheless, their combination
using the voting strategy would lead to the class separation
in Figure 1(b), which is not optimal in terms of GM due to
the low TPR over the difficult class, although it is optimal in
terms of accuracy.

For this reason, we study the low TPR, achieved over the
difficult classes in OVO strategy, or rather the non-existent
improvement over those classes. Hereafter, we aim to show
why OVO strategy tends to improve the accuracy over the
easiest classes, without enhancing the classification over the
most difficult ones. In order to do so, we consider the simplest
scenario: OVO scheme with the voting strategy. Recall that,
the True Positive Rate (TPR) of a class is the number of
correctly classified examples from the class divided by the
total number of examples from that class.

Problem statement and notation.

e m-class problem, C = {C4,...,C),}.

e  There are my classes which are much more difficult
to classify (for example, due to overlapping, noise, or
even imbalance).

o The rest of the classes are easier to be classified.

e Let TPR}; be the TPR over class C; of the classifier
distinguishing classes {C;, C;}.

Problem assumptions.
D
2)

Independence of the base classifiers, which is sup-
posed in OVO scheme.

An instance is correctly classified if all the competent
base classifiers [4] (those considering the real class of
the instance in the training phase) correctly classify
the instance.

Given a difficult class (C;) and an easier class (C})
then, TPR;;, < TPR;lt forall k,t =1,...,m, k # 1,
t # j and there exist p,q € {1,...,m}, p#i,q#j
such that TPR;, < TPRJ,.

3)

The first assumption suppose that the outputs given by the
classifiers are unrelated as it is assumed in OVO strategy.
The second one might be an over-simplification because it is
possible to correctly classify an instance even though one of
the competent classifier fails. Nonetheless, a total agreement
between base classifiers can be required in systems needing
a high confidence in the decision, which help us showing the
difficult classes problem in OVO. The last assumption suppose
that the TPRs obtained in the base classifiers considering a
difficult class are always lower or equal than the corresponding
ones over the easier classes.



Problem description.

Given an instance {x,y} (where x are the values of the
input attributes and y = C; with ¢ € {1,...,m}), the proba-
bility of being correctly classified, denoted as P(hyy0(X) = y)
(where h,,, stands for the OVO classifier), following assump-
tions 1 and 2, is given by the TPR of each one of the
base classifiers that considered instances from this class to be
trained (that is, TPR;; for all j = 1,...,m with i # j):

P(hm)o(x) = y) = H TPR:] . (5)
1<j#i<m

Therefore, we consider an instance {x1,y; } (belonging to one
of the easier classes, i.e., y; = C;) and an instance {x2,y>}
(belonging to one of the difficult classes, i.e., yo = C};) to be
classified, whose probabilities of being correctly classified are
given by Eq. (5). Following assumption 3, we have that

P(hovo(xl) = yl) = H TPRZk >
1<k#i<m
H TPR;t = P(hovo(XZ) = y2)’ (©)

1<t#j<m

which shows that the probability of correctly classifying the
instance from the difficult class will always be lower than
that of correctly classifying the instance from the easier class
because of the differences in the TPRs of the base classifiers.

How can this problem be solved or at least alleviated?

1)  Improving the TPR% for each difficult class ¢ (j =
1,...,m, j #1).

2)  Developing aggregations accounting for the difficult
classes problem, avoiding the modification of the
underlying base classifiers.

The former solution is the straightforward one, but it is
rather difficult to carry out. Besides, following the example
in Figure 1, we have shown that even though all the base
classifiers obtain balanced TPRs for the classes considered,
it does not imply that the difficult classes problem would
disappear. One way to solve this problem might be to consider
the biasing of the base classifiers towards the difficult classes,
but in this case the problem is that they are not known a priori.
Moreover, in base classifiers considering two difficult classes,
the biasing would even be more difficult. On this account, we
focus on the latter solution, which can also be combined with
the first one. We do not alter the base classifiers, but combine
them differently. This approach have the advantage of being
independent of the base classifier considered.

We propose to modify the classification of the instances by
a flexible aggregation, whose parameters are obtained from the
results obtained in the training set. Hence, it could be shown as
a post-processing method, where the votes of the classifiers are
adapted to the difficulty of each class. In this way, we perform
a global optimization with all classifiers at the same time,
which is not considered by previous OVO combinations. As
a consequence, we are able to obtain globally better solutions
(achieving more balanced classifications).

We believe that the score-matrices contain enough informa-
tion as to obtain significantly different results over the difficult
classes only changing the aggregation and properly setting its

parameters. For this reason, the score-matrices used in the
experiments of this paper are exactly the same for all aggrega-
tions, and we aim to learn and deduce the errors committed by
each classifier so we can adjust the aggregation to empower
the classification of the difficult classes. Therefore, all the
differences shown are only due to the aggregation, which is of
great importance in order to evaluate the performance of the
proposed methodology appropriately.

III. A REF-BASED AGGREGATION

In this section, the new aggregation method for OVO
scheme is introduced. First, several preliminary concepts are
recalled in Subsection III-A, which are needed to present the
new aggregation in Subsection III-B.

A. Restricted Equivalence Functions

In order to introduce the aggregation method, we need
to recall several concepts. A negation models the concept of
opposite:

Definition 1. A mapping n : [0,1] — [0, 1] with n(0) = 1,
n(1) = 0, strictly decreasing, and continuous is called strict
negation. Moreover, if n is involutive, i.e., if n(n(a)) = a for
all a € [0,1], then n is called a strong negation.

Restricted Equivalence Functions [5] measure the degree
of proximity (equivalence) between two points.

Definition 2. /5], [17] A function REF : [0,1]> — [0,1]
is called restricted equivalence function associated with the
strong negation n, if it satisfies the following conditions

1) REF(a,b) = REF(b,a) for all a,b € [0,1];

2) REF(a,b) =1 if and only if a = b;

3) REF(a,b) =0 ifand only if a = 1 and b = 0 or
a=0and b=1;

4) REF(a,b) = REF(n(a),n(b)) for all a,b € [0,1];

5) Foralla,b,c€[0,1], ifa < b <c then REF(a,b) >
REF(a, c) and REF(b,c¢) > REF(q, ¢).

In this work, the interest of this closeness measure resides
in the possibility of its parametrization by means of automor-
phisms as follows.

Definition 3. A continuous, strictly increasing function ¢ :
[a,b] — [a,b] such that p(a) = a and @(b) = b is called
automorphism of the interval [a,b] C R.

Proposition 1. [5] Let o1, ps be two automorphisms of the
interval [0, 1]. Then

REF(a,b) = o1 ' (1~ |p2(a) — p2(b)])
is a restricted equivalence function associated with the strong

negation n(a) = 5 (1 — @a(a)).

Automorphisms can be easily constructed using a parame-
ter A € (0,00): p(a) = a*, and hence, p~*(a) = a'/?.
B. Generalizing the Weighted Voting Method

Our REF-based aggregation is a generalization of the well-
known Weighted Voting strategy (WV), whose robustness has



been both theoretically and empirically proved [18]. In WYV, the
confidences of the base classifiers are used as weights to vote
for the classes, giving the class with the largest total confidence

as final output:
> i (M

Class = arg max
i=1,....,m
1<j£i<m

ceey

In our aggregation model, instead of directly adding up the
confidences of the classifiers in each row, we first compare
these confidences to the certain vote (i.e., 1.0), since it is the
case in which the highest vote should be given. Therefore,
the more similar 7;; to 1.0 is, the more importance the vote
has. Both values are compared using a REF. Then, instead of
voting using r;;, we consider the vote given by REF(r;;,1),
indicating how close is r;; from the certain vote. Recalling
Proposition 1, the operations and parameters needed for the
comparison can be reduced:

REF(a, 1) = (1— |a* — 12))'/% = (/M = o (8)

Both parameters (A1, A2) are encoded in a single equivalent one
(A). In Figure 3, the influence of A in the REF’s application
to the comparison of a certain value to 1 is plotted. Observe
that A = 1 does not modify the vote of the classifier, since
REF(r;j,1) = r;;, whereas values below one (A < 1)
empowers the weights (REF(r;;,1) > ;) and the contrary
occurs with A > 1 (REF(r;;, 1) < ;).
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Fig. 3. Influence of the parameter A in REF(a, 1).

Remark 1. Hence, looking at Figure 3, it can be observed
that the confidences in favor of the difficult classes should use
a REF with a low A\, whereas those of the easier classes might
consider a higher value of )\ in order to seek for a balance
between their predictions. The estimation of these parameters
is not trivial; for this reason, Section 1V is devoted to their
global adjustment.

We have shown how the confidences given by the base
classifiers can be altered; then, similarly to the WV, the votes
are aggregated in each row:

m
1<j#i<m

= arg max E
=1 m

e
1<j#i<m

Class = arg max
i=

3oy

(rig)™ ©)

where );; is the corresponding parameter used in
REF;;(rij,1). WV method is recovered when )\;; = 1
for all ,j = 1,...,m and i # j (see Proposition 2 in [5]).

Since each r;; is directly related with the corresponding 7;,
we will consider a single parameter for each base classifier
(i.e., the degrees of freedom in the score-matrix). Therefore,
Aji = )%] forall ¢,7 =1,...,m and ¢ < j (see Section IV).

IV. ADIJUSTING THE AGGREGATION TO ENHANCE THE
DIFFICULT CLASSES

The tuning of the parameters is needed in order to adapt the
aggregation to each class within each problem. To do so, any
optimization algorithm that maximizes the objective function
could be used; in our case, we consider a GA, and more
specifically, the real-coded CHC algorithm [6], since it has
been successfully applied to similarly tune the parameters of
fuzzy rule based systems [19]. We should note that this type
of algorithm is needed because a complex global tuning is
performed. This adjustment is required due to the fact that the
locally doing it does not ensures a global improvement

This section is organized as follows: the fitness function
designed to empower the difficult classes is presented in Sub-
section IV-A, whereas the CHC algorithm and the codification
of the real parameters are described in Subsection IV-B.

A. Objective Function

The key factor of the parameter adjustment is the objective
function. Notice that the standard accuracy rate must not
be further optimized, as it is usually done, since it does
not account for difficult classes. As a consequence, different
classifier evaluation criteria are used to determine the qual-
ity of the system obtained with a given set of parameters
A = (A, A, ..., Amm-1)) (a parameter is used for each
base classifier, accordirig to the degrees of freedom in the
score-matrix). The usage of the following fitness function is
proposed:

GM(A) + AvgAcc(A)
2 )
where the Margin quantifies how well is the real class of an

instance separated from the second class with the highest sum
of votes. The global margin is computed as follows.
Ve-Ve

Margin = arg min —— (11)
c=1,....,n, Ny =M

Fitness(A) = Margin(\) + (10)

where C; is the predicted class and C is the second class
with the largest value in Eq. (9); V£, Vjc are the values
obtained in Eq. (9) by each class (for instance c), respectively.
n. is the number of correctly classified instances, only these
instances are used. The margin is normalized by the number
of classes and instances (np,) to reduce its influence in the
fitness function with respect to the other factors. Among all
the margins computed, we take the minimum one, since it is
the value better representing how well separated are the most
difficult classes.

The most important part of the fitness function, and our
main objective, is the GM, since it is the measure which better
balances the accuracy over all classes. Nevertheless, the other

factors are needed according to the following facts:
1) AvgAcc has a priori the same weight, but despite

its value is higher, its variations depending upon
the correctly classified instances are generally lower,



and hence, it has less influence when comparing
different evaluations of the fitness function. It is a
very important factor in cases where GM value is
low, since it serves as a guide for the GA.

2)  Margin has a very low weight in the fitness func-
tion (due to its normalization), mainly serving as a
stabilization process once the best GM and AvgAcc
combination has been found.

B. CHC Algorithm and Parameters’ Representation

The real-coded CHC (Cross generational elitist selection,
Heterogeneous recombination and Cataclysmic mutation) al-
gorithm [6] was selected to optimize the fitness function
(Eq. (10)) due to its successful application in similar tuning
approaches [19]. It holds a good trade-off between exploration
and exploitation, being a proper metaheuristic for complex
search spaces.

In this elitist GA, all the M (population size) parents and
their offspring are put together and the M best individuals form
the next population. Instead of using a mutation operator as
most of the GAs do, an incest prevention mechanism combined
with a reinitialization of the population is used to increase
diversity. The components needed to design the whole process
are: representation of the solutions, initialization of the initial
population, crossover operator, incest prevention and restarting
mechanism.

1)  Representation of the parameters: the set of param-
eters (A of length m(m —1)/2) to be optimized
are real parameters, so they are the elements (called
genes) of a chromosome. Recall that the value of
A ranges from 0 to oo, which cannot be directly
encoded within a chromosome. Therefore, we use the
following chromosome (®(A)) to encode A:

) = (B(A);60N2), - 6N miwnr))
- (C)q 7Cxzy -+ 5 CX m—1) )

2
where each gene ¢y, € (0,1),i=1,..., m(mT_l)
the parameter’s value is recovered as follows

(2-cx,)? if ¢y, <0.5
1

2-(1—ex))?
In this manner, the whole search space can be ex-
plored (Figure 3). The square allows us to homoge-
neously search the whole space, since, as it can be
observed in the figure, the nearer A is to the upper
or the lower bounds, the greater change it needs to
significantly alter the output of REF(a, 1).

2)  Initialization: All the chromosomes are randomly
initialized in (0, 1) except for the first one, which is
initialized with 0.5 in all each genes. In this manner,
the search is started with an individual representing
the original WV, i.e., the proposed aggregation with
A =1 (following Eq. (12)).

3)  Crossover operator: We use the Parent Centric BLX
operator [20].

and

. = -1 =
Ai =@ (en,) otherwise.

The incest prevention and restarting mechanisms are per-
formed as usual [6], [19]. There are two criteria to end the

optimization process: the maximum number of evaluations
and the number of restarting procedures without improvements
(their set-up is shown in Subsection V-A).

V. EXPERIMENTAL FRAMEWORK
A. Base classifiers and parameters

We consider SVMs [11] as base classifiers to study the
validity of the new aggregation methodology. The confidences
used in the score-matrices are obtained from the probability
estimates given by the SVM logistic model [21]. The config-
uration parameters considered are shown in Table II, along
with the parameters used in the CHC algorithm. These values
are common for all problems, which is the default parameters’
setting included in KEEL software [22] used to develop the
experiments. We considered two configurations, varying the
parameter C and the kernel function to study the behavior of
the aggregation with different set-ups, which address for the
robustness of the proposal. We treat nominal attributes in SVM
as scalars to fit the data into the systems using a polynomial
kernel.

TABLE II. PARAMETER SPECIFICATION FOR THE BASE LEARNERS AND
THE CHC ALGORITHM EMPLOYED IN THE EXPERIMENTATION.

Algorithm Parameters
SVMPpoiy C = 1.0, Tolerance = 0.001, Epsilon = 1.0E-12

Kernel = Polynomial, Polynomial Degree = 1
SVMp .,k C = 100.0, Tolerance = 0.001, Epsilon = 1.0E-12

Kernel = Puk, PukKernel w = 1.0, PukKernel o = 1.0
CHC Population size = 50 individuals, Evaluations = 1000 - m?

BITSGENE = 30
Restarting procedures without improvement = 3

Tuning the parameters of each method on each particular
problem could lead to better results. However, we are not com-
paring base classifiers among them; hence, our hypothesis is
that the methods wining on average on all problems would also
perform better if a more optimal setting would be performed.
Moreover, in a framework where no method is tuned, the best
methods tend to correspond to the most robust ones, which is
also a desirable characteristic.

We consider the probability estimates method by Wu et al.
[23] (PE) as an aggregation for the comparison against our
methodology, since its usage is widely extended, and it has
been proved to be an accurate aggregation [3].

B. Data-sets and classifiers’ evaluation

We have used twenty-eight data-sets from UCI [7] and
KEEL data-set repository [8]. Table III summarizes the prop-
erties of these data-sets. They comprise a number of situations,
from totally balanced data-sets to highly imbalanced ones,
besides the different number of classes. Some of the largest
data-sets (nursery, page-blocks, penbased, satimage, shuttle
and led7digit) were stratified sampled at 10% in order to
reduce the computational time required for training. In the
case of missing values (autos, cleveland and dermatology),
we removed those instances from the data-set before doing
the partitions. As we have previously stated, we consider the
accuracy rate, GM and AvgAcc to evaluate the performance
of the classifiers, which were estimated by means of a 5-fold



cross-validation. The data partitions used in this paper can
be found in KEEL-dataset repository [8] and in the website
associated with [3] (http://sci2s.ugr.es/ovo-ova/).

TABLE III. SUMMARY DESCRIPTION OF DATA-SETS.
Data-set #Ex. #Atts. #Num. #Nom. #CL.
Balance 625 4 4 0 3
Contraceptive 1473 9 9 0 3
Hayes-roth 132 4 4 0 3
Iris 150 4 4 0 3
NewThyroid 215 5 5 0 3
Splice 319 60 0 60 3
Tae 151 5 5 0 3
Thyroid 720 21 21 0 3
Wine 178 13 13 0 3
Car 1728 6 0 6 4
Lymphography 148 18 3 15 4
Vehicle 846 18 18 0 4
Cleveland 297 13 13 0 5
Nursery 1296 8 0 8 5
Page-blocks 548 10 10 0 5
Shuttle 2175 9 9 0 5
Autos 159 25 15 10 6
Dermatology 358 34 1 33 6
Flare 1066 11 0 11 6
Glass 214 9 9 0 7
Satimage 643 36 36 0 7
Segment 2310 19 19 0 7
Z0o 101 16 0 16 7
Ecoli 336 7 7 0 8
Led7digit 500 7 0 7 10
Penbased 1100 16 16 0 10
Yeast 1484 8 8 0 10
Vowel 990 13 13 0 11

In order to carry out the comparison of the classifiers
appropriately, non-parametric tests should be considered, ac-
cording to the recommendations made in [9], [10]. In this
contribution, we consider the Wilcoxon paired signed-rank
test [24] as a non-parametric statistical procedure to perform
comparisons between two algorithms. Any interested reader
can find additional information on the thematic website http:
/Isci2s.ugr.es/sicidm/, where software for the application of the
statistical tests is provided.

VI. EXPERIMENTAL STUDY

We aim to demonstrate the validity of our aggregation
proposal based on REFs (from this point denoted as RA) to
enhance the classification of difficult classes in OVO strategy.
To do so, we consider two different configurations of SVMs
as explained in Subsection V-A. The results obtained with
SVMp,,, as base classifier are shown in Table IV (note that,
accuracy and AvgAcc are presented as percentages, as usual).
It can be observed that accuracy has been maintained, whereas
GM and AvgAcc have been highly enhanced using RA, being
GM improvement remarkable. Anyway, in order to extract
meaningful conclusions, these facts must be contrasted with
the proper statistical analysis via Wilcoxon tests, whose results
are presented in Table V.

Similar conclusions are drawn from the statistical tests.
Both methods (PE and RA) achieve equivalent accuracies, but
RA behavior in terms of GM and AvgAcc excels, rejecting the
null hypotheses of equivalence with very low p-values.

Regarding the second configuration SVMp,, the results
(shown in Table VI) are similar, but not so large differences are
shown at first glance. In this case, PE achieves a slightly higher
accuracy, whereas RA excels in the other two performance
measures. The statistical analysis of these results is shown in
Table VII.

TABLE IV. RESULTS USING SVMpoly AS BASE CLASSIFIER.

Accuracy GM AvgAcc
Data-set PE RA PE RA PE RA
Autos 74.80 75.38 .5479 .5624  72.69 71.99
Balance 90.40 91.68 8310 .9156 85.35 91.79
Car 92.71 93.34 8651 .9364 87.18 93.71
Cleveland 58.25 51.16 0000 0756 30.88 34.52
Contraceptive 49.83 50.71 4604 5102 47.34 51.54

Dermatology . .
Ecoli 77.69 76.49 1544 1517

68.18 67.77
Flare 74.67 72.79 4517 .5914 61.02 65.54
Glass 61.26 59.81 .2045 .4596 55.40 61.78
Hayes-Roth 52.22 71.14 .4985 .7069 55.05 72.30
Iris 96.00 96.00 .9580 9583 96.00 96.00
Led7digit 73.00 71.80 7110 7014 73.01 71.90

Lymphography 81.68 83.77 3348 3325 64.87
NewThyroid 97.21 95.81 19599 9621 96.16 96.38
Nursery 91.90 91.43 .6529 6990 82.22 85.39
Pageblocks 94.70 86.49 .3042 .6658 68.23 78.89
Penbased 95.27 95.64 .9513 .9554 95.29 95.66
Satimage 84.14 83.67 L7703 .8015 79.55 81.36
Segment 92.55 93.85 9197 .9359 92.55 93.85
Shuttle 96.37 96.92 3477 .3631 80.67 83.30
Splice 79.59 80.22 8325 .8374 84.29 84.69
Tae 51.72 55.72 4869 5407 51.91 55.57
Thyroid 95.69 96.94 4445 8817 67.88 89.29
Vehicle 72.46 73.05 6970 .6892 72.82 73.49
Vowel 69.90 72.22 6822 .7050 69.90 72.22
Wine 97.16 97.16 .9684 9684 96.99 96.99
Yeast 59.10 54.58 .0000 .4088 56.74 56.69
Zoo 95.05 95.05 0000 0000 85.24 85.24
Average 80.34 80.60 5706 6519 74.00 77.69
TABLE V. WILCOXON TESTS FOR SVMpaly AS BASE CLASSIFIER.
Comparison Measure Rt R~ Hypothesis p-value
RA vs. PE  Accuracy 219.0 187.0 Not rejected 0.756995
GM 364.5 41.5  Rejected for RA at 95%  0.000220
AvgAcc 361.0 45.0  Rejected for RA at 95%  0.000266

R are ranks in favor of RA and R~ in favor of PE.

TABLE VL RESULTS USING SVM p,, . AS BASE CLASSIFIER.
Accuracy GM AvgAcc
Data-set PE RA PE RA PE RA
Autos 68.53 61.51 .2544 .2156 65.06 59.78
Balance 88.00 87.84 8660 .8497 86.93 85.71
Car 63.60 71.18 7452 7763 77.58 80.37
Cleveland 45.09 44.75 .0000 0000 29.78 29.41

Contraceptive 48.41 45.01 .4406 4555 45.70

Dermatology 96.09 95.26 9574 .9478 96.03 95.29
Ecoli 75.31 75.01 .1381 .1550 67.35 67.64
Flare 69.42 64.35 3277 .5188 59.43 60.10
Glass 70.60 70.61 5372 .5533 68.04 68.59
Hayes-Roth 79.54 81.05 8072 .8163 82.30 83.58
Iris 94.00 94.67 9375 .9442 94.00 94.67
Led7digit 70.20 70.80 6840 .6928 70.32 71.01
Lymphography 80.34 81.01 1557 .3374 54.98 61.65
NewThyroid 97.67 97.67 9811 9811 98.16 98.16
Nursery 81.33 83.33 .6793 .6902 82.28 83.72
Pageblocks 94.16 93.43 2757 2666 67.40 65.41
Penbased 97.82 97.82 9781 9781 97.85 97.85
Satimage 84.92 85.23 8315 .8434 84.16 85.08
Segment 97.10 97.23 .9704 9717 97.10 97.23
Shuttle 99.72 99.22 7650 9648 93.14 97.17
Splice 64.56 72.10 3787 7575 51.44 78.68
Tae 56.30 57.63 .5513 .5649 56.24 57.51
Thyroid 92.64 92.50 4971 .5364 62.44 66.66
Vehicle 80.49 80.61 7873 7887 80.71 80.83
Vowel 99.39 99.39 .9936 9936 99.39 99.39
Wine 98.30 98.30 9857 9857 98.60 98.60
Yeast 56.54 54.18 .0000 .0954  55.37 55.14
Zoo 84.19 93.05 0000 2000 64.05 80.00
Average 79.80 80.17 5902 .6386 74.49 76.63




TABLE VII. WILCOXON TESTS FOR SVM p,, ;. AS BASE CLASSIFIER.

Comparison Measure R* R~ Hypothesis p-value

RA vs. PE  Accuracy 220.0 186.0 Not rejected 0.710304
GM 336.5 69.5  Rejected for RA at 95%  0.003502
AvgAcc 307.0 99.0  Rejected for RA at 95%  0.022264

R are ranks in favor of RA and R~ in favor of PE.

Observing the results of the tests, the superiority of RA
outstands. Whereas the accuracy remains similar, both GM
and AvgAcc are improved, rejecting the null hypotheses of
equivalence with low p-values.

Interestingly, the classifiers giving better confidence de-
grees (the case of SVMp,;,) have more margin for improve-
ment, since they provide more information to the classification
process. In the case of SVMp,x, the configuration (parameter
C) used causes to produce too borderline (close to 0 or 1)
values in the probability estimates, which are not as useful
as those given by SVMp,,,. This is the main reason of the
differences in their results. Furthermore, having an initially
lower GM and AvgAcc values (with PE), SVMp,, has
achieved higher results than SVMp,,;, using RA.

VII. CONCLUDING REMARKS

We have put forward the difficult classes problem in
OVO strategy, which has not been previously addressed. In
order to improve the classification accuracy over the difficult
classes, we have proposed a new aggregation methodology,
generalizing the weighted voting strategy.

This methodology is able to properly learn the parameters
for the REFs used in the aggregation, yielding to statistical
differences in terms of GM (which was our main objective)
with respect to the aggregations which do not take into account
such a problem. Recall that the differences shown between
OVO methods are only due to the aggregation itself, since
the score-matrices are exactly the same. Moreover, the GM
improvement with respect to the previous OVO aggregation
has not been at the expenses of accuracy. Hence, we have
shown that the base classifiers can be managed in such a way
that different objectives can be obtained, without needing to
alter them. The results obtained have shown that there is much
margin for improvement in terms of GM and AvgAcc, which
could be more important than accuracy in many applications.
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