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Abstract— Memetic algorithms with an appropriate trade-off
between the exploration and exploitation can obtain very good
results in continuous optimisation. That implies the evolutionary
algorithm component should be focused in exploring the search
space while the local search method exploits the achieved
solutions. In a previous work, it was proposed a region-based
algorithm, RMA-LSCh-CMA, adding to algorithm MA-LSCh-
CMA a niching strategy that divides the domain search in
equal hypercubes. The experimental results obtained, with the
benchmark proposed in the CEC’2014 Special Session on Real-
Parameter Single Objective Optimisation, show that the use
of these regions allow the algorithm to obtain better results,
specially in higher dimensions, and the resulting algorithm is
more scalable.

I. INTRODUCTION

In recent years, Evolutionary Algorithms (EA) [1] have
arisen as very effective algorithms to solve discrete and
real-coded optimisation problems, because there are capable
of obtaining quality solutions in several complex problems
without specific information about them.

One of the main issues in the design of an EA for an
optimisation problem is to offer a good exploration of the
search space and, at the same time, to exploit the most
promising regions. Thus, a good EA should enforce a in-
depth search around the most promising solutions (solutions
with the best current fitness) maintaining a good diversity
in the population to avoid a premature convergence and
exploring well the domain search.

Memetic algorithms (MA) [11] are a hybridisation be-
tween EA and local search (LS) algorithms, mixing in one
model the exploration power of EA and the exploitative
power of the LS. MAs are characterised by the use of an
improvement algorithm, responsible of the in-depth search
around best solutions, in conjunction with an EA that ex-
plores the global domain. There are several MAs [9], and its
main idea is to achieve diversity with the EA component
obtaining accurate solutions by the LS method. Usually,
original EA is modified to enforce its diversity.

One of the most popular technique to enforce diversity
into the population is to divide the domain search in regions
in which only one (or a small amount) is allowed to be in
each one of them. This division can be used using an distance
measure, like in clearing method [13] or dividing the domain
in hypercubes [2]. The main disadvantage of these techniques
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is to have to set a minimum size: it depends on the problem
and has a strong influence over their performance [3], [4].

In a previous work, we have proposed MA-LSCh-CMA
[10]. MA-LSCh-CMA is a successful MA that uses as
improvement algorithm the powerful CMAES [6], obtaining
very good results in continuous optimisation. Originality of
MA-LSCh-CMA lies in its ability to apply various times the
LS on the same solution, following the local search from
the previous state, continuing the LS. This behaviour makes
MA-LSCh-CMA very good when a promising solution is
achieved, unfortunately it does not guarantee to maintain
enough diversity in the population.

In a recent work, we have proposed the algorithm called
Region-based MA-LSCh-CMA (RMA-LSCh-CMA) [7], to
improve the previous algorithm. The main difference is the
concept of region used. This algorithm divides the domain
search in regions (or hypercubes) of equals size, and only one
solution is allowed in the same region. To enforce a greater
exploitation during the final stages of the algorithm, the size
of these regions is reduced during the run.

The use of regions followed by RMA-LSCh-CMA allows
to maintain a greater diversity in the population, obtaining
better results in real continuous problems, in particular in
multimodal problems. Also, the use of regions avoids the
presence of solutions too close to each one, leading to a
more efficient search [7]. Region idea is very similar to
maintain a minimum distance between solutions, but it is
computationally more efficient.

In this work, we are going to use the benchmark proposed
in the Special Session on Real-Parameter Single Objective
Optimization in WCCI-2014 [8] with MA-LSCh-CMA and
RMA-LSCh-CMA. The idea is to show how the concept of
regions can improve the search, in error values and in perfor-
mance. Also, because the proposed experimental conditions
include different dimensionality values, we are going to study
how this concept allow to increase the scalability.

This paper is structured as follows. In Sections II and III
we give brief explanations of MA-LSCh-CMA and RMA-
LSCh-CMA, remarking their differences. In Section IV the
experimental framework is designed. In Section V, several
comparisons are carried out to study how the concept of
regions used by RMA-LSCh-CMA allows it to improve the
results. Finally, in Section VI, we present the conclusions.

II. MA-LSCH-CMA

This section present the MA-LSCh-CMA. You can consult
[10] to get a detailed explanation. Because MA-LSCh-CMA
and RMA-LSCh-CMA have several components in common,
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we are going to explain more in detail the elements that both
algorithms share.

A. Exploration Algorithm, SSGA

It uses a steady state genetic algorithm, SSGA [14], as its
exploration component, responsible for the global search. In
each step for crossover it uses negative assortative mating,
NAM [5], in which one parent is randomly chosen, and to
chose the other one, 3 individuals are randomly selected, and
the most distance to first one is chosen. It uses as crossover
operator the operator BLX − α, with α = 0.5 [12], to
generate one new solution for each crossover. Finally, the
new solution replaces the worst one in the population, if
it is better. In MA-LSCh-CMA, there is no mechanism to
guarantee that the population maintains a certain diversity.

B. Local Search: CMA-ES

It uses as a LS method the CMA-ES algorithm [6], a
well-known algorithm in continuous optimisation. In each
iteration it create solutions using a Gaussian distribution with
a step size as its standard deviation. Because this step size is
adapted during the search, it only requires as parameter the
initial step size. In MA-LSCh-CMA, it is chosen as initial
step size for each dimension the half of the distance to the
nearest solution (in that dimension).

C. Hybridation model

This algorithm applies the following hybridation model,
alternating the application of the SSGA to the population
with the application of the CMA-ES.

Both algorithms follow the next hybridation model:
1) Apply the SSGA during Istep evaluations.
2) Select one solution to be improved by the LS.
3) If this solution was previously selected the LS parame-

ter values from its final stage, to continue the search.
In other case, select the default LS parameters.

4) Apply the LS during Istep evaluations.
5) Store the final LS parameter values for that solution

(in case the new solution will be selected again to
improve).

6) If the stopping criterion was not true return to step 1.
In step 2, it is chosen the solution with best fitness that was

not previously applied the LS, or it was previously applied
and the improvement obtained by its application was better
than δLS = 10−8. The idea is to identify the local optima to
avoid wasting time trying to improve it more with the LS.

III. REGION BASED MA-LSCH-CMA

This section present the RMA-LSCh-CMA. You can con-
sult [7] to get a detailed explanation.

A. The region base MA

Contrarily to most niching strategies where the niches are
defined by the area surrounding solutions of the population,
we propose here a strategy in which the niches are predefined
as divisions of the search space, divided into hypercubes of
equal size called here regions. This definition of a niche is

illustrated in Figure 1. Each dimension is divided into ND
divisions creating a grid of equal hypercubes, that represent
exclusive regions which can contain only one solution.

Fig. 1: Different niches strategies

B. The SSGA in a region-based MA

The SSGA is modified to not allow the generation of a
solution by the SSGA in a region that is already occupied
by another solution in the population if this solution is
optimised. In that case, we compare both solutions and, if
it is better, the new solution will replace the solution lying
in the same region. By optimised, we refer to the fact that
the last LS applied to this solution has not brought enough
improvements (upper than δLS). On the other hand, if the
solution is not optimised, the EA can replace it with a
solution with a better fitness in that region.

C. The LS in a region-based MA

In the MA-LSCh-CMA, the initial step of the CMA-ES is
set between the area limited by its neighbouring solutions.
Here the CMA-ES initial step is set according to the size of
the region. We want to ensure that the close surrounding of a
solution are properly explored by the LS as this task will not
be done by the EA. The initial standard deviation is set to
half the size of the region. Apart from this modification, in
order to allow a proper refinement of the solution, the LS is
not influenced by the divisions of the search space. However,
if at the end of the LS application, the new solution is in a
region occupied, the best one is kept and the other one is
replaced by a randomly generated solution.

D. Reduction of regions size

Initially, each dimension is divided in ND parts, to create
the regions. Thus, the number of possible regions depends
on the dimensionality, is NDD. During the run, the division
in regions is updated U times, where U is called number of
divisions update. Thus, after a certain number of evaluations,
the size of each region is divided by the multiplier for update,
and the algorithm continues with the same population.

IV. EXPERIMENTAL FRAMEWORK

Experiments are carried out with the benchmark functions
and experimental conditions indicated in [8]. Although se-
veral of these functions were used in previous benchmarks,
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like CEC’2013, the results differs because it uses different
rotation matrices.

A. Test Functions
The benchmark is composed by 30 functions:
• Tree unimodal functions: f1 − f3.
• Thirteen simple multimodal functions: f4 − f16.
• Six hybrid functions: f17 − f22, in which the variables

are randomly divided into some subcomponents and
then different basic functions are used for each one.

• Seven composition functions, f23 − f30, that combine
the results of evaluate different basic functions.

B. Experimental conditions
All functions have a shifted global optimum. All have the

same domain search, [-100, 100], and their shifted global
optima is inside it, away from the domain boundaries.

These are the experimental conditions followed:
• All functions are run 51 times.
• Fitness value is the result of the evaluation function.
• Dimensions D=10, 30, 50, and 100.
• The algorithm stops when a certain maximum fitness

evaluations MaxFES is achieved, or the error is smaller
than 10−8. MaxFEs = 100000 ·D.

• An error value lower than 10−8 is considered zero.

V. EXPERIMENTAL RESULTS

A. Parameter values
Because both algorithms share the majority of parameters,

we have set the same values to them, to make a right
comparison. Table I shows the parameter values in common.
These values were proposed by the authors [10].

TABLE I: Parameters values in common: RMA-LSCh-CMA
and MA-LSCh-CMA

Parameter Name Value

Population size 100
Crossover Operator BLX − 0.5
NNAM 3
Istep 100
δLS 10−8

TABLE II: Parameters values for RMA-LSCh-MA

Parameter Name Value

Initial division number (ND) 10
Number of divisions update 4
Multiplier for each update 2

Additionally, RMA-LSCh-CMA requires more parame-
ters. Table II shows their values. These values are the default
values proposed in [7], with the exception of the population
size, it was 80 individuals in the paper, and 100 in this
work. In [7] where also proposed a different set of parameter
values obtained by tuning, but in this benchmark the default
parameter values obtain better results.

TABLE III: Computational Complexity of MA-LSCh-CMA
(in milliseconds)

T0 T1 T̂2 (T̂2− T1)/T0

D = 10 72 198 415 3.01
D = 30 67 607 4061 51.55
D = 50 67 1097 14443 199.19
D = 100 68 3394 80267 1130.48

TABLE IV: Computational Complexity of RMA-LSCh-
CMA (in milliseconds)

T0 T1 T̂2 (T̂2− T1)/T0

D=10 71 205 1660 20.49
D=30 70 654 2914 32.28
D50 70 1350 7097 82.10
D100 69 3821 14312 152.04

B. Algorithms complexity

In Tables III and IV are shown the algorithm complexity
of algorithms MA-LSCh-CMA and RMA-LSCh-CMA. We
can see that using regions to enforce diversity increases the
scalability of the algorithm. For dimension 50, the value for
(T̂2−T1)/T0 with RMA-LSCh-CMA is 41% than obtained
with MA-LSCh-CMA, and for dimension 100 with RMA-
LSCh-CMA is 13% than obtained with MA-LSCh-CMA.

C. RMA-LSCh-CMA vs MA-LSCh-CMA

Table V shows the mean values for each algorithm and
function for dimension 50 and 100. We can see that RMA-
LSCh-CMA obtains the best average results, and the im-
provement obtained by the use of regions is clearly increased
with the dimensionality.

Comparisons by category, RMA-LSCh-CMA scales spe-
cially well in unimodal functions (in multimodal are very
similar) and in hybrid functions.

Table VI resumes different measures comparing MA-
LSCh-CMA and RMA-LSCh-CMAin relation with the di-
mensionality. We can observe than RMA-LSCh-CMA in
average is better for each measure, and the improvement
obtained increases with the dimensionality. Thus, RMA-
LSCh-CMA is better than MA-LSCh-CMA, both in error
values and in performance, and this improvement increases
with the dimensionality.

D. Results obtained by RMA-LSCh-CMA

Due to space limitation, we are going to put only the
results obtained by RMA-LSCh-CMA, the best algorithm, to
make them available to other researchers. Tables VII, VIII,
IX, X show the results obtained by RMA-LSCh-CMA for
dimension 10, 30, 50, and 100.

We can see that the scalability of the algorithm is good,
because it maintain good results in higher dimensions. Also,
the differences between median and mean are reasonable. In
summarize, experiments show that RMA-LSCh-CMA is a
robust algorithm, with an interesting scalable behaviour.
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TABLE V: Median error for each dimension

(a) Dimension 50

Fun RMA-LSCh-CMA MA-LSCh-CMA

1 0.000000E+00 0.000000E+00
2 0.000000E+00 0.000000E+00
3 1.771750E+01 0.000000E+00

4 0.000000E+00 5.454993E+01
5 1.999994E+01 1.999999E+01
6 6.121990E+00 1.229027E+00
7 0.000000E+00 0.000000E+00
8 1.981726E-05 0.000000E+00
9 3.681346E+01 4.083218E+01

10 2.424665E+02 7.600832E+00
11 3.623177E+03 5.554667E+03
12 1.438951E-02 9.540046E-02
13 2.192767E-01 2.640195E-01
14 2.467165E-01 2.613563E-01
15 4.686589E+00 5.426558E+00
16 1.872406E+01 2.009951E+01

17 1.943020E+03 1.899226E+03
18 4.790563E+02 3.347629E+02
19 1.394770E+01 3.761487E+01
20 7.641425E+02 8.096744E+02
21 1.249797E+03 1.770009E+03
22 3.107434E+02 2.697483E+02

23 3.440050E+02 3.440045E+02
24 2.589911E+02 2.591884E+02
25 2.099881E+02 2.138974E+02
26 1.001966E+02 1.147241E+02
27 4.884886E+02 3.927057E+02
28 1.308381E+03 1.227101E+03
29 1.622501E+03 1.091956E+03
30 9.589913E+03 9.729267E+03

(b) Dimension 100

Fun RMA-LSCh-CMA MA-LSCh-CMA

1 1.338985e-01 3.088033e+04
2 0.000000e+00 3.493682e+02
3 1.918758e+03 6.231324e+03

4 1.055354e+02 9.048479e+01
5 1.999996e+01 1.999998e+01
6 2.686612e+01 8.382388e+00
7 4.327280e-04 2.017546e-09
8 4.696169e-05 8.238439e-10
9 9.539947e+01 1.257094e+02

10 9.839455e+02 7.674920e+02
11 8.549727e+03 1.304217e+04
12 1.355434e-02 1.353486e-01
13 3.065968e-01 3.774176e-01
14 1.240539e-01 1.199853e-01
15 1.060084e+01 2.245631e+01
16 4.268038e+01 4.318112e+01

17 5.183200e+03 3.937255e+04
18 9.787416e+02 5.117417e+02
19 9.951786e+01 8.489232e+01
20 2.975314e+03 4.736397e+03
21 3.516743e+03 2.356521e+04
22 7.793208e+02 1.319897e+03

23 3.483129e+02 3.482351e+02
24 3.590149e+02 3.617879e+02
25 2.368728e+02 2.549403e+02
26 2.000692e+02 2.000792e+02
27 9.112618e+02 3.942113e+02
28 3.288493e+03 2.311201e+03
29 3.165691e+03 1.724867e+03
30 9.247364e+03 9.389607e+03

TABLE VI: Results for MA-LSCh-CMA and RMA-LSCh-CMA for dimension (average for function)

Dimension Algorithm Best Worst Median Mean Std

10 MA-LSCh-CMA 5.851346E+01 1.325460E+02 8.024321E+01 7.961767E+01 2.015156E+01
RMA-LSCh-CMA 4.683987E+01 1.264823E+02 7.645782E+01 7.649017E+01 2.032637E+01

30 MA-LSCh-CMA 1.773469E+02 1.366445E+03 3.485442E+02 3.151299E+02 2.007272E+02
RMA-LSCh-CMA 1.225540E+02 5.752820E+02 3.031459E+02 2.871957E+02 1.026800E+02

50 MA-LSCh-CMA 5.728093E+02 3.976336E+03 1.038021E+03 8.066302E+02 6.773991E+02
RMA-LSCh-CMA 4.911126E+02 1.330508E+03 7.876310E+02 7.551120E+02 1.817873E+02

100 MA-LSCh-CMA 1.042859E+03 2.086971e+04 3.023720e+03 4.538572e+03 4.185062e+03
RMA-LSCh-CMA 8.619702E+02 2.218368e+03 1.418016e+03 1.434800e+03 2.869823e+02
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TABLE VII: Results for 10D

Function Best Worst Mean Median Std

1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
3 0.000000E+00 5.229974E-06 1.025485E-07 0.000000E+00 7.251275E-07
4 0.000000E+00 4.335407E+00 8.500798E-02 0.000000E+00 6.010972E-01
5 0.000000E+00 2.000000E+01 1.365196E+01 1.999868E+01 9.235427E+00
6 0.000000E+00 1.807498E-03 1.478613E-04 0.000000E+00 3.869960E-04
7 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
8 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
9 9.949591E-01 6.964708E+00 3.316530E+00 2.984877E+00 1.632705E+00

10 6.245444E-02 1.219157E+02 7.677946E+00 3.414961E+00 2.324503E+01
11 1.873633E-01 1.303928E+02 2.013497E+01 1.182953E+01 3.230385E+01
12 0.000000E+00 1.331651E-01 1.646457E-02 1.124002E-02 2.378510E-02
13 9.069848E-03 7.038013E-02 3.292333E-02 2.886623E-02 1.567129E-02
14 6.164570E-02 1.988720E-01 1.264898E-01 1.207352E-01 3.356309E-02
15 3.103627E-01 7.114398E-01 4.714944E-01 4.476892E-01 9.598157E-02
16 2.341056E-01 2.093216E+00 1.054166E+00 1.123691E+00 4.701500E-01
17 6.273603E-01 3.971328E+02 7.833846E+01 4.022057E+01 9.486355E+01
18 6.543135E-02 2.222729E+01 5.220721E+00 3.346637E+00 4.586417E+00
19 7.849730E-03 2.099368E-01 7.660733E-02 6.187272E-02 4.399772E-02
20 4.635259E-03 6.313467E+01 8.056691E+00 3.121138E+00 1.262373E+01
21 1.607504E-01 2.754776E+02 4.928617E+01 1.736043E+01 7.047081E+01
22 3.628534E-02 3.928931E+01 8.474625E+00 6.321621E-01 1.120228E+01
23 3.294575E+02 3.294575E+02 3.294575E+02 3.294575E+02 2.842171E-13
24 1.000000E+02 1.164711E+02 1.084430E+02 1.087211E+02 2.946063E+00
25 1.107912E+02 2.013828E+02 1.750708E+02 1.977504E+02 3.232990E+01
26 1.000136E+02 1.000673E+02 1.000364E+02 1.000324E+02 1.402073E-02
27 1.224286E+00 4.002907E+02 1.847796E+02 3.000632E+02 1.547445E+02
28 1.000856E+02 4.944884E+02 3.887168E+02 3.600612E+02 8.073141E+01
29 1.616316E+02 2.456375E+02 2.270654E+02 2.288594E+02 1.275042E+01
30 4.992300E+02 8.223850E+02 5.851143E+02 5.640864E+02 6.482633E+01

VI. CONCLUSIONS

In this paper, we have analysed MA-LSCh-CMA and
RMA-LSCh-CMA using the new benchmark proposed in
the Special Session on Real-Parameter Single Objective
Optimization. Both of them are memetic algorithms that use
the CMA-ES algorithm to best individuals to make a in-depth
local search. The main difference between RMA-LSCh-CMA
and MA-LSCh-CMA is that the first one divides the domain
search in regions of equals size and it only allows one solu-
tion on each region, to maintain diversity into the population.
During the search these regions are reduced to increase the
degree of exploitation of the solutions. The experimental
results show that the use of regions to maintain diversity
improves the results, and that improvement increases with
the dimensionality. Also, at the same time, it reduces a lot
the algorithm complexity when the dimensionality increase.
Thus, RMA-LSCh-CMA is a robust and scalable algorithm.
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TABLE VIII: Results for 30D

Function Best Worst Mean Median Std

1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
3 0.000000E+00 3.527440E+02 2.619492E+01 0.000000E+00 6.591081E+01
4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
5 1.999871E+01 1.999999E+01 1.999971E+01 1.999979E+01 2.525192E-04
6 4.617794E-03 3.415131E+00 1.135849E+00 1.042735E+00 1.002887E+00
7 0.000000E+00 9.857285E-03 1.932801E-04 0.000000E+00 1.366697E-03
8 0.000000E+00 9.958320E-01 1.953497E-02 0.000000E+00 1.380693E-01
9 8.954632E+00 2.586893E+01 1.792877E+01 1.790926E+01 3.972464E+00

10 1.346573E+00 3.612410E+02 8.124660E+01 8.580182E+00 1.016626E+02
11 3.463690E+02 2.757179E+03 1.549521E+03 1.610068E+03 5.819634E+02
12 5.100968E-03 3.771581E-02 1.597474E-02 1.323069E-02 8.122876E-03
13 9.761344E-02 1.802711E-01 1.376759E-01 1.365498E-01 2.045458E-02
14 1.373580E-01 3.057716E-01 2.216354E-01 2.274716E-01 3.444128E-02
15 1.332803E+00 3.384309E+00 2.450783E+00 2.472471E+00 4.281959E-01
16 8.010510E+00 1.176225E+01 9.647416E+00 9.659988E+00 9.328604E-01
17 3.184446E+01 1.674199E+03 6.978608E+02 7.524421E+02 3.226947E+02
18 4.173044E+01 2.579907E+03 5.669142E+02 2.333781E+02 6.910744E+02
19 2.964660E+00 8.441385E+00 5.822519E+00 5.824098E+00 1.339573E+00
20 8.161756E+01 6.012153E+02 1.988780E+02 1.837007E+02 8.390115E+01
21 1.261600E+02 1.075745E+03 5.732908E+02 5.407018E+02 2.634281E+02
22 2.734139E+01 3.779415E+02 1.588346E+02 1.463604E+02 6.165145E+01
23 3.152441E+02 3.152444E+02 3.152442E+02 3.152442E+02 8.012869E-05
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TABLE IX: Results for 50D

Function Best Worst Mean Median Std

1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
2 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
3 0.000000E+00 1.322879E+03 2.344839E+02 1.771750E+01 3.389534E+02
4 0.000000E+00 9.810311E+01 1.866664E+01 0.000000E+00 3.799332E+01
5 1.999922E+01 1.999999E+01 1.999991E+01 1.999994E+01 1.196615e-04
6 1.230035E+00 1.126953E+01 6.341466E+00 6.121990E+00 2.302482E+00
7 0.000000E+00 1.232099e-02 5.316288e-04 0.000000E+00 2.199802e-03
8 0.000000E+00 5.806045e-05 1.935430e-05 1.981726e-05 1.409291e-05
9 2.188920E+01 5.074315E+01 3.564299E+01 3.681346E+01 6.519047E+00

10 3.560551E+00 6.020461E+02 2.239043E+02 2.424665E+02 1.479644E+02
11 1.226740E+03 4.709829E+03 3.457559E+03 3.623177E+03 6.444440E+02
12 5.513460e-03 2.653887e-02 1.558060e-02 1.438951e-02 5.331830e-03
13 1.630036e-01 2.777435e-01 2.207196e-01 2.192767e-01 2.348579e-02
14 1.992321e-01 2.954067e-01 2.459198e-01 2.467165e-01 2.176523e-02
15 3.175081E+00 6.885428E+00 4.798497E+00 4.686589E+00 7.357523e-01
16 1.664508E+01 2.101696E+01 1.874715E+01 1.872406E+01 1.113784E+00
17 6.848466E+02 3.580324E+03 1.988571E+03 1.943020E+03 6.507009E+02
18 9.370334E+01 2.515978E+03 7.011082E+02 4.790563E+02 5.980367E+02
19 1.043051E+01 1.895826E+01 1.398320E+01 1.394770E+01 1.928223E+00
20 2.884071E+02 4.152443E+03 1.031268E+03 7.641425E+02 7.514658E+02
21 5.209328E+02 2.060567E+03 1.275634E+03 1.249797E+03 4.111007E+02
22 2.793264E+01 8.175153E+02 3.325134E+02 3.107434E+02 1.752374E+02
23 3.440045E+02 3.440056E+02 3.440050E+02 3.440050E+02 2.551582e-04
24 2.548420E+02 2.744139E+02 2.638528E+02 2.589911E+02 7.121144E+00
25 2.052070E+02 2.256620E+02 2.126556E+02 2.099881E+02 6.896996E+00
26 1.001511E+02 1.002611E+02 1.001966E+02 1.001966E+02 2.873123e-02
27 3.079453E+02 6.534402E+02 4.811120E+02 4.884886E+02 7.218094E+01
28 1.096069E+03 2.423497E+03 1.370109E+03 1.308381E+03 2.477899E+02
29 9.983074E+02 2.751970E+03 1.632789E+03 1.622501E+03 3.665546E+02
30 8.506993E+03 1.315283E+04 9.860507E+03 9.589913E+03 9.844969E+02
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TABLE X: Results for 100D

Function Best Worst Mean Median Std

1 0.000000E+00 8.294900e-01 2.096037e-07 1.338985e-01 2.148479e-01
2 0.000000E+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
3 2.297558E+02 3.602810e+03 2.047680e+03 1.918758e+03 8.327843e+02
4 0.000000E+00 2.280353e+02 1.056709e+02 1.055354e+02 7.303576e+01
5 1.999985E+01 1.999999e+01 1.999996e+01 1.999996e+01 3.002242e-05
6 1.653533E+01 3.966517e+01 2.612602e+01 2.686612e+01 5.038756e+00
7 0.000000E+00 7.396045e-03 0.000000e+00 4.327280e-04 1.420433e-03
8 7.310115e-06 1.081272e-04 4.418525e-05 4.696169e-05 1.717164e-05
9 6.367749E+01 1.293446e+02 9.452115e+01 9.539947e+01 1.426078e+01

10 4.811494E+02 1.788446e+03 9.563256e+02 9.839455e+02 2.804663e+02
11 6.599748E+03 9.792360e+03 8.529045e+03 8.549727e+03 7.114195e+02
12 5.454382e-03 2.259985e-02 1.303121e-02 1.355434e-02 3.805194e-03
13 2.407476e-01 3.769922e-01 3.006908e-01 3.065968e-01 2.713187e-02
14 9.845731e-02 1.442743e-01 1.248828e-01 1.240539e-01 9.999619e-03
15 8.129618E+00 1.501749e+01 1.042165e+01 1.060084e+01 1.545311e+00
16 3.980867E+01 4.452669e+01 4.286827e+01 4.268038e+01 1.160471e+00
17 3.345809E+03 6.801327e+03 5.194470e+03 5.183200e+03 7.980310e+02
18 2.665561E+02 8.757247e+03 5.891675e+02 9.787416e+02 1.273552e+03
19 6.127934E+01 1.175469e+02 1.036788e+02 9.951786e+01 1.373116e+01
20 1.312009E+03 5.271713e+03 2.714441e+03 2.975314e+03 1.101745e+03
21 1.937954E+03 5.266148e+03 3.516025e+03 3.516743e+03 7.521412e+02
22 1.689190E+02 1.680732e+03 7.056086e+02 7.793208e+02 3.230215e+02
23 3.482842E+02 3.483444e+02 3.483111e+02 3.483129e+02 1.373773e-02
24 3.322769E+02 3.768691e+02 3.592935e+02 3.590149e+02 7.535504e+00
25 2.182126E+02 2.728012e+02 2.341050e+02 2.368728e+02 1.413945e+01
26 2.000000E+02 2.000828e+02 2.000780e+02 2.000692e+02 2.536428e-02
27 5.991066E+02 1.140925e+03 9.033352e+02 9.112618e+02 1.235201e+02
28 2.319712E+03 4.705286e+03 3.179931e+03 3.288493e+03 5.832432e+02
29 1.318750E+03 4.821635e+03 3.275740e+03 3.165691e+03 7.553812e+02
30 5.971089E+03 1.112881e+04 9.383213e+03 9.247364e+03 9.434189e+02
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