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Abstract The presence of noise in data is a common problem that produces sev-

eral negative consequences, and is an unavoidable problem, which affects the data

collection and data preparation processes in Data Mining applications, where errors

commonly occur. The performance of the models built under such circumstances

will heavily depend on the quality of the training data. Hence, problems contain-

ing noise are complex problems and accurate solutions are often difficult to achieve

without using specialized techniques. A particular supervised learning field as sub-

group discovery has overlooked the analysis of noise and its impact in the descrip-

tion obtained. In this paper, the noise impact in subgroup discovery is analyzed in a

complete experimental study, using recent filtering techniques for several class noise

levels. Specifically, the analysis is performed through the FuGePSD algorithm which

is a state-of-the-art SD algorithm based on genetic programming and fuzzy logic.

Keywords Subgroup discovery ⋅ Class noise ⋅ Noise filters

1 Introduction

Real-world data is never perfect and often suffers from corruptions that may harm

interpretations of the data, models built and decisions made. Noise can negatively

affect the system performance in terms of accuracy, building time, size and inter-

pretability of the model built [23] and it is specially relevant in supervised problems,

where it alters the relationship between the informative features and the measure out-

put. For this reason noise has been specially studied in classification and regression

where noise hinders the knowledge extraction from the data and spoils the models
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when compared to models learned from clean data for the same domain, which rep-

resent the real implicit knowledge of the problem [10].

Several approaches have been studied in the literature to deal with noisy data and

to obtain better models, traditionally in classification problems. Robust learners [2]

are characterized for being less influenced by noise, but designing a robust learner is

not trivial. C4.5 [18] is a typical example thanks to its pruning phase. Several works

[19] claim that complete or partial noise correction made by data polishing methods
improves test performance results in comparison with no preprocessing, but it is only

feasible in small data sets due to a high computational cost. Finally, the most popular

choice are noise filters [3, 13], as they act as a preprocessing step, identifying and

eliminating the noisy instances from the training data.

However, the effect of noise and capabilities of descriptive algorithms in the pres-

ence of noise has been mostly ignored, and since this framework of data mining also

relies on supervised examples, the negative effects of noise cannot be ignored. Sub-

group discovery (SD) [12] is a descriptive data mining technique using supervised

learning, i.e. it is a half-way between classification and description, where the knowl-

edge is represented through rules. The analysis of quality measures in SD is a key

factor in order to observe the correct operation of the SD algorithms. The values of

these quality measures can be affected for the presence of noise in the data.

In this work we are interested in analysing the performance of SD learning in the

presence of noise, and to study different approaches to deal with it. Since noise filter-

ing is a popular preprocessing step that does not require any modification of the SD

algorithms, we will use three recent filters for class noise: EF, CVCF and IPF. From

14 base supervised data sets, different amounts of class noise will be introduced,

from 5 to 20 %, generating an increasingly noisy scenario to check the suitability of

the filtering for SD. We will use a state-of-the-art SD technique, FuGePSD, which is

the most recent evolutionary fuzzy system (EFS) for SD presented up to the moment

and able to deal with low amounts of noise. The fuzzy confidence measure is used

to evaluate the performance of FuGePSD, and the analysis is supported by the use

of the Wilcoxon’s Signed Rank non-parametric statistical test.

The rest of this contribution is organized as follows. Section 2 introduces the back-

ground concepts of subgroup discovery and filtering techniques used. Next, Sect. 3

describes the experimental framework and includes the experimental results and

their analysis. Finally, Sect. 4 presents some concluding remarks.

2 Preliminaries

This section presents main concepts, algorithms and noise filters used in the paper.

Section 2.1 presents main properties of SD and the FuGePSD algorithm, Sects. 2.2,

2.3 and 2.4 presents noise filters employed in the experimental study.
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2.1 Subgroup Discovery

SD is a descriptive data mining technique based on supervised learning. The concept

of SD was initially introduced by Kloesgen [14] and Wrobel [21]. The main purpose

of SD is to seek and explore relationships between different properties or variables

with respect to a target variable, and representations of the knowledge are performed

through rules which consist of induced subgroup descriptions [9, 16]. Each rule R
can be formally defined as:

R ∶ Cond → Targetvalue

where Targetvalue is a value for the variable of interest (target variable) for the SD

task (which also appears asClass in the literature), andCond is commonly a conjunc-

tion of features (attribute-value pairs) which is able to describe an unusual statistical

distribution with respect to the Targetvalue.
Despite the use of a target variable, SD is a descriptive induction task using super-

vised learning while classification is a predictive task. Main differences between SD

and classification can be observed in [12].

The most important elements considered for an SD approach are: the target vari-

able, the search strategy, the descriptive language of the subgroups and the quality

measures used. Reviews about major properties, features, algorithms and real-world

problems solved through the application of SD algorithms can be found in [4, 12].

Throughout the literature there are a wide number of SD algorithms based on

exhaustive or stochastic strategies, among others. Recently, a new algorithm called

FuGePSD has been presented [5]. This algorithm is an EFS [11] which are basically

a fuzzy system augmented by a learning process based on evolutionary computation

[8]. Fuzzy systems are usually considered in the form of fuzzy-rule based systems

(FRBSs), which are composed of “IF-THEN” rules where both the antecedent and

consequent can contain fuzzy logic statements and EAs are well known and widely

used global search techniques with the ability to explore a large search space. In

summary, the properties of this type of systems make them highly suitable for the

development of SD approaches. In fact, the use of fuzzy rules, based on fuzzy logic

[22], already allow to consider uncertainty, and also to represent the continuous vari-

ables in a manner which is close to human reasoning. In this way, interpretable fuzzy

rules consider continuous variables as linguistic ones, where values are represented

through fuzzy linguistic labels (LLs). The fuzzy set corresponding to each LL can be

specified by the user or defined by means of uniform partitions if knowledge is not

available.

Equation 1 represents a canonical fuzzy rule:

R ∶ IF X1 = (LL21) AND X3 = (LL13) THEN Targetvalue (1)

where:

∙ X = {Xm∕m = 1,… , nv} is a set of features used to describe the subgroups, and

nv is the number of descriptive features.
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∙ T = {Targetvalue∕j = 1,… , ntv} is a set of values for the target variable, and ntv is

the number of values for the target variable.

∙ LL
lnv
nv is the LL number lnv of the variable nv.

FuGePSD is based on genetic programming [15] with the ability to extract

descriptive fuzzy rules for the SD task. It employs a tree with a variable-length struc-

ture to represent the individuals of the population together several mechanisms and

specific operators in order to maximise the quality measures. A complete description

of the algorithm FuGePSD can be found in [5].

2.2 Ensemble Filter

The Ensemble Filter (EF) [3] uses a set of learning algorithms to create classifiers

in several subsets of the training data that serve as noise filters for the training set.

The identification of potentially noisy instances is carried out by performing an 𝛤 -

FCV on the training data with 𝜇 classification algorithms, called filter algorithms. In

the developed experimentation for this contribution we have utilized the three filter

algorithms used by the authors in [3], which are C4.5, 1-NN and LDA [17]. The

complete process carried out by EF is described below:

∙ Split the training data set DT into 𝛤 equal sized subsets.

∙ For each one of the 𝜇 filter algorithms:

– For each of these 𝛤 parts, the filter algorithm is trained on the other 𝛤 −1 parts.

This results in 𝛤 different classifiers.

– These 𝛤 resulting classifiers are then used to tag each instance in the excluded

part as either correct or mislabeled, by comparing the training label with that

assigned by the classifier.

∙ At the end of the above process, each instance in the training data has been tagged

by each filter algorithm.

∙ Add to DN the noisy instances identified in DT using a consensus voting scheme,

taking into account the correctness of the labels obtained in the previous step by

the 𝜇 filter algorithms.

∙ Remove the noisy instances from the training set: DT ← DT ⧵ DN .

2.3 Cross-Validated Committees Filter

The Cross-Validated Committees Filter (CVCF) [20] uses ensemble methods in

order to preprocess the training set to identify and remove mislabeled instances in

classification data sets. CVCF is mainly based on performing an 𝛤 -FCV to split the

full training data and on building classifiers using decision trees in each training
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subset. The authors of CVCF place special emphasis on using ensembles of decision

trees such as C4.5. The basic steps of CVCF are the following:

∙ Split the training data set DT into 𝛤 equal sized subsets.

∙ For each of these 𝛤 parts, C4.5 (as suggested by the authors) is trained on the other

𝛤 − 1 parts. This results in 𝛤 different classifiers.

∙ These 𝛤 resulting classifiers are then used to tag each instance in the training

set DT as either correct or mislabeled, by comparing the training label with that

assigned by the classifier.

∙ Add toDN the noisy instances identified inDT using a voting scheme (the majority

scheme in our experimentation), taking into account the correctness of the labels

obtained in the previous step by the 𝛤 classifier built.

∙ Remove the noisy instances from the training set: DT ← DT ⧵ DN .

2.4 Iterative-Partitioning Filter

The Iterative-Partitioning Filter (IPF) [13] is a preprocessing technique based on the

Partitioning Filter [24]. It is employed to identify and eliminate mislabeled instances

in large data sets. Most noise filters assume that data sets are relatively small and

capable of being learned after only one time, but this is not always true and parti-

tioning procedures may be necessary.

IPF removes noisy instances in multiple iterations until a stopping criterion is

reached. The iterative process stops if, for a number of consecutive iterations s, the

number of identified noisy instances in each of these iterations is less than a per-

centage p of the size of the original training data set. Initially, we have a set of noisy

instances DN = ∅ and a set of good data DG = ∅. The basic steps of each iteration

are:

∙ Split the training data set DT into 𝛤 equal sized subsets.

∙ For each of these 𝛤 parts, C4.5 is trained on this part as recommended by the

authors. This results in 𝛤 different trees.

∙ These 𝛤 resulting classifiers, are then used to tag each instance in the training

set DT as either correct or mislabeled, by comparing the training label with that

assigned by the classifier.

∙ Add to DN the noisy instances identified in DT using majority voting, taking into

account the correctness of the labels obtained in the previous step by the 𝛤 clas-

sifier built.

∙ Remove the noisy instances and the good data from the training set: DT ← DT ⧵
{DN ∪ DG}.

At the end of the iterative process, the filtered data is formed by the remaining

instances of DT and the good data of DG; that is, DT ∪ DG.
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3 Experimental Analysis

First, this section describes the processes to induce class noise into original base data

sets and the methodology for the analysis of the results (Sect. 3.1). Next, the results

and their analysis are presented in Sect. 3.2.

3.1 Experimental Framework and Analysis Methodology

The experimentation is based on 14 real-world classification problems from the

KEEL-data set repository
1

[1] shown in Table 1, with their characteristics. Their

initial amount of class noise is unknown and thus no assumptions about the noise

level can be made. In order to control the amount of noise in each data set, differ-

ent class noise levels x% are introduced with the uniform class noise scheme [19].

Following this noise introduction procedure, x% of the examples are corrupted by

randomly replacing its current class label for any other possible one, drawn from a

discrete uniform distribution.

Table 1 Base data sets used to introduce noise, including the number of attributes and their type

(real, integer or nominal), the number of examples and the number of classes for each one

Data set # Attributes (R/I/N) # Examples # Classes

Balance 4 (4/0/0) 625 3

Banana 2 (2/0/0) 5300 2

Cleveland 13 (13/0/0) 303 5

Ecoli 7 (7/0/0) 336 8

German 20 (0/7/13) 1000 2

Heart 13 (1/12/0) 270 2

Ionosphere 33 (32/1/0) 351 2

Iris 4 (4/0/0) 150 3

Led7digit 7 (7/0/0) 500 10

Newthyroid 5 (4/1/0) 215 3

Phoneme 5 (5/0/0) 5404 2

Pima 8 (8/0/0) 768 2

Vehicle 18 (0/18/0) 846 4

Wine 13 (13/0/0) 178 3

The accuracy estimation of the classifiers in a data set is obtained by means of

3 runs of a stratified 5-fold cross-validation. 5 partitions are used because, if each

partition has a large number of examples, the noise effects will be more notable,

1
http://www.keel.es/datasets.php.

http://www.keel.es/datasets.php
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facilitating their analysis. New class noise data sets will be created from the afore-

mentioned forty base data sets, considering the noise levels ranging from x = 0%
(base data sets) to x = 20%, by increments of 5 %.

In order to check the behavior of the different methods when dealing with class

noise, the results of the SD algorithm are evaluated by using a modified quality mea-

sure of confidence, the fuzzy confidence [6]:

FCnf (Ri) =
∑

Ek∈E∕Ek∈TargetValuek APC(E
k
,Ri)

∑
Ek∈E APC(Ek

,Ri)
(2)

where, APC (Antecedent Part Compatibility) is the degree of compatibility

between an example and the antecedent component of a fuzzy rule, i.e., the degree

of membership for the example to the fuzzy subspace delimited by the antecedent

part of the rule. An example Ek
verifies the APC of a rule if

APC(Ek
,Ri) = T(𝜇LL11 (e

k
1),… , 𝜇

LL
lnv
nv
(eknv )) > 0 (3)

The FCnf results’ analysis are supported by a Wilcoxon’s statistical test [7]. This

is a non-parametric pairwise test that aims to detect significant differences between

two sample medians. For each level of class noise, the three filters (CVCF, EF and

IPF) and the no filtering approach will be compared using Wilcoxon’s test.

3.2 Noise Filtering for Subgroup Discovery

We want to analyze whether using a filtering approach is beneficial for the perfor-

mance of FuGePSD, as a recent and representative SD algorithm. For this reason, we

compare the capabilities of FuGePSD without filtering, as being a fuzzy approach to

SD should make it more robust against noise, over the increasingly noisy versions of

the base data sets. We call this absence of filtering “No filter” in Table 2, where the

results of FuGePSD after preprocessing the noisy data sets with CVCF, EF and IPF

are also shown. We also indicate the base case, in which no class noise is introduced

in the data set, in order to study whether the introduction of noise causes a significant

decrement in FCnf as the amount of noise increases.

As can be seen from Table 2, there is a change of which approach is the best as the

amount of noise increases. While for 5 % EF seems to be the best approach, being

the best for 7 data sets, IPF and CVCF become better options than EF as the noise

increases. It is also worthy to note that no filtering can be a reasonable choice for

lower amounts of noise, as FuGePSD is able to deal with these small amounts of

noise thanks to its fuzzy nature. However, as the noise is too much to be ignored,

filtering is mandatory.

We must mention that for some data sets, introducing noise improves the FCnf

value when no filtering, due to a beneficial change in the class labels, but it is not the
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Fig. 1 FCnf of FuGePSD

for 5 % class noise

Fig. 2 FCnf of FuGePSD

for 10 % class noise

Fig. 3 FCnf of FuGePSD

for 15 % class noise

Fig. 4 FCnf of FuGePSD

for 20 % class noise
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common case as it only happens for the balance, ecoli and phoneme data sets. It is

also important to note that the behavior of the filtering approaches vary depending

on the data set. For better visualize this variability, we include the representation of

the FCnf values in a radial depiction for each noise level. Figures 1, 2, 3 and 4 show

the FCnf values for 5 10, 15 and 20 % of class noise respectively. From them it is

easy to observe how No filter is similar to No noise with 5 % of noise, but becomes

a bad option from 10 % onwards. We can also point out how some data sets benefit

more from filtering, as ionosphere, german, newthyroid, iris and heart. For these

data sets, the filtering even causes FuGePSD to work better than the No noise base

case, as the filtering is able to clean the class boundaries and allowing FuGePSD to

obtain a better description of the class clusters. For other data sets, as balance or

phoneme, no filtering is appropriate for FuGePSD, causing a decrement in FCnf, but

these are scarce cases compared to the total of data sets.

In Table 3 we include the summarized results of the Wilcoxon’s Signed Rank

test, in which we compare the different approaches for each noise level. Significative

differences only appear with higher levels of noise. However, at all noise levels no

filtering is worse than the 0 % noise level (No noise) but the filtering approaches do

not show this difference. Thus, no filtering is significatively worse than the original,

noise-induced free, case even at low amounts of noise. As a consequence, filtering

in noisy frameworks for SD should be always taken into account. When the amount

of noise is non-ignorable (from 10 % onwards), some filtering approaches are better

suited for FuGePSD. As can be seen from Table 3, CVCF is specially indicated when

the level of noise is high (15 and 20 %). As CVCF is never worse than the rest of

filters, and it outperforms no filtering from 10 % onwards, it seems to be the best

option for FuGePSD in this contribution and a promising choice for SD approaches.

4 Concluding Remarks

In this contribution, we have analyzed the influence of the class noise in the SD prob-

lem, that is a descriptive data mining technique using supervised learning. Specif-

ically, the analysis has been performed with the FuGePSD algorithm which is the

most recent EFS presented in the literature. It has an excellent behavior with data

sets with continuous variables.

To do so, different class noise amounts (5, 10, 15 and 20 %) have been introduced

in the original data sets. The study shows different situations with respect to the

increment of noise. As FuGePSD is a fuzzy SD approach, is robust to uncertainty

and noise to a certain extent, and thus no filtering can be a reasonable choice for

lower amounts of noise. On the other hand, when the amount of noise increases, its

treatment cannot be ignored and the application of specialized techniques as noise

filters is beneficial. In the latter case, we remark that IPF and CVCF become bet-

ter options when noise cannot be ignored. In addition, statistical tests support that

CVCF seems to be the best option in this contribution and a promising choice for

SD approaches.
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This work opens future efforts in order to enlarge and observe the influence of the

class and/or attribute noise in several SD proposals and so to obtain more compre-

hensible and complete analysis in this data mining field.
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