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Fitness Function
w1 Accuracy(S) − w2 Complexity(S)
Accuracy Maximization and Complexity Minimization
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w1 Accuracy(S) − w2 Complexity(S)
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Classification Boundary 
Accurate and Interpretable Fuzzy Rule-Based Classifier Design
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Fuzzy Rules for Classification
Basic form does not always have high accuracy

Basic Form
If x1 is small and x2 is small
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(1) Rule weight adjustment can be replaced with membership learning.
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(2) Membership learning can be partially replaced with weight adjustment.
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Other Forms of Fuzzy Rules
Handling of Classification as Function Approximation
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Accuracy Improvement
Use of Fine Fuzzy Partition
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Accuracy Improvement
How to choose an appropriate partition ?
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Accuracy Improvement
How to choose an appropriate partition ?

One Idea: Use of All Partitions (Multiple Fuzzy Grid Approach)

1.0

0.0 1.0

1 2 1.0

0.0 1.0

3 54

1.0

0.0 1.0

6 987 1.0

0.0 1.0

a edb c

1.0

0.0 1.0

f kjg ih 1.0

0.0 1.0

l rpm on q

Ishibuchi et al., Fuzzy Sets and Systems (1992)
Web of Science



0.0 1.0x1

Class 1 Class 2 Class 31.0
0.0

x
2

Accuracy Improvement
Learning of Membership Functions



0.0 1.0x1

Class 1 Class 2 Class 31.0
0.0

x
2

Accuracy Improvement
Learning of Membership Functions

Various learning methods 
such as neuro-fuzzy and 
genetic-fuzzy methods are 
available.

D. Nauck and R. Kruse, Fuzzy Sets and Systems (1997).
Web of Science



0.0 1.0x1

Class 1 Class 2 Class 31.0
0.0

x
2

Accuracy Improvement
Learning of Membership Functions

Various learning methods 
such as neuro-fuzzy and 
genetic-fuzzy methods are 
available.

Interpretability is degraded.

D. Nauck and R. Kruse, Fuzzy Sets and Systems (1997).
Web of Science



1.00.0 x1

Class 1 Class 2 Class 31.0
0.0

x
2

Accuracy Improvement
Use of Independent Membership Functions

Each fuzzy rule can be 
generated and adjusted 
independently from other 
rules. ==> High Accuracy

Membership functions can 
be heavily overlapping.

==> Poor Interpretability



1.00.0 x1

Class 1 Class 2 Class 31.0
0.0

x
2

Accuracy Improvement
Use of Independent Membership Functions

Each fuzzy rule can be 
generated and adjusted 
independently from other 
rules. ==> High Accuracy

Membership functions can 
be heavily overlapping.

==> Poor Interpretability

S. Abe and M. S. Lan, IEEE Tras. on FS (1995)
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If x is A then Class 2
Class 1 Class 2 Class 3

A

A: Multi-dimensional Fuzzy Set 
(Membership Function)

Accuracy Improvement
Use of Multi-Dimensional Membership Functions

Fuzzy rules are flexibility.
==> High Accuracy

Each membership function 
is multi-dimensional.

==> Poor Interpretability



If x is A then Class 2
Class 1 Class 2 Class 3

A

A: Multi-dimensional Fuzzy Set 
(Membership Function)

Accuracy Improvement
Use of Multi-Dimensional Membership Functions

S. Abe et al., IEEE TSMC-C (1998)

S. Abe et al., IEEE TSMC-C (1999)
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Difficulty of High-Dimensional Problems
Exponential Increase of Fuzzy Rules
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Scalability Improvement
Use of Tree-Type Fuzzy Partitions

x1 is small x1 is large

x2 is small x2 is large

An appropriate stopping condition 
prevents the exponential increase 
in the number of fuzzy rules.
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Scalability Improvement
Hierarchical Fuzzy Systems

K. Simojima et al., Fuzzy Sets and Systems (1995)
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Accuracy & Scalability Improvement
==> Poor Interpretability 

- Use of Fine Fuzzy Partition (Accuracy)

- Use of Rule Weights (Accuracy)

- Membership Function Learning (Accuracy)

- Fuzzy Rules with Independent Membership Functions
(Accuracy and Scalability)

- Multi-Dimensional Fuzzy Systems 
(Accuracy and Scalability)

- Tree-Type Fuzzy Partitions (Accuracy and Scalability)

- Hierarchical Fuzzy Systems (Accuracy and Scalability)
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Four Rules        

Complexity Minimization
Fuzzy Rule Selection

Nine Rules

Rule Selection (Nine Rules ==> Four Rules) 
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Seven Rules        Nine Rules

Nine Rules ==> Seven Rules (If x1 is large then Class 3)
Slightly different classification boundaries are obtained.
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Nine Rules ==> Seven Rules (If x1 is large then Class 3)
Slightly different classification boundaries are obtained.

Complexity Minimization
Use of “Don’t Care” Conditions
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The use of “Don’t Care” conditions can be viewed as an 
scalability improvement method. If x1 is small and x10 is ...

Complexity Minimization
Use of “Don’t Care” Conditions
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The use of “Don’t Care” conditions can be also viewed as 
input selection for each rule (rule-wise input selection).

Complexity Minimization
Use of “Don’t Care” Conditions
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Complexity Minimization
Projection of Multi-Dimensional Fuzzy Sets

- Interpretability is improved.
- Accuracy is degraded.

Interpretability-Accuracy
Tradeoff
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If x is Aq then ...

If x1 is Aq1 and x2 is Aq2 then 

Change of Fuzzy Rule Form



Interpretability-Accuracy Tradeoff 
(Accuracy-Simplicity Tradeoff)
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Accuracy Maximization
Main Research Direction Since the Early 1990s
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Accuracy Maximization
- Fuzzy Neuro Learning
- Genetic Fuzzy Optimization
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Difficulty in Accuracy Maximization 
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Possible Difficulties

Accuracy Maximization

- Poor Interpretability

- Overfitting to Training DataOverfitting to Training DataOverfitting to Training Data

In the design of fuzzy systems, emphasis should 
be placed on their linguistic interpretability.

Interpretability maintenance 
while maximizing the accuracy. 



Accuracy and Interpretability Maximization
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Some Ideas
- Aggregated Objective Function: To combine the error 

minimization and the complexity minimization into a 
single scalar fitness function
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- Constraint Condition: To use constraint conditions on 
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Accuracy and Interpretability Maximization
Active Research Direction Since the Late 1990s

Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Some Ideas
- Aggregated Objective Function: To combine the error 

minimization and the complexity minimization into a 
single scalar fitness function

- Constraint Condition: To use constraint conditions on 
the position and the shape of membership functions

- Two-Step Fuzzy System Design: 1st Step: Search for 
accurate and complicated fuzzy rule-based systems.  
2nd Step: Simplification of obtained fuzzy rule-based 
systems.
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Accuracy Maximization and Complexity Minimization
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Accuracy and Interpretability Maximization
Active Research Direction Since the Late 1990s

Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Basic Idea
- Aggregated Objective Function: To combine the error 

minimization and the complexity minimization into a 
single scalar fitness function

- Constraint Condition: To use constraint conditions on 
the position and the shape of membership functions

- Two-Step Fuzzy System Design: 1st Step: Search for 
accurate and complicated fuzzy rule-based systems.  
2nd Step: Simplification of obtained fuzzy rule-based 
systems.



Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Aggregated Objective Function
- To combine the error minimization and the complexity 

minimization into a single scalar objective function

Accuracy and Interpretability Maximization
Active Research Direction Since the Late 1990s



Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Aggregated Objective Function
- To combine the error minimization and the complexity 

minimization into a single scalar objective function

Example: Combination of the average error rate and the 
number of fuzzy rules

Example of a scalar objective function: Weighted sum

)()()( Complexity2Error1 SfwSfwSf ⋅+⋅=

Accuracy and Interpretability Maximization
Active Research Direction Since the Late 1990s
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Fuzzy systems were automatically 
generated, trained, and simplified. 



Difficulty in Weighted Sum Approach

Sensitivity to the weight vector:
The obtained system strongly depends on the 
specification of the weight vector.
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Minimize w1·Error + w2·Complexity
When the weight for the complexity minimization is large:

A simple system is obtained.

Difficulty in Weighted Sum Approach
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When the weight for the error minimization is large:

A complicated system is obtained.

Difficulty in Weighted Sum Approach



Difficulty in Weighted Sum Approach

Complexity
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Test data
accuracy

S*0

Training data
accuracy

Minimize w1·Error + w2·Complexity
When the two weights are appropriately specified:

A good system is obtained. But the 
best complexity is not always found.



Multiobjective Fuzzy System Design
Currently An Active Research Issue
Basic Idea

To search for a number of non-dominated fuzzy systems with 
respect to the accuracy maximization and the interpretability 
maximization (instead of searching for a single fuzzy system).

Aggregation Approach

Multiobjective Approach
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Multiobjective Fuzzy System Design
Currently An Active Research Issue
Basic Idea

To search for a number of non-dominated fuzzy systems with 
respect to the accuracy maximization and the interpretability 
maximization (instead of searching for a single fuzzy system).

Aggregation Approach

Multiobjective Approach

)}(),({Minimize ComplexityError SfSf

)()()( Complexity2Error1 SfwSfwSf ⋅+⋅=

Search for Pareto Optimal Fuzzy Rule-Based Systems 
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Multi-Objective Fuzzy Rule Selection 
for Fuzzy Rule-Based Classifier Design

Two Objectives:
- The number of correctly classified training patterns
- The number of selected fuzzy rules

H. Ishibuchi et al., Fuzzy Sets and Systems (1997)

H. Ishibuchi et al., Information Science (2001)
Three Objectives:
- The number of correctly classified training patterns
- The number of selected fuzzy rules
- Total number of antecedent conditions  (Total rule length)



Multi-Objective Fuzzy Rule-Based Systems
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Multi-Objective RBF Function Design 
for Function Approximation Problems



Multi-Objective RBF Function Design 
for Function Approximation Problems

Multi-Objective Neural Network Design and Learning
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Many non-dominated fuzzy systems can be obtained along 
the tradeoff surface by a single run of an EMO algorithm.

EMO: Evolutionary Multi-Objective Optimization

Results of Multi-Objective Search
Non-Dominated Fuzzy Rule-Based Systems

A Single Fuzzy Rule-Based System
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between the complexity and the training data accuracy (not the 
tradeoff between the complexity and the test data accuracy). 



Accuracy-Complexity Tradeoff
for Training Data and Test Data

Complexity

Test data

S*0

Training data

E
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or
The obtained non-dominated fuzzy systems show the tradeoff 
between the complexity and the training data accuracy (not the 
tradeoff between the complexity and the test data accuracy). 

- Tradeoff for test data accuracy should be examined.
- This can be done since we have many fuzzy systems.  



Example: Obtained Rule Sets (Heart C)
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Obtained rule sets help us to find the optimal complexity of fuzzy 
systems. (Rule sets with six, seven and eight rules may be good)



A rule set with eight fuzzy rules

Some human users may prefer simpler rule sets.

A Rule Set with High-Generalization Ability
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A very simple rule set with only two fuzzy rules

A Rule Set with High Interpretability 
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1. Large Search Space: Difficulty in Search
The search space exponentially increases with the number of 
attributes (i.e., with the dimensionality of the pattern space).

Why is the fuzzy system design difficult?



Number of Fuzzy Rules
Basic Form
If x1 is small and x2 is small

then Class 2

If x1 is small and x2 is medium
then Class 2

. . .
If x1 is large and x2 is large

then Class 3

Number of Fuzzy Rules: 
2-D Problem: 3x3
3-D Problem: 3x3x3
4-D Problem: 3x3x3x3
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Number of Fuzzy Rules
Use of Don’t Care
If x1 is small and x2 is small

then Class 2

If x1 is small and x2 is medium
then Class 2

. . .
If x1 is large and 

x2 is don’t care then Class 3

Number of Fuzzy Rules: 
2-D Problem: (3+1)x(3+1)
3-D Problem: (3+1)3
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5-D Problem: (3+1)5
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Search Space Size: Large
Example: Classification problem with 50 attributes

and 3 linguistic values for each attribute

Number of Fuzzy Rules 
and Number of Rule Sets
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The total number of fuzzy rules (i.e., 
antecedent condition combinations):

(3+1) x ... x (3+1) = 450 = 2100

The total number of fuzzy rule sets 
with 20 rules (i.e., combinations of 20 
fuzzy rules):

NC20 ~ 22000 where N = 2100

=



Search Space Size: Large
Example: Classification problem with 50 attributes

and 1-7 fuzzy partition for each attribute

Number of Fuzzy Rules 
and Number of Rule Sets

The total number of fuzzy rules (i.e., 
antecedent condition combinations):

(1+2+ ... 7) x ... = 2850 > 2400

The total number of fuzzy rule sets 
with 20 rules (i.e., combinations of 20 
fuzzy rules):

NC20 ~ 28000 where N > 2400

=
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1. Large Search Space: Difficulty in Search
The search space exponentially increases with the number of 
attributes (i.e., with the dimensionality of the pattern space). It 
is likely that the entire tradeoff curve can not be covered well
by the obtained non-dominated fuzzy rule-based systems. 

Why is the fuzzy system design difficult?
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attributes (i.e., with the dimensionality of the pattern space). It 
is likely that the entire tradeoff curve can not be covered well
by the obtained non-dominated fuzzy rule-based systems. 

Why is the fuzzy system design difficult?

2. Possibility of Over-Fitting: Difficulty in Learning
The improvement in the training data accuracy does not always 
mean the improvement in the test data accuracy. 



2. Possibility of Over-Fitting: Difficulty in Learning
The improvement in the training data accuracy does not always 
mean the improvement in the test data accuracy. This means 
that the fitness function improvement does not always lead to 
better fuzzy rule-based classifiers (when the training data 
accuracy is used in the fitness function) .
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Why is the fuzzy system design difficult?
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2. Possibility of Over-Fitting: Difficulty in Learning
The improvement in the training data accuracy does not always 
mean the improvement in the test data accuracy. 
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2. Possibility of Over-Fitting: Difficulty in Learning
The improvement in the training data accuracy does not always 
mean the improvement in the test data accuracy. 
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Why is the fuzzy system design difficult?
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2. Possibility of Over-Fitting: Difficulty in Learning
The improvement in the training data accuracy does not always 
mean the improvement in the test data accuracy. 

Test Data Accuracy

Training Data Accuracy

Training Data Accuracy 
Improvement



Why is the fuzzy system design difficult?

Complexity0
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Poor Convergence Convergence Improvement

2. Possibility of Over-Fitting: Difficulty in Learning
The improvement in the training data accuracy does not always 
mean the improvement in the test data accuracy. 

Test Data Accuracy
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Training Data Accuracy
Training Data Accuracy



Recent Studies: Improvement in training data accuracy 
leads to Improvement in test data accuracy. 

Poor Diversity Diversity Improvement
Complexity0
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Test Data Accuracy

Complexity0
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Test Data Accuracy

Training Data Accuracy Training Data Accuracy

Gacto MJ, Alcala R, Herrera F (2009) Adaptation and application of multi-
objective evolutionary algorithms for rule reduction and parameter 
tuning of fuzzy rule-based systems, Soft Computing 13 (5): 419-436

Ishibuchi H, Nakashima Y, Nojima Y (2009) Performance evaluation of 
evolutionary multiobjective optimization algorithms for multiobjective 
fuzzy genetics-based machine learning, Proc. of FUZZ-IEEE 2009.



Our Experimental Results
MoFGBML Algorithm (Framework: NSGA-II) 
Multi-Objective Fuzzy Genetics-Based Machine Learning

Ishibuchi & Nojima, IJAR 2007
NSGA-II Basic Setting
- Population size: 200 individuals 
- Termination Condition: 2000 generations
- Multiple Fuzzy Partitions: Granularities 1-5

Three Variants of MoFGBML Setting
- Diversity Improvement Method (Mating, EJOR 2008)
- Termination Condition: 20000 generations
- Multiple Fuzzy Partitions: Granularities 7 
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Our Experimental Results
Simple Changes of Objectives (GEFS 2010, Spain)
Original Formulation
f1(S): Error Rate (%) 
f2(S): Number of Fuzzy Rules

Simple Modification
g1(S) = f1(S) - α f2(S) 
g2(S) = f2(S) + α f1(S)
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Our Experimental Results
Simple Changes of Objectives (GEFS 2010, Spain)
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Our Experimental Results
Simple Changes of Objectives (GEFS 2010, Spain)
Original Formulation
f1(S): Error Rate (%) 
f2(S): Number of Fuzzy Rules

Simple Modification
g1(S) = f1(S) - α f2(S) 
g2(S) = f2(S) + α f1(S)
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g4(S) = f2(S) + α f1(S)



Our Experimental Results
Four-Objective Formulation (GEFS 2010, Spain)

(a) Glass data.                            (b) Diabetes data.
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Handling of Interpretability
in Our Former Studies
[1] H. Ishibuchi et al. (1995) Selecting fuzzy if-then rules for 

classification problems using genetic algorithms, IEEE TFS.
ISI Web of Knowledge Citations: 273 times

[2] H. Ishibuchi et al. (1997) Single-objective and two-objective 
genetic algorithms for selecting linguistic rules for pattern 
classification problems. Fuzzy Sets & Systems.
ISI Web of Knowledge Citations: 107 times

[3] H. Ishibuchi et al. (2001) Three-objective genetics-based 
machine learning for linguistic rule extraction. Information 
Sciences.
ISI Web of Knowledge Citations: 94 times
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Interpretability of Fuzzy Systems

Ishibuchi et al. (1995, 1997, 2001)
Interpretability Maximization = Complexity Minimization

- Minimization of the number of fuzzy rules
- Minimization of the number of antecedent conditions

Many other factors are related to the interpretability

Special Sessions and Many Related Papers
- IFSA 2009 Conference
- ISDA 2009 Conference (4 Papers with Interpretability in Their Titles)
- FUZZ-IEEE 2010 Conference
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Another Issue in Interpretability
Explanation of Classification Results
Explanation Ability
The ability of fuzzy rule-based systems to explain why 
a new pattern is classified as a particular class. 
Example: Classification of a pattern    : xA = (0.05, 0.05)

xA



(2) Rule Set 2: Four Rules    

Comparison between Rule Sets 1 and 2
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Comparison in Explanation Capability
Responsible Rules for Classification
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R5: If x1 is medium and x2 is medium
then Class 2 
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R1 seems to be a better explanation for the classification of xA.
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Comparison between Rule Sets 1 and 2

(1) Rule Set 1: Nine Rules

Rule Set 1 seems to have higher explanation ability while 
Rule Set 2 is simpler than Rule Set 1.
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Comparison between Rule Sets 1 and 4

(4) Rule Set 4: Three Rules  (1) Rule Set 1: Nine Rules

Classification of     :  xA = (0.05, 0.05)
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Comparison between Rule Sets (1) and (4)

(4) Rule Set 4: Three Rules  (1) Rule Set 1: Nine Rules

Rule Set 1 seems to have higher explanation ability while 
Rule Set 4 is simpler than Rule Set 1.
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Classification Capability
Another Example xB= (0.95, 0.50)
Classification of     :  xB = (0.95, 0.50)

xB



Comparison between Rule Sets 1 and 3

(3) Rule Set 3: Seven Rules (1) Rule Set 1: Nine Rules

Classification of     :  xB = (0.95, 0.50)
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Comparison in Explanation Capability
Responsible Rules for Classification

R8: If x1 is large and x2 is medium
then Class 3

R789: If x1 is large then Class 3
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R8: If x1 is large and x2 is medium
then Class 3

R789: If x1 is large then Class 3
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Which is a better explanation for the classification of xB between 
R8 and R789 ?    



Comparison in Explanation Capability
Responsible Rules for Classification

R8: If x1 is large and x2 is medium
then Class 3

R789: If x1 is large then Class 3
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Which is a better explanation for the classification of xB between 
R8 and R789 ?    It is a very difficult question for me to answer.
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We have a lot of different types of classification problems 
where fuzzy rule-based classifiers have not been well-
utilized and have a large potential usefulness:
1. Imbalanced Data
2. Semi-Supervised Learning
3. Active Learning
4. On-Line Learning
5.  . . .
6.  . . .

Fuzzy Classifiers on Various Problems



Fuzzy Classifiers on Various Problems

IFSA 2009 Invited Talk



Fuzzy Classifiers on Various Problems

IFSA 2009 Invited Talk



Fuzzy Classifiers on Various Problems

IFSA 2009 Invited Talk

Machine Learning

Basic Advanced

Fuzzy



Fuzzy Classifiers on Various Problems

ISDA 2009 Invited Talk by Hisao Ishibuchi
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Appendix: Comparison of the Two Approaches

Two-objective maximization problem 

EMO Approach                     Weighted Sum Approach
Experimental results of a single run of each approach
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Appendix: Two-Dimensional Antecedent Fuzzy Sets
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(a) A two-dimensional fuzzy vector.        (b) An ellipsoidal antecedent fuzzy set.



Appendix: Interval Rules vs Fuzzy Rules 

(a) Interval Rules                         (b) Fuzzy Rules
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