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Evolutionary Multiobjective Optimization

Evolutionary multiobjective optimization (EMO) is a very
active research area in evolutionary computation.



Evolutionary Multiobjective Optimization

Evolutionary multiobjective optimization (EMO) is a very
active research area in evolutionary computation.

Major Evolutionary Computation Conferences

GECCO 2006 (Seattle, USA, July 8-12)

CEC 2006 (Vancouver, Canada, July 16-21)
PPSN 2006 (Reykjavik, Iceland, September 9-13)
EMO 2007 (Sendai, Japan, March 5-8)

GECCO 2007 (London, UK, July 7-11)

Many papers are related to multiobjective optimization.
The number of EMO papers is still increasing.



Popularity of EMO Research

Most frequently cited papers published in IEEE Transactions on
Evolutionary Computation during 1999-2007 (All TEC papers in I1SI)

1.

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A
comparative case study and the Strength Pareto approach. Times
Cited: 312

Deb K et al. (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. Times Cited: 309

Clerc M, Kennedy J (2002) The particle swarm - Explosion, stability,
and convergence in a multidimensional complex space. Times Cited:
162

Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in
evolutionary algorithms. Times Cited: 129

Yao X, Liu Y, Lin GM (1999) Evolutionary programming made faster.
Times Cited: 112

Data from ISI Web of Science, Thomson Scientific (July 21, 2007)



Popularity of EMO Research

Most frequently cited papers published in IEEE Transactions on
Evolutionary Computation in the recent 5 years (2003-2007)

1.

Zitzler E et al. (2003) Performance assessment of multiobjective
optimizers: An analysis and review. Times Cited: 66

Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple
objectives with particle swarm optimization. Times Cited: 43

Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic
search and local search in memetic algorithms for multiobjective
permutation flowshop scheduling. Times Cited: 39

Lee CY, Yao X (2004) Evolutionary programming using mutations
based on the Levy probability distribution. Times Cited: 37

Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to
particle swarm optimization. Times Cited: 29

Data from ISI Web of Science, Thomson Scientific (July 21, 2007)



Multiobjective Optimization

Multiobjective optimization problem with k objectives:

Maximize f (X) = (f1(x), f(X), ..., fi (X))



Comparison between Two Solutions

Maximize f(x)=(f,(x), f,(x))
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Comparison between Two Solutions

Maximize f(x)=(f,(x), f,(x))

fo(X) A
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Pareto-Optimal Solutions

A Pareto-optimal solution is a solution that
ISnot dominated by any other solutions.
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EMO Algorithm

EMO algorithms are design to efficiently search
for Pareto-optimal solutions as many as possible
In their single run.
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Comparison: Weighted Sum Approach

Maximize g(x) =wq f1(X) + ws fo(X)

f5(X)

Only a single solution is obtained
by the weighted sum appr oach.

Multiple solutions are obtained
by an EMO algorithm.

M aximize

, T1(X)

M aximize



Difficulties in Weighted Sum Approach

e Thisapproach is sensitive to the specification of the weight vector.

e Thisapproach can not find any Par eto-optimal solutionsin a
non-convex region of the Pareto front in the objective space.
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Difficulties in Weighted Sum Approach

e Thisapproach is sensitive to the specification of the weight vector.

e Thisapproach can not find any Par eto-optimal solutionsin a
non-convex region of the Pareto front in the objective space.
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Comparison of the Two Approaches

Two-objective maximization problem

21000

20000

19000

=
(00)
)
=)
o

f,: Total profit from knapsack 2
S
S

16000

| ! | ! | ! | ! | !

e 2000th generation |
© 50th generation
e 20th generation

16000 17000 18000 19000 20000
f,: Total profit from knapsack 1

EMO Approach

21000

20000

19000

18000

17000

f,: Total profit from knapsack 2

16000

| ! | ! | ! | ! | !
e 2000th generation |
o 50th generation
o 20th generation

16000 17000 18000 19000 20000
f,: Total profit from knapsack 1

Weighted Sum Approach



Search Direction in Each Approach

Two-objective maximization problem
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Difficulties in Fuzzy System Design
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Difficulties in Fuzzy System Design

Accuracy-Complexity Tradeoff
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Fuzzy System Research in the 1990s

Accuracy maximization: Many studies on

- Universal approximators of nonlinear functions
- Neuro-fuzzy techniques for parameter learning

- Genetic-fuzzy techniques for parameter and structure
learning

D. E. Rumehart, J. L. McClelland and the PDP Research Group:
Parallel Distributed Processing, MIT Press (1986).

D. E. Goldberg: Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley (1989).



Research Direction in the 1990s

Interpretable
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Research Direction in the 1990s

A complicated fuzzy system with
high accuracy was obtained.

Interpretable

fuzzy system

Accurate
---- fuzzy system

Small € Error == Large

Simple €—— Complexity =——> Complicated



Difficulty in Accuracy Maximization

Error minimization Overfitting to training data



Difficulty in Accuracy Maximization

Error minimization Overfitting to training data
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Fuzzy System Research in Late 1990s

Search for a good accuracy-complexity tradeoff

Basic Idea

To combine the error minimization and the complexity
minimization into a single scalar objective function



Fuzzy System Research in Late 1990s

Search for a good accuracy-complexity tradeoff

Basic Idea

To combine the error minimization and the complexity
minimization into a single scalar objective function

Example: Combination of the average error rate and the
number of fuzzy rules

Example of a scalar objective function: Weighted sum

F(S)=wy TError (S) +wa- fCompIexity (S)



Fuzzy System Research in Late 1990s

Search for a good accuracy-complexity tradeoff

Basic Idea

To combine the error minimization and the complexity
minimization into a single scalar objective function

Example: Combination of the average error rate and the
number of fuzzy rules

V. N. Vapnik: Statistical Learning Theory, Wiley (1998).



Research Direction in Late 1990s

Interpretable
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Research Direction in Late 1990s

A fuzzy system with a good
accuracy-complexity tradeoff
was obtained.

Interpretable

fuzzy system

Accurate
---- fuzzy system

Small € Error == Large

Simple €—— Complexity =——> Complicated



Difficulty in Weighted Sum Approach

Sengitivity to the weight vector

The obtained fuzzy system strongly depends on
the specification of the weight vector.



Difficulty in Weighted Sum Approach

Minimize wy-Error + w,-Complexity

When the weight for the complexity minimization is large:
A
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Difficulty in Weighted Sum Approach

Minimize wy-Error + w,-Complexity
When the weight for the error minimization is large:

t A complicated fuzzy system is obtained.
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Difficulty in Weighted Sum Approach

Minimize wy-Error + w,-Complexity

When the two weights are appropriately specified:

t A good fuzzy system is obtained. But the

best complexity is not always found. Test data
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Current Trend In Fuzzy System Research

Multiobjective optimization of accuracy and complexity

Basic Idea

To search for Pareto-optimal solutions with respect to
the error minimization and the complexity minimization.



Current Trend In Fuzzy System Research

Multiobjective optimization of accuracy and complexity

Basic Idea

To search for Pareto-optimal solutions with respect to
the error minimization and the complexity minimization.

Example: Two-objective problem
- minimize the average error rate
- minimize the number of fuzzy rules

Example of a multiobjective minimization problem

Minimize { Tgpor (S), Tcomplexity ()}



Current Trend In Fuzzy System Research

Multiobjective optimization of accuracy and complexity

Basic Idea

To search for Pareto-optimal solutions with respect to
the error minimization and the complexity minimization.

Aggregation Approach

F(S)=wq Terror (S)+ W2 - Toomplexity (S)

Multiobjective Approach

Minimize { fgpor (S), fCompIexity(S)}



Current Trend In Fuzzy System Research

Multiobjective optimization of accuracy and complexity

Basic Idea

To search for Pareto-optimal solutions with respect to
the error minimization and the complexity minimization.

Example: Two-objective problem
- minimize the average error rate
- minimize the number of fuzzy rules

K. Deb: Multi-Objective Optimization using Evolutionary
Algorithms, Wiley (2001).
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Multiobjective Approach

Many Pareto-optimal fuzzy systems can be obtained along

the accuracy-complexity tradeoff surface by a single run of
an EMO algorithm.
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Multiobjective Approach

Many Pareto-optimal fuzzy systems can be obtained along

the accuracy-complexity tradeoff surface by a single run of
an EMO algorithm.
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Multiobjective Approach

Many Pareto-optimal fuzzy systems can be obtained along

the accuracy-complexity tradeoff surface by a single run of
an EMO algorithm.
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Two Multiobjective Formulations

Multiobjective Design of Fuzzy Systems

Rule set-level multiobjective optimization

Multiobjective Search for Fuzzy Rules

Rule-level multiobjective optimization



Two Multiobjective Formulations

Multiobjective Design of Fuzzy Systems

Rule set-level multiobjective optimization

Multiobjective Search for Fuzzy Rules

Rule-level multiobjective optimization

Different quality measures of fuzzy rules such as support

and confidence in fuzzy data mining are simultaneously
optimized.



Maximize {Confidence, Support}

Confidence maximization: Zﬂ (X.)
Aq p

c(A, = Classh) = peClassh

ZﬂAq(Xp)
p=1
Support maximization:
Z:qu (Xp)
s(A, = Classh) = pec'aSShm

4 (-) : Membership function m: Number of patterns



Pareto-Optimal Fuzzy Rules

Wisconsin Breast Cancer Data Set (Breast W)
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Pareto-Optimal Fuzzy Rules
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Pareto-Optimal Fuzzy Rules

Breast W
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Relation between Pareto-optimal fuzzy

rules and Pareto-optimal fuzzy systems

Pareto-Optimal Fuzzy Systems (Breast W)
Error Minimization and Complexity Minimization
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Fuzzy Rules in Simple Fuzzy System A

Fuzzy rules in a simple fuzzy system A are general rules.
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Fuzzy Rules in Simple Fuzzy System A

Fuzzy rules in A are Pareto-optimal or near Pareto-optimal.
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Rules in Complicated Fuzzy System B

Some fuzzy rules in a complicated fuzzy system B is very
specific rules with narrow antecedent fuzzy sets.
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Salected Rulesin Rule Set B

Many fuzzy rules in B are far from the Pareto-optimal rules.
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Fuzzy Rules in Good Fuzzy System C

Some fuzzy rules in a good fuzzy system C are specific

but not very specific.
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Selected Rulesin Rule Set C

A single fuzzy rule in B iIs far from the Pareto-optimal rules
but the other rules are near Pareto-optimal.
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Multiobjective Machine Learning

Recently EMO algorithms were often used in other areas.

Multiobjective design of

C:’ t Neural Networks
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Multiobjective Machine Learning

Multiobjective Design of Decision Trees

o
%

0 Complexity

Classification Error




Multiobjective Machine Learning

EMO algorithms can be used for the multiobjective
design of various intelligent systems such as

- Fuzzy Rule-Based Systems
- Multilayer Neural Networks
- RBF Networks

- Support Vector Machines

- Decision Trees

- GP Trees



Future Research Directions in MGFSs

Multiple objectives are usually involved in the design of
any intelligent systems. So you will easily find many future
research issues in this research area.

Especially, if you are using an aggregation-based method,
you will be able to improve it by the EMO approach.

Aggregation Approach

F(S)=wq Terror (S)+ W2 - Toomplexity (S)

Multiobjective Approach

Minimize { fgpor (S), fCompIexity(S)}



Future Research Directions in MGFSs

Formulations of the Interpretability

- The number of fuzzy rules

- The number of antecedent conditions in each rule
- The number of input variables

- The separability of adjacent antecedent fuzzy sets

Handling of Large Data Sets

- Design of efficient EMO algorithms
- Subdivision of data sets
- Parallel implementation

Development of Special-Purpose EMO Algorithms

- Handling of many objectives
- Handling of both discrete and continuous variables



Future Research Directions in MGFSs

Development of New MGFS Methods with
- Multiobjective input selection algorithm

- Multiobjective fuzzy clustering algorithm

- Multiobjective fuzzy partition algorithm

- Multiobjective rule selection algorithm

Visualization of Pareto-Optimal Fuzzy Systems

- Visualization of a single fuzzy system
- Visualization of multiple fuzzy systems
- Visualization of accuracy-complexity tradeoff

Ensemble Classifier Design

- Search for multiple fuzzy systems with a large diversity
- Choice of ensemble members and their combination



Future Research Directions in MGFSs

Incorporation of Other Ideas into MGFS

- FUZZ-IEEE 2007 Tutorial by Alexander Gegov on Rule
Base Compression in Fuzzy Systems
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End of My Presentation

Thank you very much !
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