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Abstract

The automatic detection of cold steel weapons handled by one or mul-
tiple persons in surveillance videos can help reducing crimes. However,
the detection of these metallic objects in videos faces an important prob-
lem: their surface reflectance under medium to high illumination condi-
tions blurs their shapes in the image and hence makes their detection
impossible. The objective of this work is two-fold: (i) To develop an au-
tomatic cold steel weapon detection model for video surveillance using
Convolutional Neural Networks(CNN) and (ii) strengthen its robustness
to light conditions by proposing a brightness guided preprocessing pro-
cedure called DaCoLT (Darkening and Contrast at Learning and Test
stages). The obtained detection model provides excellent results as cold
steel weapon detector and as automatic alarm system in video surveil-
lance.

Index terms— Cold steel weapon detection, Convolutional Neural Net-
works, video surveillance, automatic alarm system.

1 Introduction

According to World Health Organization !, every year more than 15,000 per-
son die in violent crimes. Around 40% of these homicides are committed with
knives and sharp cold steel weapons. In video surveillance, security agents have

Thttp://www.euro.who.int/__data/assets/pdf_file/0012/121314/E94277 . pdf
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to visually detect the presence of weapons in the monitored scenes and make de-
cisions in a very short time. One of the most effective solutions to this problem
is to equip surveillance cameras with an accurate automatic cold steel weapon
detection alarm system.

Most previous studies addressed weapon detection on X-ray, millimetric,
or RGB images using classical machine learning methods [5, 7, 26, 27, 28].
Currently, the most accurate object detection models are based on deep learn-
ing techniques, particularly CNN-based models. The first work in addressing
weapon detection in videos using CNNs was of Olmos et al.[16]. This work
focused on pistols and was evaluated on videos of movies from the nineties.

As far as we know, the present study is the first in developing a cold steel
weapon detection model using deep learning and addressing the problem of
the brightness produced by cold steel surface reflectance in surveillance videos
recorded in indoor scenarios. The detection of cold steel weapons in surveillance
videos in indoor scenes faces several challenges:

e (Cold steel weapons can be handled in different ways and a large part of the
weapon can be occluded. In addition, common cold steel weapons such as
knives are small and the distance between the knife and the camera can
be large which makes the detection more challenging.

e The process of designing a new dataset for successfully training the detec-
tion model is manual and time consuming.

e In general, cold steel weapon, such as knives, have reflecting surface that
under different light conditions can distorts and blurs their shape in the
frames.

e Automatic cold steel weapon detection alarm requires the activation of
the alarm in real time and needs an accurate location of the weapon in
the monitored scene.

We focus on accurately detecting the most used types of cold steel weapons in
crimes: kitchen knife, machete, razor, dagger and carved knives. We built a new
dataset that allows the model to successfully learn the distinctive features of cold
steel weapons. Then, we developed a cold steel detection model appropriate for
indoor scenarios. We studied the brightness conditions that affect the detection
performance and propose a new brightness guided preprocessing procedure that
overcomes the problem of high brightness conditions.

The main contributions of this work can be summarized as follows:

e Build a new labeled cold steel detection database guided by the classifica-
tion process.

e Analyze the best combination of CNN-based classifiers and region selection
techniques for the automatic cold steel weapons detection in surveillance
videos in indoor scenarios.

e Propose a new brightness guided preprocessing procedure, called Dark-
ening and Contrast at Learning and Test (DaCoLT), for overcoming the



detrimental brightness conditions. This procedure consists of using a dark-
ening data-augmentation technique at learning stage, and darkening plus
improving contrast(with Contrast-Limited Adaptive Histogram Equaliza-
tion CLAHE algorithm [19]) at inference stage.

e Develop a real time cold steel weapon detection system for surveillance
videos.

Our experimental study shows that the most accurate detection model trained
on our new database is R-FCN(ResNet101), providing F1 measure of 93%. The
F1 obtained by the detection model in the same scenarios (i.e., same objects and
actions) under different brightness conditions worsened by up to 15%. By using
DaCoLT procedure we reduced this difference from 15% to 3%. In addition, the
proposed cold steel weapon detection model can be used as automatic alarm
system at real-time with an average activation time rate of 0.41 seconds.

This paper is organized as follows. Section 2 gives a brief analysis of the most
related research studies. Section 3 gives an overview of the most influential selec-
tive search techniques and CNN-based classification models. Section 4 describes
the approach we used to build our new detection database. Section 5 selects the
most suitable detector for video surveillance and analyzes its performance in
different brightness conditions. Section 6 describes the proposed DaCoLT pro-
cedure and analyzes its impact on the detection performance. Section 7 proves
the suitability of the detector as automatic detection system using 19 scenes
and AATpI metric. Finally, the conclusions are summarized in Section 8.

2 Related works

The problem of detecting a knife handled by a person in surveillance videos is
closely related to (i) small objects detection in images and (ii) general objects
detection using deep learning models.

The traditional area of weapon detection in images has often used classi-
cal supervised machine learning methods that require a high level of human
supervision, i.e. Features from Accelerated Segment Test (FAST) [1], Scale In-
variant Feature Transform (SIFT) [5], Active Appearance Models (AAMs) [7],
Harris [26]. The used data are mainly X-ray or millimetric images [27, 28]
for concealed weapon and RGB for visible weapons [1, 7, 8]. The authors of
[7] focus on detecting the sharp point of concealed knives in X-ray images by
combining a time consuming search technique with the AAMs. This approach
reaches good accuracy but only on noise free X-ray images and at a high com-
putational cost. The authors in [8] detects a knife in a RGB-images using the
sliding window search approach combined with the classical SVM classifier. All
these methods provide good accuracies but suffer from several limitations, they
are invasive, need expensive metal-detector systems [5] such as the systems used
in the airport access, cannot detect multiple weapons [11, 26] and are slow to
be used in real time detection systems [1].



The state-of-the-art object detection models are based on deep Convolu-
tional Neural Networks and showed promising results in the two most presti-
gious detection challenges. The most accurate detection model in the ILSVRC
2017 (Large Scale Visual Recognition Challenge) [20] reached a mean precision
of around 73% 2 on a benchmark of 527,892 images arranged into 200 object
classes, with an average of 2, 500 images per class. The most accurate detection
model on the 80 object detection benchmark in Common Objects in Context
(COCO) challenge [12] also reached a mean precision of around 73%. The high-
est performance in COCO, a precision of 60% and recall of 80% were obtained
on large objects and the lower performance, a precision of 30% and recall of
50% were obtained on small objects 3.

As far as we know, the first automatic handgun detection system based on
Deep Learning was [16]. This work showed good accuracies in movies (down-
loaded from YouTube) with better quality, i.e., better resolution, contrast and
brightness than common surveillance videos. The best results reported in this
work was obtained by Faster R-CNN [18](VGGNet [21]) detection model with
a rate of five frames per second(fps), which is a bit farther from being a near
real time system.

3 Deep learning based detection models

The state-of-the-art detection models reformulate the detection task into a clas-
sification task following two steps. First, they apply a selective search technique
to generate candidate regions from the input image then, analyze each candi-
date proposal with a CNN-based classification model. The combination of these
two steps is critical to the detection performance.

3.1 Selective search techniques

One of the main challenges in object detection is that a priori the object of in-
terest could be in any region in the input image. The selective search techniques
intend to find the regions where the object is more likely to be located. One
of the classical search techniques is the sliding window, it generates millions
candidate windows, which makes this approach too slow (all these candidate
windows should be feeded to the classifier) and hence not suitable for real time
detection. Ome of the fastest search techniques is the Region Proposal (RP)
search algorithm, it produces much less candidate-regions, in the order of thou-
sands, based on the next simple assumption: the areas from the input image
that contain a blobby shape are considered as potential proposals.

The first detection model in introducing the RP search algorithm was R-
CNN [6]. Later, the RP search technique was converted into a fully convo-
lutional network, called Region Proposal Network (RPN) [15], which allowed
converting the two step detection process into one single step process called

2http://image-net.org/challenges/LSVRC/2017/
3http://cocodataset.org/#detections—leaderboard
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end-to-end detection model. The first end-to-end model in adopting RPN as
search approach was Faster R-CNN [18] followed by R-FCN [3].

Faster R-CNN operates in two steps, it uses RPN to generates around 100
regions of interest using several windows considering multiple default aspect
ratios on the last feature map, then classifies these proposals with the next fully
connected layers. R-FCN can be considered as an improved implementation
of Faster R-CNN, it completely fuses the RPN and classifier with the aim of
increasing the re-utilization of the calculation and memory accesses to shared
data.

The fastest technique for object detection was included first in You Look
Only Once(YOLO) [17] then in Single Shot MultiBox Detector(SSD) [13]. This
technique divides the input image into a regular grid then selects candidate-
regions centred in the grid-cells. The classification score of each candidate region
is calculated using the scores obtained in the grid-cells to which it belongs. This
technique is fast because it re-utilizes the classification of the grid cells.

3.2 Convolutional network-based models

Convolutional Neural Networks are a particular type of neural networks, they
are built as a stack of convolutional layers, pooling layers, and fully-connected
layers. Convolutional and fully connected layers are learnable layers, while the
pooling layer is a reduction layer that helps increasing the abstraction level
between learnable layers. Recent CNNs-based classification models are increas-
ingly showing significant improvements in a variety of computer vision tasks [14],
in object recognition [22, 4], object detection [30, 16] and image segmenta-
tion [29].

In this subsection, we introduce the most influential CNN-based classification
models used in our study: ResNet, Inception and Inception-ResNet-V2.

Figure 1: T

his building block is stacked several times to create ResNest50 and ResNet101,
with 50 and 101 learnable layers respectively. Figure from [9].
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Deep residual Network [9] (ResNet), proposed by Microsoft, won the localization
and detection tasks in the ILSVRC-2015 challenge and the segmentation and



detection tasks in COCO-2015 challenge [12]. In this work, we consider two
residual network architectures, ResNet50 and ResNet101 composed of 50 and
101 learnable layers respectively. Both, ResNet50 and ResNet101, are based on
the building block shown in Figure 1. Very deep convolutional networks are
more accurate but harder to train. ResNet is based on repeating a building
block made of three convolutions, a 1x1 followed by a 3x3 and a 1x1, and a
connection joining the input of the first convolution to the output of the last
convolution. The connection resolve the training by fusing filtered features with
original features (residual learning), as illustrated in Figure 1.

Figure 2: InceptionV2 building block. Figure from [24].
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GoogLeNet [24] won the ILSVRC-2014 detection challenge. It is based on the
repetition of the building block module called Inception depicted in Figure 2.
This module extracts different levels of features concatenated as output of mod-
ule. Inception module embeds seven convolutions and one pooling layers divided
into four feature channels introduced to increase width and depth. InceptionV2
network contains eight Inception modules and two refactorized modules, which
are a variation of Inception.

Figure 3: Residual Inception modules used for Inception-ResNet-V2 architec-
ture. Inception-A, Inception-B, and Inception-C blocks depicted from left to
right. Figure from [23].
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Inception-ResNet-V2

The combination of the residual connections and Inception, i.e. Inception-
ResNet scheme, have shown better performance in image recognition. In this
work, we considered the Inception-ResNet-V2 [23] architecture which currently
represents the state-of-the-art in image classification. This architecture use
simplified Inception modules with residual connections, as shown Figure 3.
Inception-ResNet-V2 is based on variations of the original Inception module,
five Inception-A, ten Inception-B, and five Inception-C block ordered from the
higher to the lower network levels.

Training CININ-based classifiers
The supervised learning process of Deep CNNs, such as ResNet, Inception V2
and Inception-ResNet V2, is based on minimizing the average loss:

1 N

J(w) = 5 D L(F(w; i), i) + AR(w) (1)
i=1

where z; and y; are the input images and the corresponding label respectively.
N is the number of training examples in every iteration, L is the loss function,
f is the prediction of the network using the current weights w, and R is the
weight decay with the Lagrange multiplier A\. We use the Stochastic Gradient
Descent (SGD) algorithm with back propagation to update the weights. SGD
computes the output of the network for a set of samples, then, computes the
output error and its derivatives with respect to the weights to finally update
the weights of the learnable layers as follows.

wip1 = pwy — AT (wy) (2)

where g is the momentum weight for the current weights w; and « is the learning
rate.

The network weights can be randomly initialized if the network is trained
from scratch or set to a pre-trained network weights if fine-tuning the CNN-
based model. In this work we have initialized each network with the weights
of the same architecture pre-trained on COCO database and retrained the
last learnable layer. The selection of an appropriate combination of data-
augmentation techniques should be considered to further improve the learning
of the network [25].

4 Procedure for building the cold steel detection
database

To build a database that allows the detection model to accurately distinguish
between knives and all the objects that could be confused with knives, we first
start with an initial classification dataset, Database-1, and extend it progres-
sively with new object classes so that the number of True Positives (#TP), False



Positives (#FP), True Negatives (#TN), and False Negatives (#FN) produced
by a simple classification model (VGG-16) are improved. This analysis allows
us to understand which objects are critical to the learning process and consider
them as background when constructing the final detection database.

We developed the database in three steps as follows:

e Database-1 includes 2 classes, the knife class contains images of knives of
diverse sizes and with diverse backgrounds.

e Database-2 contains 28 classes and includes new object classes that are
often present as background in the knife class in Database-1.

e Database-3 includes object classes that can be handled similarly to the
knife, e.g., pen, smartphone, see four examples in Figure 4.

Figure 4: Example images of four object classes from Database-3, (a) knife class,
(b) pen class, (c¢) mobile phone class and (d) cigarette class.

(a) (b

The images used to build Database-1, -2 and -3 were downloaded from di-
verse websites. The characteristics of the three auxiliary databases, Database-1,
-2 and -3, are shown in Table 1.

To evaluate the performance of the classification and detection models on
the proposed databases, we have built two test-sets, Test-clas and Test-det.

e Test-clas is used for evaluating the classification model, it consists of 512
images, 260 images contain the knife class and 252 images contain other
object classes.

e Test-det is used for evaluating the detection models, it contains 388 im-
ages, 378 contain at least one knife. Test-det includes frames taken by
a surveillance IP camera (Hikvision DS-2CD2420F-IW 1080p for video,
frame-rate of 30fps, field of view 95° and MJPEG compression).

We used Keras API 2.0.4 [2] for the experiments. The performance, pre-
cision, recall, and F1, obtained by the classification model when trained on
Database-1, -2 and -3 is shown in Table 2. Where,

Precision = & Recall = ﬂ
T HTP+H#FP T H#TP+H#FN
Flscore — Precision x Recall

Precision + Recall



Table 1: Databases information.

Database- classes total img img knives other img task
1 2 1,654 598 1,056 | classification
2 28 5,538 598 4,940 | classification
3 100 10,039 618 9,421 | classification
4 1 1,250 1,250 - detection
Test-clas - 512 260 252 classification
Test-det - 388 378 10 detection

Table 2: Results of the classification model in the knife class.

Database-[#TP #FN #TN #FP [Precision(%) Recall(%) F1 score(%)
1 181 79 174 78 69.88 69.62 69.75
2 209 51 228 24 89.70 80.38 84.78
3 213 47 228 24 89.87 81.92 85.71

The knife class performance has increased when extending the dataset with
more object classes. The best performance is obtained when the model is trained
on Database-3, but it cannot be directly used for training the detection model
as the detector requires a different annotating strategy.

As final step, we built the training set, Database-4, by taking into account all
the object classes, from Database-1,-2 and -3, that improve the learning because
either they are handled in the same way as a knife or have similar features as
a knife. Unlike in image classification, the annotation process for the detection
requires indicating the object class using a bounding box. We consider two
classes, the knife as the true class and the rest of objects as background. We
included images of i) cold steel weapon of diverse types, shapes, colors, sizes and
made of different materials ii) knives located near and far from the camera, iii)
knives occluded partially by the hand, iv) objects that can be handled in the
same way as knives and v) images captured in indoor and outdoor scenarios.
We obtained a total number of 1,250 images. Examples from Database-4 are
shown is Figure 5.

The images used to build this database were downloaded from Internet, some
frames were extracted from Youtube videos and surveillance videos. In the rest
of the paper we will use Database-4 for training the detection model.

Figure 5: Example images from Database-4. These images show a richer context.




5 Analysis of the deep learning approach for
cold steel weapon detection

A cold steel weapon detection system in video surveillance requires a fast and ro-
bust detection model for real scenarios and under various brightness conditions.
In this section, we provide:

e A description of the hardware, software setup and model hyper-parameters
used to carry out the experimental study(Section 5.1).

e The performance analysis of several modern detection models to select a
fast and accurate model suitable for real-time detection(Section 5.2)

e How different brightness conditions present in real scenarios affect the
detection performance(Section 5.3)

5.1 Experimental setup

The detection models were built and evaluated using Tensorflow Object Detec-
tion API [10]. The experiments were carried out on a Intel Xeon E5-2630v4
CPU accelerated with NVIDIA Titan Xp GPU. A summary of the used hyper-
parameters is provided in Table 3. The set of data-augmentation techniques
applied in the training stage are shown in Table 4.

Table 3: The hyperparameters used for tuning all detection models.

Hyperparameter Value Description
grid anchor generator

scales|[0.25, 0.5, 1.0, 2.0] | List of scales for the anchors

aspect ratios [0.5, 1.0, 2.0] List of aspect ratios for the anchors
height-width stride 16, 16 Anchor stride in height-width dimension
in pixels
height-width 256, 256 Anchor height-width in pixels
batch non max suppression
score threshold 0.0 Scalar threshold for removing low scoring
boxes
IOU threshold 0.6 Scalar threshold for removing boxes that

have high IOU overlap with previously
selected boxes

max detection per class 100 Maximum number of detections to retain
per class
max total detections 100 Maximum number of detections to retain
across all classes
score converter softmax Specify how to convert the detection scores
batch size 1 Required for RPN non parallel training
learning rate 0.0003 Optimizer
momentum 0.9 Optimizer
num steps 18 epochs Number of steps to train the model
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Table 4: The set of data-augmentation techniques used for training all the
analyzed models.

Data augmentation technique | Parameter Value | Description
random horizontal flip probability 0.5 | Random horizontal flip
random image scale min ratio 0.9 | Scale image by factor
max ratio 1.4
random RGB to gray probability 0.1 | Randomly convert entire image
to gray scale
random crop image overlap threshold | 0.6 | Minimum overlap threshold of
cropped boxes

5.2 Selection of the best detection model

We analyzed the performance of several combinations of the state-of-the-art
classification models and region selection techniques with the objective of finding
the best detection model for video surveillance. In particular, we analyzed these
combinations:

e SSD(InceptionV2)

e R-FCN(ResNet101)

e Faster R-CNN(Inception-ResNet-V2, ResNet50, ResNet101, and
InceptionV2)

All the detection models were initialized using the pre-trained weights on
COCO dataset made of more than 200,000 labeled images. We used fine-tuning
by training the last fully connected layer of the network. The training process
takes from three to four hours.

Table 5: Comparative analysis of the state-of-the-art detection models.

Detector Feature extractor #TP #FP |Precision(%) Recall(%) F1(%) |fps rate
Faster R-CNN |Inception-ResNet-V2| 345 0 100 91.27 95.44 1.3
Faster R-CNN |ResNet101 332 8 97.65 89.73  93.52 4.8
Faster R-CNN | InceptionV2 329 3 99.1 87.04 92.64 | 12.8
Faster R-CNN |ResNet50 326 2 99.39 86.24  92.35 4.4
R-FCN ResNet101 335 0 100 88.62  93.97 10
SSD InceptionV2 245 0 100 64.81 78.65 | 20.4

The performance of the detection models is measured in terms of true pos-
itives, false positives, precision, recall, F1, and inference time rate(frames per
second). The training and testing were carried out on Database-4 and test-det
respectively. In general, Faster R-CNN(Inception-ResNet-V2, ResNet101, In-
ceptionV2, ResNet50), R-FCN(ResNet101) and SSD(InceptionV2) achieve high
performance as it can be seen in Table 5. This high performance can be ex-
plained by the fact that transfer learning from COCO has been very beneficial
for the learning process as COCO includes the knife class made up of around
8.500 images.

11



In particular, the most accurate model is Faster R-CNN(Inception-ResNet-
V2) providing an F1 score of 95%. However, it is not suitable for near-real
time tasks as it has a rate of 1.3 fps. The fastest detector is SSD(InceptionV2),
however it produces the worst results. As we focus on video surveillance, the
detection should be accurate and fast at the same time. Therefore, we select
R-FCN(ResNet101) to build our cold steel weapons detector. Using 100 region
proposals R-FCN(ResNet101) achieves a good precision, 100%, recall 88.62%
and F1 93.97%, which is close to the best model and provides reasonable infer-
ence time rates.

In the rest of the paper, we will interchangeably use the words inference and
test and the words training and learning.

The whole detection process using R-FCN(ResNet101) in a Full HD resolu-
tion frame, of 1,920 x 1,080 pixels, takes 10fps, which is twice faster than the
pistol detector proposed in [16]. This allows the cold steel weapon detection to
be performed in real-time in surveillance videos.

5.3 Analysis of the brightness impact on the detection
performance

Under high brightness conditions, the camera sensors try to compensate these
situations, but add noise or eliminate useful fine-grain details in the image,
which affect the detection performance. In general, our target objects are small
metallic knives that can easily disappear due to the reflection of the light in
their surfaces. Next, we analyze the impact of the brightness conditions on the
R-FCN(ResNet101) detection model performance.

Figure 6: Results of the detection in four different brightness conditions.

knife: 66%

High brightness Medium brightness

Low brightness Artificial brightness
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We used twelve test videos recorded with an IP security camera, Samsung
SNH-V6410PN of resolution 1,080p, frame-rate 30fps and field of view 96.1°.
The test videos are divided into four groups of different brightness conditions,
high, medium, low and artificial brightness. For a fair comparison, all the videos
show the same person repeating the same actions at the same distance from the
camera. All the videos were recorded using the same camera setup in the same
indoor scene. The test videos include three common knives with different sizes,
small, medium, and large. Small, medium and large refer to the proportion
of the non-occluded part of the knife with respect to the occluded part by the
hand. See examples in Figure 6. The test videos can be found through this
github repository .

We consider a knife as ground truth when it is recognizable by the human
eye. The results in terms of the total number of Ground Truth Positives #GT_P,
#TP, #FP, precision, recall, and F1 in each test video are shown in Table 6. We
consider a detection as TP if the overlapping between the area of the handled
knife in the frame and the predicted bounding box is larger than 70%.

Table 6: Detection performance obtained on videos recorded in different bright-
ness conditions.

Brightness Knife size | #frames #GT_P #TP #FP | Precision Recall F1

Large 121 112 78 0 100% 69.64% 82.1%

High Medium 107 90 44 0 100% 48.89% 65.67%
Small 137 103 53 0 100% 51.46% 67.95%

Average 100%  56.66% T71.91%

Large 109 98 85 0 100% 86.73% 92.89%

Medium Medium 116 98 73 0 100% 74.49% 85.38%
Small 138 110 64 0 100% 58.18% 73.56%

Average 100%  73.13% 83.94%

Large 126 114 104 1 99.05% 92.04% 95.41%

Low Medium 114 100 70 0 100% 70% 82.35%
Small 138 101 74 0 100% 73.27% 84.57%

Average 99.68% 78.44% 87.44%

Large 119 110 95 0 100% 86.36% 92.68%

Artificial Medium 113 99 75 3 96.15% 78.13% 86.21%
Small 96 90 65 4 94.2%  75.58% 83.87%

Average 96.78% 80.02% 87.59%

As it can be observed from the Table 6, the performance of the detection
model is unstable in a changing brightness scenario. The worst performance is
obtained in high brightness conditions, and the best performance with artificial
brightness. From the lower to the higher brightness conditions, the average
recall decreased from 80.02% to 56.66%, and the average F1 from 87.59% to
71.91%.

Figure 7 shows an example of the detection results of very similar scenes,
i.e., same pose and context, different brightness levels and contrast, but different
detection results.

4h‘ctps ://github.com/alcasla/Automatic-Cold-Steel-Detection-Alarm
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Figure 7: An example of the detection results in two similar situations with
different brightness conditions.

~

High brightness Low brightness

6 Brightness guided preprocessing: DaCoLT pro-
cedure

As shown in the previous section, the performance of the detection in surveil-
lance scenarios is highly affected by the brightness variability. The quality of
the detection model depends on the quality of the video frames. To reduce
the effect of the reflectance of cold steel weapons in the frames, we developed
a preprocessing method, called DaCoLT, that (1) improves the visual features
(shape, texture, contrast) of cold steel weapons and (2) makes the detection
model more robust to light conditions variability. DaCoLT procedure consists
of two stages:

e Training the detection model on a selected range of brightness conditions
using data-augmentation

e Achieving the ideal brightness condition by adjusting the darkening of the
frames and improving their visual quality using a preprocessing approach
before analyzing them with the detection model.

This section gives a complete analysis and assessment of DaCoLT. First, a
description of DaCoLT procedure is provided in Section 6.1. The analysis of
Darkening and Contrast at Test time(DaCoT) approach, which is concerned
with improving the robustness of the model during test time, is given in Sec-
tion 6.2 and finally the analysis of the complete DaCoLT (Darkening and Con-
trast at Learning and Test time) procedure is given in Section 6.3.

6.1 DaCoLT procedure

We propose a brightness guided preprocessing approach called DaCoLT to im-
prove the robustness of the model to brightness variability at both, learning and
test stages. The DaCoLT procedure can be divided into two stages, Learning
and Test as described below:

e During the learning stage, the model is trained on a specific range of
brightness/darkness conditions using a darkening based data-augmentation
technique. This process is as follows:

14



1. We first analyze and determine the effect of different brightness de-
grees present in the monitored environment.

2. We select the frames with the worst brightness conditions and pro-
cess them by applying different darkening factors then improve their
contrast. This analysis will help us to find the darkening factor that
produces the best performance.

3. Finally, during the training, we apply a darkening data-augmentation
technique using a darkening factor in the interval between 0% and
ideal darkening factor.

e During the test stage, the highly bright frames are darkened by a specific

factor, and their contrast is improved. This preprocessing stage is called

DaCoT, and proceeds as follow:

1. We first check the brightness level of each frame. If the brightness
level is medium to high we darken the frame by multiplying its pixels
with the corresponding darkening factor. This factor is calculated
based on the difference between the ideal and the current brightness
level of the frame.

2. Afterwards, we increase the contrast of the obtained frame via CLAHE
algorithm.

3. The frame is then fed to the detection model.

The DaCoLT procedure is illustrated in Figure 8.

Figure 8: An illustration of DaCoLT procedure applied at both, learning and
test time.
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6.2 Analysis of darkening and contrast at test stage

To solve the instability of the detection model in variable brightness conditions,
we first analyze the Darkening and Contrast at test time (DaCoT), which sim-
ulates the brightness condition that produces the best performance, i.e., low
brightness and high contrast.

Table 7: Results on video frames recorded originally in high brightness condi-
tions (i.e., worst case) when applying DaCoT.

Darkening Knife |#frames #GT_P #TP #FP |Precision Recall F1
factor size

original  Large 121 112 78 0 100%  69.64% 82.11%
high Medium 107 90 44 0 100%  48.89%  65.67%
brightness  Small 137 103 53 0 100%  51.46%  67.95%
Average 100%  56.66% 71.91%
Large 121 112 81 0 100%  72.32%  83.94%
10% Medium 107 90 52 0 100%  57.78%  73.24%
Small 137 103 57 1 98.28% 55.34%  71.25%

Average 99.43% 61.81% 76.14%

Large 121 112 83 0 100% 74.11% 85.13%
20% Medium 107 90 55 0 100%  61.11%  75.86%
Small 137 103 53 0 100%  51.46% 67.95%

Average 100% 62.23% 76.31%

Large 121 112 85 0 100%  75.89%  86.29%
30% Medium 107 90 56 0 100%  62.22%  76.71%
Small 137 103 53 0 100% 51.46% 67.95%

Average 100% 63.19% 76.98%

Large 121 112 80 0 100% 71.43% 83.33%
40% Medium 107 90 52 0 100%  57.78% 62.6%
Small 137 103 51 0 100%  49.51%  66.23%

Average 100%  59.57% 70.72%

Large 121 112 78 0 100%  69.64% 82.11%

50% Medium | 107 90 41 0 100%  45.56%  65.67%
Small 137 103 50 0 100%  48.54%  65.36%

Average 100% 54.58% 71.04%

The evaluation of the proposed approach under high brightness conditions
when considering different darkening factors is provided in Table 7.

The performance of the detection model has improved when using a dark-
ening factor of 30%. In average, with a darkening factor of 30% the recall and
F1 have improved by 6.53% and 5.07% respectively in comparison with the
obtained performance under the original high brightness condition.

The proposed preprocessing, darkening and CLAHE, takes around 29+ 3 ms
per frame on the CPU, which does not slow-down the overall detection process
as this preprocessing task is performed in parallel with the detection task on
the GPU. That is, the preprocessing thread is executed on the CPU and the
detection thread is executed on the GPU.

This experiment allowed us to determine the range of brightness in which the
detection model is unstable. We will use this information to define the darkening
factor interval that improves the detection in high brightness conditions.
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6.3 Analysis of darkening and contrast at learning and
test stages

From the previous analysis, we found that DaCoT improves the performance of
the detection model under high brightness conditions. In this section, we analyze
using DaCoLT by applying different darkening levels not only at the test stage
but also during the learning stage of the detection model. The used darkening
data-augmentation technique consists of darkening individual training samples
by randomly selecting a darkening factor in [0%, 30%)].

Table 8: Results of applying DaCoT and DaCoLT on videos filmed originally
under high brightness conditions and using different knife sizes, large, medium
and small.

Knife size |#frames #GT_P #TP #FP |Precision Recall F1

original Large 121 112 78 0 100%  69.64% 82.11%
high Medium 107 90 44 0 100%  48.89% 65.67%
brightness Small 137 103 53 0 100%  51.46% 67.95%
Average 100%  56.66% 71.91%

guided brightness [Large 121 112 85 0 100%  75.89% 86.29%
DaCoT Medium 107 90 56 0 100%  62.22% 76.71%
(Test time) Small 137 103 53 0 100%  51.46% 67.95%

Average 100%  63.19% 76.98%

guided brightness [Large 121 112 84 0 100% 5%  85.71%
DaCoLT Medium 107 90 64 0 100% 71.11% 83.12%
(Learning+Test) |Small 137 103 74 0 100% 71.84% 83.61%
Average 100% 72.65% 84.15%

Table 8 shows the impact of applying DaCoLT on the detection performance
in the worst brightness conditions. The first part shows the results of the de-
tection model on videos filmed originally under high brightness conditions and
using different knife sizes, large, medium and small. The second part shows the
effect of applying the proposed brightness guided preprocessing approach at the
test stage, DaCoT. The third one shows the effect of the proposed preprocessing
DaCoLT procedure in both, learning and test stages.

From this table, we can see that the darkening data-augmentation step in-
cluded in DaCoLT improves the learning of the detection model under high
brightness conditions. The average recall and F1 have respectively improved
by 9.46% and 7.17% in comparison with the performance considering only ideal
brightness conditions preprocessing at inference time. Particularly, the recall
and F1 have improved in the harder cases by 8.89% and 6.41% respectively for
the medium knife, and 20.38% and 15.66% respectively for the small knife.

Applying the brightness preprocessing during both, inference and learning
steps on videos filmed under high brightness conditions improves the recall by
15.99% and F1 by 12.24% in comparison with the original high brightness con-
ditions.

As final study, we show in Table 9 the results when applying DaCoLT pro-
cedure on videos filmed under different brightness conditions.

As it can be observed, DaCoLT improves the detection specially in the worst
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conditions (i.e., highest brightness) in surveillance videos. In other words, Da-
CoLT allows achieving similar accuracies in the videos independently on their
brightness level.

Table 9: The effect of applying DaCoLT procedure on videos filmed originally
under different brightness conditions.

Brightness Knife size|#Frames #GT_P #TP #FP |Precision Recall F1 original F1

Large 121 112 84 0 100% 75% 85.71% 82.1%

High Medium 107 90 64 0 100%  71.11% 83.12% 65.67%
Small 137 103 74 0 100%  71.84% 83.61% 67.95%

Average 100%  72.65% 84.15% | 71.91%

Large 109 98 84 0 100%  85.711% 92.31% 92.89%

Medium Medium 116 98 78 0 100% 79.59% 88.64% 85.38%
Small 138 110 75 0 100%  68.18% 81.08% 73.56%

Average 100%  77.83% 87.34% | 83.94%

Large 126 114 103 0 100%  90.35% 94.93% 95.41%

Low Medium 114 100 74 0 100% 74% 85.06% 82.35%
Small 138 101 72 0 100% 71.29% 83.24% 84.57%

Average 100% 78.55% 87.74%| 87.44%

Large 119 110 95 0 100%  86.36% 92.68% 92.68%

Artificial Medium 113 99 73 1 98.65% 74.49% 84.88% 86.21%
Small 96 90 63 1 98.44% 70.79% 82.36% 83.87%

Average 99.03% 77.21% 86.64% | 87.59%

7 DaCoLT based alarm detection system

The cold steel detection model is essential for building a cold steel detection
alarm system. The more robust is the detection model, the more robust is the
alarm system. DaCoLT improves the visual features of knives in the frames,
and hence increases the robustness and capacity of the model to detect knives
correctly under variant light conditions. In this section, we show the suitability
of the brightness guided procedure for cold steel knife detection alarm system
using the metric AATpI (Alarm Activation time per Interval) [16].

In an automatic detection system the alarm must be activated when the
system is completely confident about the presence of one or more weapons in
the scene. AATpI measures the time the automatic detection alarm system takes
to detect at least k successive frames of true positives. In the next analysis, we
used k = 5 consecutive frames to activate the alarm.

Figure 9 illustrates the behavior of the alarm system using an example. The
sequence of frames are analyzed frame by frame, when the system detects one
isolated true positive it does not trigger any alarm. However, when the system
detects five true positives in five consecutive frames, from frame 4 to frame 8,
it triggers the alarm.
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Figure 9: Alarm detection system diagram. Sample of sequence detection with
alarm activation. The white box in the frames represents a true positive.
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Potential
knife: 4°

For the experimental analysis, we selected 19 scenes from diverse surveillance
videos with the next requirements. Each scene is made up of at least 5 frames,
recorded in a fixed scenario, i.e., in the same place, and the knife is visible for
a human viewer. These scenes can be found in a public repository °.

The model successfully detects knives in 19 scenes with an average time
interval AATplI = 0.41s, which is good enough for an alarm system. The
highest delay, 330 ms, was produced in a scene that shows noise and blur in the
frames due to sudden motion of the knife, see illustration in Figure 10.

Figure 10: Examples of blurry and noisy areas (indicated by red boxes) due in
part to sudden movements in two frames extracted from a surveillance video.

In summary, the proposed model has shown good performance and demon-
strated to be perfectly suitable to be integrated into automatic cold steel weapon
detection alarm systems.

Shttps://github.com/alcasla/Automatic-Cold-Steel-Detection-Alarm
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8 Conclusions and future works

This work presents an automatic cold steel weapon detection model for video
surveillance based on a new brightness guided preprocessing procedure, called
DaCoLT, that further improves the quality of the detection. The obtained de-
tection model shows a high potential even in low quality videos and provides
satisfactory results as an automatic alarm system. Among 19 scenes, it success-
fully activates the alarm after five successive true positives in a average time of
0.41 seconds. This cold steel alarm system can be used in several applications,
e.g., 1) real time detection of cold steel weapon in video surveillance and ii)
parental control of videos or images with violent contents.

As future work, we will address the challenging task of detecting weapons in
outdoor scenarios, where moving objects can be present in the background and
where adverse weather conditions can increase the difficulty of the detection.
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