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Fuzzy Control: Well-Known Application Area
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Fuzzy Classification: Well-Known?
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Fuzzy Rules for Classification

Accurate and Interpretable Fuzzy Rule-Based Classifier Design

Basic Form

If X, Is small and x, Is small
then Class 2

If X, 1s small and X, Is medium
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Accurate and Interpretable Fuzzy Rule-Based Classifier Design
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Fuzzy Rules for Classification

Basic form does not always have high accuracy
O Class 1 O Class 2 AClass 3

Basic Form

If X, Is small and x, Is small
then Class 2

If X, 1s small and X, Is medium
then Class 2

If X, Is small and x, Is large
then Class 1

If X, Is large and X, is large
then Class 3

High Interpretability
Low Accuracy




Fuzzy Rules for Classification

Another form has a rule weight (certainty)
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Accurate and Interpretable Fuzzy Rule-Based Classifier Design

O Class1 OClass 2 AClass 3

Basic Form

If X, Is small and x, Is medium
then Class 2

Rule Weight Version

If X, Is small and x, is medium
then Class 2 with 0.158
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Fuzzy Rules In This Presentation

Fuzzy Rules with Rule Welights
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Use of Rule Weights: Controversial Issue
(1) Rule weight adjustment can be replaced with membership learning.
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D Nauck, R Kruse - Proc. IEEE International Conference on Fuzzy Systems, 1998 - Citeseer
Neuro-fuzzy systems have recently gained a lot of inter- est in research and

application. These are approaches that learn fuzzy systems from data. Many of
them use rule weights for this task. In this paper we discuss the inuence ... Google Scholar
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Fuzzy Rules with Rule Welights
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Use of Rule Weights: Controversial Issue
(2) Membership learning can be partially replaced with weight adjustment.

roF] P Effect of rule weights in fuzzy rule-based classification systems

H Ishibuchi, T Nakashima - algorithms - Citeseer

... Hisao Ishibuchi, Member, IEEE, and Tomoharu Nakashima, Member, IEEE ... Hisao
Ishibuchi, Member, IEEE, and Tomoharu Nakashima, Member, IEEE ... Ggoqgle Scholar
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Fuzzy Rules for Classification

Another Form: Multiple Consequents
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Fuzzy Rules for Classification

Another Form: Multiple Consequents

O Class 1 O Class 2AICIass 3 Basic Form

If X, Is small and x, Is medium
then Class 2

Rule Weight Version

If X, Is small and x, Is medium
then Class 2 with 0.158

Multiple Conseauents

A proposal on reasoning methods in fuzzy rule-based classification systems-
O Cordon, MJ del Jesus, F Herrera - International Joumnal of Approximate Reasoning, 1999
Fuzzy Rule-Based Systems have been succesfully applied to pattern classification

problems. In this type of classification systems, the classical Fuzzy Reasoning

Method {FRI"-.-"I} classifies a new EIHH‘l[JIE with the cﬂnsequent of the rule with ...

Cited by 127 - Related articles - BL Direct  O. Cordon et al., IJAR (2001)
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Other Forms of Fuzzy Rules

Handling of Classification as Function Approximation

01

00

O Class1 OClass 2 AClass 3

@)

Integer Consequent
If X, Is small and x, Is large
theny=1

If X, Is large and X, Is large
theny =3

Binary Consequent
If X, Is small and x, is large

then (y, 2. y3) = (1,0, 0)

If X, Is large and X, Is large

then (y., y,, ¥3) = (0,0, 1)
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Accuracy Improvement

Use of Fine Fuzzy Partition

O Class1 @ Class 2 AClass 3




Accuracy Improvement

How to choose an appropriate partition ?

O Class1 @ Class 2 AClass 3

A A
1.0 2 10k3 4 5
0.0 10 00 1.0
1.0“ 9 1l0“a b c d e
0.0 1.0 0.0 1.0
i 1 A
1.0“ g h i j k 10 Im n o p qr
0.0 1.0 0.0 1.0

Too Fine Fuzzy Partition
==> Qver-Fitting
(Poor Generalization Ability)



Accuracy Improvement

How to choose an appropriate partition ?

=

One Idea: Use of All Partitions (Multiple Fuzzy Grid Approach)

Title: DISTRIBUTED REPRESENTATIQON OF FUZZY
RULES AND ITS APPLICATION TO PATTERN-

CLASSIFICATION
Author(s): ISHIBUCHI H, NOZAKI K, TANAKA H

Source: FUZZY SETS AND SYSTEMS
lssue: 1 Pages: 21-32 Published: NOV 25 1952

O Class 1 @ Class 2 A Class 3 Loft 2 gf3 4 5
°C8 o
ﬁ Of\ O O O > >
o @, A 0.0 10 00 1.0
@) A 1ot 7 8 9o ,ota b ¢ d e
@
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DO 0 © o Alf : :
0O 0.0 1.0 00 1.0
O
O O A AA 10“f g h i j Kk 10“I m n o p qr
A A A |
=
D I > A
o O0n 0 0.0 1.0 0.0 1.0

12 21 24 22 0 180

Volume: 52
Web of Science
Ishibuchi et al., Fuzzy Sets and Systems (1992)



Accuracy Improvement

Learning of Membership Functions

O Class1 @ Class 2 AClass 3
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Accuracy Improvement

Learning of Membership Functions

O Class1 @ Class 2 AClass 3

Pé8le _ [© @ |o| Various learning methods
O ~0 @)
such as neuro-fuzzy and
@) @) o @) A :
ob o0 Q - genetic-fuzzy methods are
o7 S o | a . A4 Al available.
Qo| . ©p4 2, 4
ol@ P ATA
Olm O 0O : A A o
O
- | o A . A

Title: A neuro-fuzzy method to learn fuzzy classification
rules from data

Author(s): Nauck D, Kruse R 14 15 16 13 0 137
Source: FUZZY SETS AND SYSTEMS Volume: 89
Issue: 3 Pages: 277-288 Published: AUG 1 1997 Web of Science

D. Nauck and R. Kruse, Fuzzy Sets and Systems (1997).



Accuracy Improvement

Learning of Membership Functions

O Class1 @ Class 2 AClass 3

o @ |o| Various learning methods
o o such as neuro-fuzzy and
o) ' genetic-fuzzy methods are

A A Al gvailable.

A [&| Interpretability is degraded.
A ‘

Title: A neuro-fuzzy method to learn fuzzy classification
rules from data

Author(s): Nauck D, Kruse R 14 15 16 13 0 137
Source: FUZZY SETS AND SYSTEMS Volume: 89
Issue: 3 Pages: 277-288 Published: AUG 1 1997 Web of Science

D. Nauck and R. Kruse, Fuzzy Sets and Systems (1997).



Accuracy Improvement

Use of Independent Membership Functions

O Class1 @ Class 2 AClass 3

Each fuzzy rule can be
generated and adjusted
iIndependently from other
rules. ==> High Accuracy

Membership functions can
be heavily overlapping.
==> Poor Interpretability



Accuracy Improvement

Use of Independent Membership Functions

O Class1 @ Class 2 AClass 3

Each fuzzy rule can be
generated and adjusted
iIndependently from other
rules. ==> High Accuracy

Membership functions can
be heavily overlapping.
==> Poor Interpretability

m = | E_I'I
Title: A METHOD FOR FUZZY RULES EXTRACTION

DIRECTLY FROM NUMERICAL DATA AND ITS
APPLICATION TO PATTERN-CLASSIFICATION

Author(s): ABE S, LAN MS 9 10 12 S 0 128
Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS
Volume: 3 Issue: 1 Pages: 18-28 Published: FEB Web of Science

1995 S. Abe and M. S. Lan, IEEE Tras. on FS (1995)



Accuracy Improvement

Use of Multi-Dimensional Membership Functions
OClass1l @mClass2 AClass 3

EOB e o 9 If x is A then Class 2
5 © o a
_____________ @QO‘ A: Multi-dimensional Fuzzy Set
s A | |
0@8 (()) A A, (Membership Function)
A . A
A . A A7
3 0 = A A
B gt §
e S S
= 5 B A A
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Accuracy Improvement

Use of Multi-Dimensional Membership Functions
OClass1l @mClass2 AClass 3

EOB e o 9 If x is A then Class 2
5 © o a
_____________ @QO‘ A: Multi-dimensional Fuzzy Set
s A i i
0@8 (()) A A, (Membership Function)
A s A, Fuzzy rules are flexibility.
m B s . A ==> High Accuracy
: O = A A
4 - §g ¥ Each membership function
______ ST R SN W W : . :
O B g = LA IS multi-dimensional.
o L ==> Poor Interpretabilit
s A R o P y
- d :
— | A




Accuracy Improvement

Use of Multi-Dimensional Membership Functions
OClass1l @mClass2 AClass 3

EOB e o 9 If x is A then Class 2
E (@) O
. . A
_____________ @@O‘ A Multi-dimensional Fuzzy Set
°9i0 © N AAA (Membership Function)

Title: Feature selection by analyzing class regions
approximated by ellipsoids
Author(s). Abe S, Thawonmas R, Kobayashi Y
Source: IEEE TRANSACTIONS ON SYSTEMS MANAND O 0 2 1 0 8
CYBERNETICS PART C-APPLICATIONS AND REVIEWS
Volume: 28 Issue: 2 Pages: 282-287 Published: MAY

1998 S. Abe et al., IEEE TSMC-C (1998)

Title: A fuzzy classifier with ellipsoidal regions for

diagnosis problems

Author(s): Abe S, Thawonmas R, Kayama M

Source: IEEE TRANSACTIONS ON SYSTEMS MAN AND 2 1 2 0 0 9

CYBERNETICS PART C-APPLICATIONS AND REVIEWS Web of Science
Volume: 29 Issue: 1 Pages: 140-149 Published: FEB

1999 S. Abe et al., IEEE TSMC-C (1999)



Accuracy Improvement

Use of Tree-Type Fuzzy Partitions

O Class1 @ Class 2 AClass 3
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Accuracy Improvement

Use of Tree-Type Fuzzy Partitions

Title: INDUCTION OF FUZZY DECISION TREES

Author(s): YUAN YF, SHAW MJ

Source: FUZZY SETS AND SYSTEMS Volume: 69
Issue: 2 Pages: 125-139 Published: JAN 27 1995

27 28 35 25 0 232

Title: Fuzzy decision trees: Issues and methods

Author(s): Janikow CZ

Source: IEEE TRANSACTIONS ON SYSTEMS MAN AND 21 24 25 23 0 179

CYBERNETICS PART B-CYBERNETICS Volume: 28
Issue: 1 Pages: 1-14 Published: FEB 1998

© Class 1 @ Class 2 AClass 3

Web of Science
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Difficulty of High-Dimensional Problems

Exponential Increase of Fuzzy Rules
3

01

00

O Class 1 O Class 2 A Class
(9 5 O ngA
08B ¥ 2

s A

é —~ A

- OY 0O .
m o0 o0p A
I o | A
-------------- D R S s . |
] ' -~ A

oo O % A

small medium 4@

Basic Form

If X, Is small and x, Is small
then Class 2

If X, 1s small and X, Is medium
then Class 2

If X, Is large and X, is large
then Class 3

Number of Fuzzy Rules:

2-D Problem: 3x3

3-D Problem: 3x3x3

4-D Problem: 3x3x3x3
5-D Problem: 3x3x3x3x3



Scalability Improvement

Use of Independent Membership Functions

O Class1 @ Class 2 AClass 3

Fuzzy rules are generated in
the multi-dimensional space.
=> No Exponential Increase




Scalability Improvement

Use of Multi-Dimensional Membership Functions
OClass1l @mClass2 AClass 3

EOB e o 9 If x is A then Class 2
E (@) O
. . A
_____________ @QO‘ A: Multi-dimensional Fuzzy Set
°9: 0 © N A: (Membership Function)

Q@ O :

A .
A oD . a A4 Fuzzy rules are generated in
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-~ @ 4 A& 4 themulti-dimensional space.
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------ i R R e e PR L CEC PRV CEPORRERD - COY - CECRRORE
O iy B A

O - A A
o A
— l A i




Scalability Improvement

Use of Tree-Type Fuzzy Partitions

Title: INDUCTION OF FUZZY DECISION TREES

Author(s): YUAN YF, SHAW MJ

Source: FUZZY SETS AND SYSTEMS Volume: 69
Issue: 2 Pages: 125-139 Published: JAN 27 1995

27 28 35 25 0 232

Title: Fuzzy decision trees: Issues and methods
Author(s): Janikow CZ
Source: IEEE TRANSACTIONS ON SYSTEMS MAN AND 21 24 25 23 0 179
CYBERNETICS PART B-CYBERNETICS Volume: 28
lssue: 1 Pages: 1-14 Published: FEB 1998 Web of Science

o X4 S |arge An appropriate stoppin_g c_ondition
prevents the exponential increase
In the number of fuzzy rules.

X4 IS small

X, is small X, 1s large



Scalability Improvement

Hierarchical Fuzzy Systems

stu bsysterr[d
Lsru bsyster‘,n_l Ls[u bsysterﬂ
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Scalability Improvement

Hierarchical Fuzzy Systems

Ls'u bsysterrrd
Lsyu bsyster1r1_| Ls[u bsysterr‘H

Title: SELF-TUNING FUZZY MODELING WITH
ADAPTIVE MEMBERSHIP FUNCTION, RULES, AND
HIERARCHICAL STRUCTURE-BASED ON GENETIC
ALGORITHM 9 1 5 5 0 74
Author(s): SHIMOJIMA K, FUKUDA T, HASEGAWA'Y
Source: FUZZY SETS AND SYSTEMS Volume: 71
Issue: 3 Pages: 295-309 Published: MAY 12 1995 Web of Science

K. Simojima et al., Fuzzy Sets and Systems (1995)




Accuracy & Scalability Improvement

==> Poor Interpretability

- Use of Fine Fuzzy Partition (Accuracy)
- Use of Rule Weights (Accuracy)
- Membership Function Learning (Accuracy)

- Fuzzy Rules with Independent Membership Functions
(Accuracy and Scalability)

- Multi-Dimensional Fuzzy Systems
(Accuracy and Scalability)

- Tree-Type Fuzzy Partitions (Accuracy and Scalability)

- Hierarchical Fuzzy Systems (Accuracy and Scalability)
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Complexity Minimization
Fuzzy Rule Selection

Rule Selection (Nine Rules ==> Four Rules)
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Complexity Minimization

Fuzzy Rule Selection

Rule Selection (Nine Rules ==> Four Rules)
The same classification boundaries are generated.

O Class 1 Class 2 A Class 3 O Class 1 Class 2 A Class 3
H
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Nine Rules Four Rules



Complexity Minimization

Fuzzy Rule Selection

Rule Selection (Nine Rules ==> Four Rules)
The same classification boundaries are generated.

O Class 1 Class 2 A Class 3 O Class 1 Class ZACIass 3
=

—
o

Title: SELECTING FUZZY IF—THEN RULES FOR CLASSIFICATION PROBLEMS USING
GENETIC ALGORITHMS

Author(s): ISHIBUCHI H, NOZAKI K, YAMAMOTO N, et al. Web of Science
Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS Volume: 3 Issue: 3 Pages: 260-270

Published: AUG 1995 H. Ishibuchi et al., IEEE Trans. on FS (1995)



Complexity Minimization

Use of “Don’t Care” Conditions

Use of “Don’t Care” Conditions
Nine Rules ==> Seven Rules (If X, Is large then Class 3)

O Class 1 Class 2 A Class 3 O Class 1 Class 2 A Class 3
= . =

Nine Rules Seven Rules



Complexity Minimization

Use of “Don’t Care” Conditions

Nine Rules ==> Seven Rules (If X, Is large then Class 3)
Slightly different classification boundaries are obtained.

O Class 1 Class 2 A Class 3 O Class 1 Class 2 A Class 3
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Complexity Minimization

Use of “Don’t Care” Conditions

Nine Rules ==> Seven Rules (If X, Is large then Class 3)
Slightly different classification boundaries are obtained.

O Class 1 Class 2 A Class 3 O Class 1 Class 2 A Class 3

=
o

)
o

ab.e|
abue|

roF) P Performance evaluation of fuzzy classifier systems for multidimensional
H Ishibuchi, T Nakashima, T Murata - IEEE Transactions on Systems, Man, and Cybemetics.
Abstract— We examine the performance of a fuzzy genefics- based machine

learning method for multidimensional pattern classification problems with
continuous attributes. In our method, each fuzzy i-then rule is handled ...  Google Scholar

Cited by 244 H. Ishibuchi et al., IEEE Trans. on SMC Part B (1999)




Complexity Minimization

Use of “Don’t Care” Conditions

The use of “Don’t Care” conditions can be viewed as an
scalability improvement method. If x, Is small and X, Is ...

O Class 1 Class 2 A Class 3 O Class 1 Class 2 A Class 3
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roF) P Performance evaluation of fuzzy classifier systems for multidimensional
H Ishibuchi, T Nakashima, T Murata - IEEE Transactions on Systems, Man, and Cybemetics.
Abstract— We examine the performance of a fuzzy genefics- based machine

learning method for multidimensional pattern classification problems with
continuous attributes. In our method, each fuzzy i-then rule is handled ...  Google Scholar

Cited by 244 H. Ishibuchi et al., IEEE Trans. on SMC Part B (1999)




Complexity Minimization

Use of “Don’t Care” Conditions
The use of “Don’t Care” conditions can be also viewed as
Input selection for each rule (rule-wise input selection).

O Class 1 Class 2 A Class 3 O Class 1 Class 2 A Class 3
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roF) P Performance evaluation of fuzzy classifier systems for multidimensional
H Ishibuchi, T Nakashima, T Murata - IEEE Transactions on Systems, Man, and Cybemetics.
Abstract— We examine the performance of a fuzzy genefics- based machine

learning method for multidimensional pattern classification problems with
continuous attributes. In our method, each fuzzy i-then rule is handled ...  Google Scholar

Cited by 244 H. Ishibuchi et al., IEEE Trans. on SMC Part B (1999)




Complexity Minimization

Merging Similar Membership Functions
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Complexity Minimization

Merging Similar Membership Functions

O Class1 @ Class 2 AClass 3

Similar Membership Functions




Complexity Minimization

Merging Similar Membership Functions

O Class1 @ Class 2 AClass 3

_0—0 Similar Membership Functions
==> One Membership Function




Complexity Minimization

Merging Similar Membership Functions

O Class1 @ Class 2 AClass 3

------ oo Similar Membership Functions

o, ©O . .
OO G0 ==> One Membership Function

O @2z 2
0 8 % N A,
O O A

@
~ O A A 5

P > Similarif in f le | : lificati

M Setnes, R Babuska, U Kaymak, HR van ... - IEEE Transactions on Systems, Man,

repository_tudelft.ni Google Scholar
Abstract—In fuzzy rule-based models acquired from numencal data, redundancy
may be present in the form of similar fuzzy sets that represent compatible

concepts. This results in an un- necessarily complex and less transparent ...

Cited by 259 - Related articles - View as HTML - BL Direct - All 8 versions
M. Setnes et al., IEEE Trans. on SMC Part B (1998)




Complexity Minimization

Merging Similar Membership Functions

O Class1 @ Class 2 AClass 3

Similar Membership Functions
==> One Membership Function

1

- Interpretability is improved.
- Accuracy is degraded.



Complexity Minimization

Merging Similar Membership Functions

O Class1 @ Class 2 AClass 3

—0—0O Similar Membership Functions
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Complexity Minimization

Projection of Multi-Dimensional Fuzzy Sets

1.0

Change of Fuzzy Rule Form
It xis A, then ...

If X, 1S Ay and x, 1s Ay, then

- Interpretability is improved.
- Accuracy is degraded.

- .

Interpretability-Accuracy
Tradeoff



Interpretability-Accuracy Tradeoff

(Accuracy-Simplicity Tradeoff)

Interpretable
fuzzy system / "
. ..’0

*
.....
llllllllll

N
.....

L 4
-m e

RRLELT L Accurate
"'-1’-.:;.-"‘ fuzzy system

Simple €—— Complexity =——= Complicated

Small €& Error = Large



Accuracy Maximization

Main Research Direction Since the Early 1990s

Accuracy Maximization

- Fuzzy Neuro Learning
- Genetic Fuzzy Optimization

Interpretable
fuzzy system

.
---------

llllll
.....

|
L NHBE
----------

Accurate
fuzzy system

"
-----

Small €& Error = Large

Simple €—— Complexity =——= Complicated



Possible Difficulties

Accuracy Maximization

- Poor Interpretability

- Overfitting to Training Data



Possible Difficulties

Accuracy Maximization

4 4

- Poor Initeroreiaollity

- Overfitting to Training Data



Difficulty in Accuracy Maximization

Accuracy maximization Overfitting

A

Error

Test data

/ accuracy
\9— Training data

o — accuracy
S* Complexity




Accuracy-Complexity Tradeoff

Error

Curve Fitting
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Accuracy-Complexity Tradeoff

Curve Fitting

1 T T T T
. A | | | |
@) i
t 0.8
or & °
LL]
06 O_O o OOOO%o ]
> | °
2 = °no
0.4—0:%®° oo o $ o oo -
S o% ooo Y
? o &O o
02 B %;::?o o°o oooo 7
$0q
> | L |
- 0 0.2 0.4 0.6 0.8 1
Complexity



Accuracy-Complexity Tradeoff

Error

Curve Fitting

A

Complexity
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Accuracy-Complexity Tradeoff

Curve Fitting
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Accuracy-Complexity Tradeoff

Curve Fitting
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Accuracy-Complexity Tradeoff

Error

Curve Fitting
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Accuracy-Complexity Tradeoff
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Possible Difficulties

Accuracy Maximization
Interpretability maintenance
while maximizing the accuracy.

- Poor Interpretability

- Overfliiing to Tralning Daiza

In the design of fuzzy systems, emphasis should
be placed on their linguistic interpretability.




Accuracy and Interpretability Maximization

Active Research Direction Since the Late 1990s

Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

e

Smal €&—Error—> Larg

Simple €—— Complexity =—>» Complicated



Accuracy and Interpretability Maximization

Active Research Direction Since the Late 1990s

Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Some ldeas

- Aggregated Objective Function: To combine the error
minimization and the complexity minimization into a
single scalar fitness function



Accuracy and Interpretability Maximization

Active Research Direction Since the Late 1990s

Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Some ldeas

- Aggregated Objective Function: To combine the error
minimization and the complexity minimization into a
single scalar fitness function

- Constraint Condition: To use constraint conditions on
the position and the shape of membership functions



Accuracy and Interpretability Maximization

Active Research Direction Since the Late 1990s

Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Some ldeas

- Aggregated Objective Function: To combine the error
minimization and the complexity minimization into a
single scalar fitness function

- Constraint Condition: To use constraint conditions on
the position and the shape of membership functions

- Two-Step Fuzzy System Design: 1st Step: Search for
accurate and complicated fuzzy rule-based systems.
2nd Step: Simplification of obtained fuzzy rule-based
systems.



Accuracy and Interpretability Maximization

Active Research Direction Since the Late 1990s

Accuracy Maximization and Complexity Minimization

roF] - GA-fuzzy modeling and classification: complexity and performance
M Setnes, H Roubos - |[EEE Transactions on Fuzzy Systems, 2000 - Citeseer
Manuscript received (._.); revised (...). This work was supported in part by the

Research Council of Norway. The authors are with the Delft University of

Technology, Faculty of Information Technology and Systems, Control .

MMMM@M@E

roF] - Compact and transparent fuzzy models and classifiers

H Roubos, M Setnes - |[EEE Transactions on Fuzzy Systems, 2001 - repc
Abstract—In our previous work we showed that genetic algo- nthms (GAs)
provide a powerful tool to increase the accuracy of fuzzy models for both
systems modeling and classification. In addi- tion to these results, we ...
Cited by 146 - Related articles - View as HTML - BL Direct - All 3 versions

eook] Interpretability 1ssues in fuzzy modeling
J Casillas, O Cordon, F Hemrera, L Magdalena, 2003 - books.google.com

Dr. Jorge Casillas Dr. Luis Magdalena E-mail: casillas@ decsai. ugr. es E-mail:
llayos@ mat. upm. es Dr. Oscar Cord< 5n Dpto. Matematicas Aplicadas E-mail:

ocordon(@ decsai. ugr. es a las Tecnologias de la Information Dr. Francisco ...
Cited by 167 - Related arlicles - All 2 versions Google Scholar




Accuracy and Interpretability Maximization

Active Research Direction Since the Late 1990s

Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Basic Idea

- Aggregated Objective Function: To combine the error
minimization and the complexity minimization into a
single scalar fitness function

- Constraint Condition: To use constraint conditions on
the position and the shape of membership functions

- Two-Step Fuzzy System Design: 1st Step: Search for
accurate and complicated fuzzy rule-based systems.
2nd Step: Simplification of obtained fuzzy rule-based
systems.



Accuracy and Interpretability Maximization

Active Research Direction Since the Late 1990s

Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Aggregated Objective Function

- To combine the error minimization and the complexity
minimization into a single scalar objective function



Accuracy and Interpretability Maximization

Active Research Direction Since the Late 1990s

Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Aggregated Objective Function

- To combine the error minimization and the complexity
minimization into a single scalar objective function

Example: Combination of the average error rate and the
number of fuzzy rules

Example of a scalar objective function: Weighted sum

F(S) =Wy TEror(S)+Ws - Teomplexity (S)



Accuracy and Interpretability Maximization

Active Research Direction Since the Late 1990s

Fuzzy systems were automatically
generated, trained, and simplified.

Interpretable
fuzzy system

Accurate
'\ fuzzy system

Small €& Error = Large

Simple €—— Complexity =——= Complicated



Difficulty in Weighted Sum Approach

Sensitivity to the weight vector:

The obtained system strongly depends on the
specification of the weight vector.



Difficulty in Weighted Sum Approach

Minimize wy-Error + w,-Complexity
When the weight for the complexity minimization is large:

t ' A simple system is obtained.
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Difficulty in Weighted Sum Approach

Minimize w,-Error + w,-Complexity

When the weight for the error minimization is large:

t A complicated system is obtained.
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Difficulty in Weighted Sum Approach

Minimize w,-Error + w,-Complexity

When the two weights are appropriately specified:

t A good system is obtained. But the

best complexity is not always found. Test data
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Multiobjective Fuzzy System Design

Currently An Active Research Issue

Basic Idea

To search for a number of non-dominated fuzzy systems with
respect to the accuracy maximization and the interpretability
maximization (instead of searching for a single fuzzy system).

Aggregation Approach

F(S)=wyg- TEror(S) +Wa - Teomplexity (S)
Multiobjective Approach

Minimize {Tgpor(S), Tcomplexity (S)}
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Abstract

Since pioneering works by Prof. Hisao Ishibuchi in middle
nineties, Pareto-based Evolutionary Multiobjective Optimization
(EMO) of Fuzzy Rule-Based Systems (FRBSs) is nowadays a well-

established research area. It is a branch of the more general
Evolutionary/Genetic Fuzzy Systems (see F. Herrera, "Genetic
Fuzzy systems: Taxonomy, current research trends and
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Multi-Objective Fuzzy Rule Selection

for Fuzzy Rule-Based Classifier Design
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- The number of correctly classified training patterns
- The number of selected fuzzy rules
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Paper Title: Industrial Applications

of Fuzzy-Logic at General-Electric

Author(s): BONISSONE PP, BADAMI V, CHIANG KH, KHEDKAR PS, MARCELLE
KW, SCHUTTEN MJ

Source: PROCEEDINGS OF THE IEEE  Volume: 83 Issue: 3 Pages: 450-
465 Published: MAR 1995

Times Cited: 39 References: 28 Citation Map

Abstract: Fuzzy logic control (FLC) technology has drastically reduced the
development time and deployment cost for the synthesis of nonlinear controllers for
dynamic systems. As a result we have experienced an increased number of FLC
applications. We will illustrate some of our efforts in FLC technology transfer, covering
projects in turboshaft aircraft engine control, steam turbine startup, steam turbine
cycling optimization, resonant converter power supply control, and data-induced
modeling of the nonlinear relationship between process variables in a rolling mill
stand.

We will compare these applications in a cost/complexity framework, and examine the
driving factors that led to the use of FLC's in each application. We will emphasize the
role of fuzzy logic in developing supervisory controllers and in maintaining explicit
tradeoff criteria used to manage multiple control strategies.

Web of Science
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Abstract: In this paper, we propose the use of a multiobjective evolutionary approach to
generate a set of linguistic fuzzy-rule-based systems with different tradeoffs between
accuracy and interpretability in regression problems. Accuracy and interpretability are
measured in terms of approximation error and rule base (RB) complexity, respectively. The
proposed approach is based on concurrently learning RBs and parameters of the
membership functions of the associated linguistic labels. To manage the size of the search
space, we have integrated the linguistic two-tuple representation model, which allows the
symbolic translation of a label by only considering one parameter, with an efficient



Paper Title: A Multiobjective Evolutionary Approach to
Concurrently Learn Rule and Data Bases of Llngwstlc
Fuzzy-Rule-Based Systems| |

Author(s): Alcala R (Alcala, Rafael)1, Ducange P (Duéange, ietro)z, Herrera F (Herrera,
Francisco)T, Lazzerini B (Lazzerini, Beatrice)z, Marcelloni F (Marcelloni, Fr.ancesco)2

Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS  Volume: 17 Issue:
5 Pages: 1106-1122 Published: OCT 2009 1. Univ Granada 2. Univ Pisa

Times Cited: 0  References: 52 Citation Map

Web of Science

Abstract: In this paper, we propose the use of a multiobjective evolutionary approach to
generate a set of linguistic fuzzy-rule-based systems with different tradeoffs between
accuracy and interpretability in regression problems. Accuracy and interpretability are
measured in terms of approximation error and rule base (RB) complexity, respectively. The
proposed approach is based on concurrently learning RBs and parameters of the
membership functions of the associated linguistic labels. To manage the size of the search
space, we have integrated the linguistic two-tuple representation model, which allows the
symbolic translation of a label by only considering one parameter, with an efficient



Paper Title: A Multiobjective Evolutionary Approach to
Concurrently Learn Rule and Data Bases of Llngwstlc
Fuzzy-Rule-Based Systems) *

Author(s): Alcala R (Alcala, Rafael)1, Ducange P (Duéange, ietro)z, Herrera F (Herrera,
Francisco)T, Lazzerini B (Lazzerini, Beatrice)z, Marcelloni F (Marcelloni, Fr.ancesco)2

Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS  Volume: 17 Issue:
5 Pages: 1106-1122 Published: OCT 2009 1. Univ Granada 2. Univ Pisa

Times Cited: 0  References: 52 Citation Map

Web of Science

Abstract: In this paper, we propose the use of a multiobjective evolutionary approach to
generate a set of linguistic fuzzy-rule-based systems with different tradeoffs between
accuracy and interpretability in regression problems. Accuracy and interpretability are
measured in terms of approximation error and rule base (RB) complexity, respectively. The
proposed approach is based on concurrently learning RBs and parameters of the
membership functions of the associated linguistic labels. To manage the size of the search
space, we have integrated the linguistic two-tuple representation model, which allows the
symbolic translation of a label by only considering one parameter, with an efficient



Paper Title: Learning concurrently partition granularities

and rule bases of Mamdani fuzzy systems in a multi-
objective evolutionary framework

Author(s): Antonelli M (Antonelli, Michela)1, Ducange P (Ducange, Pietro)1, Lazzerini B
(Lazzerini, Beatrice)1, Marcelloni F (Marcelloni, Francescc))1

Source: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING  Volume:
50 Issue:7 Pages: 1066-1080 Published: JUL 2009

Times Cited: 0 References: 43 Citation Map

Web of Science

Abstract: In this paper we propose a multi-objective evolutionary algorithm to generate
Mamdani fuzzy rule-based systems with different good trade-offs between complexity and
accuracy. The main novelty of the algorithm is that both rule base and granularity of the
uniform partitions defined on the input and output variables are learned concurrently. To
this aim, we introduce the concepts of virtual and concrete rule bases: the former is
defined on linguistic variables, all partitioned with a fixed maximum number of fuzzy sets,
while the latter takes into account, for each variable, a number of fuzzy sets as determined
by the specific partition granularity of that variable. \We exploit a chromosome composed of



Paper Title: Learning concurrently partition granularities
and rule bases of Mamdani fuzzy systems in a multi-

objective evolutionary framework

Author(s): Antonelli M (Antonelli, Michela)1, Ducange P (Ducange, Pietro)1, Lazzerini B
(Lazzerini, Beatrice)1, Marcelloni F (Marcelloni, Francescc))1

Source: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING Volume

50 Issue:7 Pages: 1066-1080 Published: JUL 2009

Times Cited: 0 References: 43 Citation Map

Web of Science

Abstract: In this paper we propose a multi-objective evolutionary algorithm to generate
Mamdani fuzzy rule-based systems with different good trade-offs between complexity and
accuracy. The main novelty of the algorithm is that both rule base and granularity of the
uniform partitions defined on the input and output variables are learned concurrently. To
this aim, we introduce the concepts of virtual and concrete rule bases: the former is
defined on linguistic variables, all partitioned with a fixed maximum number of fuzzy sets,
while the latter takes into account, for each variable, a number of fuzzy sets as determined
by the specific partition granularity of that variable. \We exploit a chromosome composed of



Paper Title: Learning concurrently partition granularities
and rule bases of Mamdani fuzzy systems in a multi-

objective evolutionary framework

Author(s): Antonelli M (Antonelli, Michela)1, Ducange P (Ducange, Pietro)1, Lazzerini B
(Lazzerini, Beatrice)1, Marcelloni F (Marcelloni, Francescc))1

Source: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING Volume

50 Issue:7 Pages: 1066-1080 Published: JUL 2009

Times Cited: 0 References: 43 Citation Map

Web of Science

Abstract: In this paper we propose a multi-objective evolutionary algorithm to generate
Mamdani fuzzy rule-based systems with different good trade-offs between complexity and
accuracy. The main novelty of the algorithm is that both rule base and granularity of the
uniform partitions defined on the input and output variables are learned concurrently. To
this aim, we introduce the concepts of virtual and concrete rule bases: the former is
defined on linguistic variables, all partitioned with a fixed maximum number of fuzzy sets,
while the latter takes into account, for each variable, a number of fuzzy sets as determined
by the specific partition granularity of that variable. \We exploit a chromosome composed of




Multi-Objective Fuzzy System Design Research

Active Geographical Regions

Google Maps

Bordeaux
(]
Ggm Santander San.
o Bilbao Sebagtian
? @ =] = R
fiedo y Pau
. . Pamplona ;
Ledn ‘».-'itnna-Gasl.e-lza. ; o
» Burgos
[+] -
‘alladoid ‘Zaragoza
o Q
lamanca
] T 1
Aleald de e
Henares .
(5] =]
Madrid
@ Toledo
d Valencia
Esparia
o Cr
=parn Albacets
G ]
Alicante
]
@ Murcia
illa o
Cartagena
Q ¥
o El Ejido
Marbella
Gibraltar? Miran

Llgida

Tamagona S

.2 ~ .- TR o
Saint-Efienne Grenﬂc-hle Toring v Milano Verona Venezia
alence - ;
WE?: o F;EEQEI'G Ff!r‘:r;m=| 5
] nellEmika
Aler-sanrllna_ o £y
o . Bologna@: "™ EEE
Genova o - Fori@
.I'-'Inmgutran Albi Avignon " -
=1 =3 Fwenze | San Maring
= Montpellier_, . - _y
TDUEUEE @ Castres IIF.‘JIE == Aix-en-Provence e " ;
: : o ot T Italia. .
{ +3 raguignan =8 o
Carcassonne® - FBériars Marsgille® ~ ':~-'P’a
: Toulsn Perugia = @ .
F‘erpégnan ; Folign g
Andarra e -
il Temi
Roma
Q
Barcelona
=]
Latira
Sagaarn
o
Sargegng
Palma
=]
Cagliari
=]
FPa
Fid g gt
Euzgrte
ksl &l : Cebalat
Alger Béjala ) a o
Q | .:. ] PP ) q_,l_._:
[ __ - ~B b‘:- - - 5 ~sitakiten — Congtanting ’!"“"'E"_ﬂ_‘? : GNLJ..-L-I
waladl odabdl “Tamiar et o L8, _ abay
O et Blida R oorf ; saacnanainll




Multi-Objective Fuzzy System Design Research

Active Geographical Regions

\ - — - S o
G I M A ' Saint-Etienne Grenﬂchle Toring. - Milano erona Venezia
Oog e apS Bordesux i S i Ualna;‘nce L e . Reggic_ _Ferrara .
Q By o : ~ 1 A Qn:ﬁia- nell'lamia 1+
q : . Bologna@ Ftav;nna
' Genova : Forll
.Mnmguban Albi £ Avignon . -:.:rI:i
" Toulouse ; |":|'|DI'ITF"E|"EF Monaco o F'E'ane ul e
Gg;m Santander San ] @Casires [ -p..:-en-r:;wence e @ o Italia
¥ Wilbac S ehastian ! i raguignan| Antibes Livamo = !
o i 7 o o [+] Marseile® Drraguigna tal
jiedo L i Pau r Carcassonne G Bériers o - 'Pla
: . Pamplona ; - Toulen Perugia = @ "
L Uitur-a-Gas-letzﬂ-. o F‘erpagnan 5. Foligno *}
4] i Andarra Q-
BL-rchrs . ~ Temi
2 b Roma -
‘alladolid ‘Zaragoza Lisida [=]
b @ ot Barcelona 5
Latira
lamanca Tamagona S
] Y !
Aleald de et
Henares .
g @
Madrid - £
o Toledo g
d Valencia
Esparia 3
Spain Albacete
Q ]
Alicante
o -
@Murcia i e I
Lorca
illa ° an L
) Cartagena ik
----h\"'—_ﬂ'"l”'
Mrsin

Gibraltar?




Contents of This Presentation

1. Introduction to Fuzzy Rule-Based Classification
- Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design

- Accuracy Improvement
- Scalability to High-Dimensional Problems
- Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design

- Formulation of Multi-objective Problems
- Accuracy-Complexity Tradeoff Analysis
- Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions

- Search Ability of EMO for Fuzzy System Design

- Definition of Interpretability of Fuzzy Systems

- Explanation Ability of Fuzzy Rule-Based Systems

- Various Classification Problems: Imbalanced, Online, ...



Results of Multi-Objective Search

Non-Dominated Fuzzy Rule-Based Systems

Many non-dominated fuzzy systems can be obtained along
the tradeoff surface by a single run of an EMO algorithm.

EMO: Evolutionary Multi-Objective Optimization

ol

O <—A Single Fuzzy Rule-Based System

Erro

0 Complexity



Accuracy-Complexity Tradeoff

for Training Data and Test Data

The obtained non-dominated fuzzy systems show the tradeoff
between the complexity and the training data accuracy (not the

tradeoff between the complexity and the test data accuracy).
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Accuracy-Complexity Tradeoff

for Training Data and Test Data

The obtained non-dominated fuzzy systems show the tradeoff
between the complexity and the training data accuracy (not the

tradeoff between the complexity and the test data accuracy).

- Tradeoff for test data accuracy should be examined.
- This can be done since we have many fuzzy systems.

/ Test data

= Traini Nng data

>

A

Error

0 S*  Complexity



Example: Obtained Rule Sets (Heart C)

60_ ! | | | | | | 80 | | | | | |
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s 301 QG : 5501086 .
S 0% 21 880pepgo00°
[ o = 000
o) 0 1 Wiyt ]
9"72"7% 75 8 10 12 14 00246 8 10 12 14
Number of rules Number of rules
Training data accuracy Testing data accuracy

Obtained rule sets help us to find the optimal complexity of fuzzy
systems. (Rule sets with six, seven and eight rules may be good)



A Rule Set with High-Generalization Ability

A rule set with eight fuzzy rules
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Number of rules

Some human users may prefer simpler rule sets.



Error rate (%)

A Rule Set with High Interpretability

A very simple rule set with only two fuzzy rules

Consequent

Class 1
(0.26)

Class 2
(1.00)

8 10 12 1
Number of rules
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Why Is the fuzzy system design difficult?

1. Large Search Space: Difficulty in Search

The search space exponentially increases with the number of
attributes (i.e., with the dimensionality of the pattern space).



Number of Fuzzy Rules

O Class1 OClass2 AClass 3

Basic Form

If X, Is small and x, Is small
then Class 2

If X, Is small and x, Is medium
then Class 2

If X, Is large and X, is large
then Class 3

Number of Fuzzy Rules:

2-D Problem: 3x3

3-D Problem: 3x3x3

4-D Problem: 3x3x3x3
5-D Problem: 3x3x3x3x3



Number of Fuzzy Rules

O Class1 OClass2 AClass 3

Use of Don’t Care

If X, Is small and x, Is small
then Class 2

If X, Is small and x, Is medium
then Class 2

If X, Is large and
X, IS don’t care then Class 3

Number of Fuzzy Rules:
2-D Problem: (3+1)x(3+1)
3-D Problem: (3+1)3
4-D Problem: (3+1)4
5-D Problem: (3+1)°



Number of Fuzzy Rules

and Number of Rule Sets

Search Space Size: Large

Example: Classification problem with 50 attributes
and 3 linguistic values for each attribute

O Class 1O Class 2 Class 3 _
= , , The total number of fuzzy rules (i.e.,

antecedent condition combinations):

(3+1) X ... X (3+1) = 450 = 2100

The total number of fuzzy rule sets
with 20 rules (i.e., combinations of 20
A fuzzy rules):




Number of Fuzzy Rules

and Number of Rule Sets

Search Space Size: Large

Example: Classification problem with 50 attributes
and 1-7 fuzzy partition for each attribute

4 2 A3 4 5 H
1.0 10 The total number of fuzzy rules (i.e.,

antecedent condition combinations):

o.o‘ 10 00 10 (1+2+ 7) X = 2850 S 2400

1.0 1.0

The total number of fuzzy rule sets
00 17 00 = with 20 rules (i.e., combinations of 20
fuzzy rules):

1l0ﬂfghijk 1.0Imnopqr

0.0 1.0 0.0 1.0




Why Is the fuzzy system design difficult?

1. Large Search Space: Difficulty in Search

Error

The search space exponentially increases with the number of
attributes (i.e., with the dimensionality of the pattern space). It
IS likely that the entire tradeoff curve can not be covered well

by the obtained non-dominated fuzzy rule-based systems.
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Why Is the fuzzy system design difficult?

1. Large Search Space: Difficulty in Search

The search space exponentially increases with the number of
attributes (i.e., with the dimensionality of the pattern space). It
Is likely that the entire tradeoff curve can not be covered well

by the obtained non-dominated fuzzy rule-based systems.

2. Possibility of Over-Fitting: Difficulty in Learning

The improvement in the training data accuracy does not always
mean the improvement in the test data accuracy. This means
that the fitness function improvement does not always lead to
better fuzzy rule-based classifiers (when the training data
accuracy is used in the fitness function) .



Why Is the fuzzy system design difficult?

2. Possibility of Over-Fitting: Difficulty in Learning

The improvement in the training data accuracy does not always
mean the improvement in the test data accuracy.

yTest Data Accuracy
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Why Is the fuzzy system design difficult?

2. Possibility of Over-Fitting: Difficulty in Learning

The improvement in the training data accuracy does not always
mean the improvement in the test data accuracy.

yTest Data Accuracy

Error
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Why Is the fuzzy system design difficult?

2. Possibility of Over-Fitting: Difficulty in Learning

The improvement in the training data accuracy does not always
mean the improvement in the test data accuracy.

Test Data Accuracy Test Data Accuracy
C N m:)
- - ~
- -
L LL

Training Data Accuracy
Training Data Accuracy
> >

0 Complexity 0 Complexity

Poor Convergence Convergence Improvement



Recent Studies: Improvement in training data accuracy

leads to Improvement in test data accuracy.

Gacto MJ, Alcala R, Herrera F (2009) Adaptation and application of multi-
objective evolutionary algorithms for rule reduction and parameter
tuning of fuzzy rule-based systems, Soft Computing 13 (5): 419-436

Ishibuchi H, Nakashima Y, Nojima Y (2009) Performance evaluation of
evolutionary multiobjective optimization algorithms for multiobjective
fuzzy genetics-based machine learning, Proc. of FUZZ-IEEE 2009.

L?Test Data Accuracy thest Data Accuracy

Error
Error

Training Data Accuracy Training Data Accuracy

0 > ) -
Complexity Complexity
Poor Diversity Diversity Improvement




Our Experimental Results

MoFGBML Algorithm (Framework: NSGA-II)

Multi-Objective Fuzzy Genetics-Based Machine Learning

Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fu
H Ishibuchi, Y Nojima - Intemational Journal of Approximate Reasoning, 2007 - Elsevier

This paper examines the interpretability-accuracy tradeoff in fuzzy rule-based

classifiers using a multiobjective fuzzy genetics-based machine leaming (GBML)

algorithm. Our GBML algorithm is a hybrid version of Michigan and .. Google Scholar

Cited by 63 - Relafed arficles - All 6 versions IShibuchi & Nouma IJAR 2007

NSGA-Il Basic Setting
- Population size: 200 individuals
- Termination Condition: 2000 generations
- Multiple Fuzzy Partitions: Granularities 1-5

Three Variants of MOFGBML Setting
- Diversity Improvement Method (Mating, EJOR 2008)
- Termination Condition: 20000 generations
- Multiple Fuzzy Partitions: Granularities 7




Experimental Results (Glass)
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Experimental Results (Glass)
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Experimental Results (Glass)
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Experimental Results (Glass)
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Our Experimental Results

Simple Changes of Objectives (GEFS 2010, Spain)

Original Formulation
f1(S): Error Rate (%)

f2(S): Number of Fuzzy Rules

Simple Modification

g1(S) = f1(S) - af2(S)
g2(S) = f2(S) + af1(S)
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Our Experimental Results

Simple Changes of Objectives (GEFS 2010, Spain)
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(a) Glass data. (b) Diabetes data.



Our Experimental Results

Simple Changes of Objectives (GEFS 2010, Spain)

Original Formulation
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Our Experimental Results

Four-Objective Formulation (GEFS 2010, Spain)
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Handling of Interpretability

In Our Former Studies

[1] H. Ishibuchi et al. (1995) Selecting fuzzy if-then rules for
classification problems using genetic algorithms, IEEE TFS.

ISI Web of Knowledge Citations: 273 times

[2] H. Ishibuchi et al. (1997) Single-objective and two-objective
genetic algorithms for selecting linguistic rules for pattern
classification problems. Fuzzy Sets & Systems.

ISI Web of Knowledge Citations: 107 times

[3] H. Ishibuchi et al. (2001) Three-objective genetics-based
machine learning for linguistic rule extraction. Information
Sciences.

ISI Web of Knowledge Citations: 94 times

Interpretability Maximization = Complexity Minimization
- Minimization of the number of fuzzy rules
- Minimization of the number of antecedent conditions
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Interpretability of Fuzzy Systems

Ishibuchi et al. (1995, 1997, 2001)

Interpretability Maximization = Complexity Minimization
- Minimization of the number of fuzzy rules
- Minimization of the number of antecedent conditions

Many other factors are related to the interpretability

Special Sessions and Many Related Papers

- IFSA 2009 Conference
- ISDA 2009 Conference (4 Papers with Interpretability in Their Titles)
- FUZZ-IEEE 2010 Conference
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Another Issue In Interpretability

Explanation of Classification Results

Explanation Ability

The ability of fuzzy rule-based systems to explain why
a new pattern is classified as a particular class.

Example: Classification of a pattern ¢: X, = (0.05, 0.05)
© Class 1 OClass 2 A Class 3




Comparison between Rule Sets 1 and 2

Classification of ¢ : x, = (0.05, 0.05)

O Class 1 Class 2 A Class 3 O Class 1 Class 2 A Class 3
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(1) Rule Set 1: Nine Rules (2) Rule Set 2: Four Rules



Comparison in Explanation Capability

Responsible Rules for Classification

O Class 1[] Class ZACIass 3 O Class 1[] Class ZACIass 3

0.0 X4 1.0

R,: If X, i1s small and X, is R:: If X, Is medium and X, Is medium
small then Class 2 then Class 2



Comparison in Explanation Capability

Responsible Rules for Classification

R, seems to be a better explanation for the classification of X,.
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R,: If X, is small and x, is R:: If X, Is medium and X, I1s medium
small then Class 2 then Class 2



Comparison between Rule Sets 1 and 2

Rule Set 1 seems to have higher explanation ability while
Rule Set 2 is simpler than Rule Set 1.
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(1) Rule Set 1: Nine Rules (2) Rule Set 2: Four Rules



Comparison between Rule Sets 1 and 4

Classification of ¢ : x, = (0.05, 0.05)
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(1) Rule Set 1: Nine Rules (4) Rule Set 4: Three Rules



Comparison in Explanation Capability

Responsible Rules for Classification
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R340 1T X, 1s small or medium
and X, is small or medium
then Class 2

R,: If X, is small and x, is small
then Class 2



Comparison in Explanation Capability

Responsible Rules for Classification

R, seems to be a better explanation for the classification of X,.
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Comparison between Rule Sets (1) and (4)

Rule Set 1 seems to have higher explanation ability while
Rule Set 4 is simpler than Rule Set 1.
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(1) Rule Set 1: Nine Rules (4) Rule Set 4: Three Rules



Classification Capability

Another Example xz= (0.95, 0.50)
Classification of & : Xz =(0.95, 0.50)

© Class 1 OClass 2 A Class 3




Comparison between Rule Sets 1 and 3

Classification of & : Xz =(0.95, 0.50)

O Class 1 Class 2 A Class 3 O Class 1 Class 2 A Class 3
= | =

0.0 X4 1.0 0.0 X4 1.0
(1) Rule Set 1: Nine Rules (3) Rule Set 3: Seven Rules



Comparison in Explanation Capability

Responsible Rules for Classification

O Class 1 Class 2 A Class 3
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Rg: If X, is large and x, is medium
then Class 3

R.gq: If X, 1S large then Class 3



Comparison in Explanation Capability

Responsible Rules for Classification

Which is a better explanation for the classification of x; between
Rg and R,gg ?

O Class 1 Class 2 A Class 3 O Class 1 Class 2 A Class 3
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Rg: If X, Is large and x, Is medium
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then Class 3 R.go: If X, is large then Class 3



Comparison in Explanation Capability

Responsible Rules for Classification

Which is a better explanation for the classification of x; between
Rg; and R4 ? It is avery difficult question for me to answer.

O Class 1 Class 2 A Class 3
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Fuzzy Classifiers on Various Problems

We have a lot of different types of classification problems
where fuzzy rule-based classifiers have not been well-
utilized and have a large potential usefulness:

1. Imbalanced Data

2. Semi-Supervised Learning
3. Active Learning

4. On-Line Learning

5. ...

6. ...
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Fuzzy Classifiers on Various Problems

IFSA 2009 Invited Talk

Fuzzy Logic in Machine Learning

Eyke Hillermeier

Department of Mathematics and Computer Science
Philipps-Universitat Marburg, Germany

The purpose of this talk is twofold. First, it is intended to convey an idea of the state-of-
the-art in fuzzy logic-based machine learning, to be understood as the application of formal
concepts, methods, and techniques from fuzzy set theory and fuzzy logic in the field of machine
learning and related research areas, such as data mining and knowledge discovery. In this regard,

- will be espedially

ng directions
including problems of ranking and preference learning, the representation of uncertainty in model
induction and prediction, and the use of fuzzy modeling techniques for feature generation.
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- Accuracy Improvement
- Scalability to High-Dimensional Problems
- Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design

- Formulation of Multi-objective Problems
- Accuracy-Complexity Tradeoff Analysis
- Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions

- Search Ability of EMO for Fuzzy System Design

- Definition of Interpretability of Fuzzy Systems

- Explanation Ability of Fuzzy Rule-Based Systems

- Various Classification Problems: Imbalanced, Online, ...



Conclusions

1. Introduction to Fuzzy Rule-Based Classification
- Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design

- Accuracy Improvement
- Scalability to High-Dimensional Problems
- Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design

- Formulation of Multi-objective Problems
- Accuracy-Complexity Tradeoff Analysis
- Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions

- Search Ability of EMO for Fuzzy System Design

- Definition of Interpretability of Fuzzy Systems |t is not always high.
- Explanation Ability of Fuzzy Rule-Based Systems

- Various Classification Problems: Imbalanced, Online, ...



Conclusions

1. Introduction to Fuzzy Rule-Based Classification
- Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design

- Accuracy Improvement
- Scalability to High-Dimensional Problems
- Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design

- Formulation of Multi-objective Problems
- Accuracy-Complexity Tradeoff Analysis
- Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions

- Search Ability of EMO for Fuzzy System Design
- Definition of Interpretability of Fuzzy Systems
- Explanation Ability of Fuzzy Rule-Based Systems
- Various Classification Problems: Imbalanced, Online, ...
We have still alot of interesting research issues.



Appendix: Comparison of the Two Approaches

Two-objective maximization problem
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Weighted Sum Approach
Experimental results of a single run of each approach



Appendix: Two-Dimensional Antecedent Fuzzy Sets

1.0 1.0

2

>

0.0 0.0

0.0 X, 1.0 0.0 X, 1.0

(a) A two-dimensional fuzzy vector. (b) An ellipsoidal antecedent fuzzy set.



Appendix: Interval Rules vs Fuzzy Rules
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Appendix: Interval Rules vs Fuzzy Rules
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